
STUDIA MATHEMATICA * (*) (200*)
On the loal moduli of squarenessbyAntonio J. Guirao (Muria)Abstrat. We introdue the notions of pointwise modulus of squareness and loalmodulus of squareness of a normed spae X. This answers a question of C. Benítez,K. Przesªawski and D. Yost about the de�nition of a sensible loalization of the modulusof squareness. Geometrial properties of the norm of X (Fréhet smoothness, Gâteauxsmoothness, loal uniform onvexity or strit onvexity) are haraterized in terms of thebehaviour of these moduli.1. Introdution. Let us reall the notion of modulus of squareness,originally de�ned in [7℄, where it arose naturally from studying Lipshitzontinuous set-valued funtions. Given a normed spae X, one observes thatfor any x, y ∈ X with ‖y‖ < 1 < ‖x‖, there is a unique z = z(x, y) in theline segment [x, y] with ‖z‖ = 1. We put

ω(x, y) =
‖x − z(x, y)‖

‖x‖ − 1and de�ne ξ = ξX : [0, 1) → [1,∞] by
ξ(β) = sup{ω(x, y) : ‖y‖ ≤ β < 1 < ‖x‖}.It is shown in [7℄ that for an inner produt spae, ξ(β) = ξ2(β) = 1/

√

1 − β2,and for any normed spae ontaining l1(2), ξ(β) = ξ1(β) = (1 + β)/(1 − β).The following theorem [1, Theorem O℄ puts together all the known propertiesof this modulus.Theorem 1.1. Let X be any normed spae, and ξ its modulus of square-ness. Then(a) ξ(β) = sup{ξM (β) : M ⊂ X, dim M = 2},(b) ξ is stritly inreasing and onvex ,2000 Mathematis Subjet Classi�ation: Primary 46B10, 46B20; Seondary 46B03.Key words and phrases: Banah spaes, loally uniformly rotund norms, Fréhetsmooth norms, strit onvex norms, Gâteaux smooth norms, modulus of squareness.Researh supported by the grants MTM2005-08379 of MECD (Spain), 00690/PI/04of Fundaión Sénea (CARM, Spain) and AP2003-4453 of MECD (Spain).[1℄



2 A. J. Guirao() ξ < ξ1 everywhere on (0, 1), unless X ontains arbitrarily lose opiesof l1(2),(d) ξ′ ≤ ξ′1 almost everywhere on (0, 1),(e) ξ > ξ2 everywhere on (0, 1), unless X is an inner produt spae,(f) X is uniformly onvex if and only if limβ→1(1 − β)ξ(β) = 0,(g) X is uniformly smooth if and only if ξ′(0) = 0,(h) ξX∗(β) = 1/ξ−1(1/β) for β ∈ [0, 1),(i) if ξ(β) < 1/(1 − β) for some β, then X has uniformly normal stru-ture.The proof of these properties an be found in [1, 7℄ and also some of themas well as a more geometrial haraterization of ξ in [9�11℄.Observe in partiular that the behaviour of ξ near 1 is related to onvex-ity, and its behaviour near zero is related to smoothness.The question of the existene of a sensible loalization of the modulus ofsquareness was posed in [1℄. In order to answer this question we de�ne twonew moduli.From now on and for the sake of larity, for any norm one vetor x, λ > 0and y with ‖y‖ < 1, we put
ωx(λ, y) = ω((1 + λ)x, y) and zx(λ, y) = z((1 + λ)x, y).Therefore ωx(λ, y) = ‖(1 + λ)x− zx(λ, y)‖/λ. Moreover, we an dedue thatfor y ∈ span{x} and for any λ > 0, ωx(λ, y) = 1, sine zx(λ, y) would be x.Definition 1.2. For any norm one vetors x, y the pointwise modulusof squareness at x in diretion y is the funtion ξX,x,y = ξx,y : [0, 1) → [1,∞)de�ned by

ξx,y(β) = sup{ωx(λ, γy) : |γ| ≤ β, λ > 0}.Definition 1.3. For any norm one vetor x the loal modulus of square-ness at x is the funtion ξX,x = ξx : [0, 1) → [1,∞) de�ned by
ξx(β) = sup{ωx(λ, y) : ‖y‖ ≤ β, λ > 0} = sup

‖y‖=1

{ξx,y(β)}.Observe that for any subspae M ⊂ X of dimension 2 ontaining normone vetors x, y we have ξx,y = ξM,x,y. For ξx we establish an analogue to(a) of Theorem 1.1. Indeed,
ξx(β) = sup{ξM,x(β) : x ∈ M ⊂ X, dim M = 2}.One an see that for any β ∈ [0, 1),

ξ(β) = sup{ξx(β) : x ∈ SX} = sup{ξx,y(β) : x, y ∈ SX}.We shall show how these moduli are related to various geometrial prop-erties of the norm of X. In partiular, in Setion 3 we reall the notionsof Gâteaux smoothness and Fréhet smoothness and show that whether ornot a normed spae X is Fréhet (resp. Gâteaux) smooth depends on the



Loal moduli of squareness 3behaviour of the loal (resp. pointwise) modulus of squareness near zero. InSetion 4 we reall the notions of loal uniform onvexity and strit on-vexity and show that whether or not X is loally uniformly (resp. stritly)onvex depends on the behaviour of the loal (resp. pointwise) modulus ofsquareness near 1. More preisely, we shall establish:Theorem 1.4. Let X be a normed spae and x a norm one vetor. Then(a) X is Gâteaux smooth at x i� ξ′x,y(0) = 0 for all y with ‖y‖ = 1.(b) X is Fréhet smooth at x i� ξ′x(0) = 0.() X is stritly onvex at x i� limβ→1(1 − β)ξx,y(β) = 0 for all y with
‖y‖ = 1.(d) X is loally uniformly onvex at x i� limβ→1(1 − β)ξx(β) = 0.In the following setion we fous on the properties of the ratio ωx(·, ·).2. Properties of ωx(λ, y). By a normed spae we mean a pair (X, ‖·‖),where X is a linear spae and ‖ · ‖ is a norm, although we will often write

X instead of (X, ‖ · ‖). We set BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X :
‖x‖ = 1}.The following lemma an be found in [1℄ as part of the proof that ξ isloally Lipshitz ontinuous.Lemma 2.1. Let X be a normed spae and x, y ∈ SX . Then, for any
λ > 0 and 0 ≤ β < γ < 1,

ωx(λ, γy) − ωx(λ, βy) ≤ ξ1(γ) − ξ1(β).For �xed norm one vetors x, y, the modulus ξx,y an be expressed in asimpler way:Proposition 2.2. Let X be a normed spae and x, y two norm onevetors. Then, for all β ∈ [0, 1),
ξx,y(β) = sup {ωx(λ,±βy) : λ > 0} .Proof. It is enough to show that for any �xed λ > 0 and any γ ≤ β wehave ωx(λ, βy) ≥ ωx(λ, γy). We use the following result whih an be foundin [3, 4, 8℄.Lemma 2.3. Let X be a two-dimensional normed spae and let K1, K2be losed onvex subsets of X with nonempty interior. If K1 ⊂ K2 then

r(K1) ≤ r(K2), where r(Ki) denotes the length of the irumferene of Ki,
i = 1, 2.This lemma an be applied to the triangles: K1 with verties the origin,
zx(λ, γy) and (1+λ)x, and K2 with verties the origin, zx(λ, βy) and (1+λ)x.



4 A. J. GuiraoTherefore
r(K1) = ‖(1 + λ)x‖ + ‖zx(λ, γy)‖ + ‖(1 + λ)x − zx(λ, γy)‖

≤ ‖(1 + λ)x‖ + ‖zx(λ, βy)‖ + ‖(1 + λ)x − zx(λ, βy)‖ = r(K2).Simplifying and dividing by λ, we obtain the desired inequality.Proposition 2.4. Let X be a normed spae. If x, y are norm one vetorsand 0 ≤ β < γ < 1, then
ξx,y(γ) − ξx,y(β) ≤ ξ1(γ) − ξ1(β),(2.1)

ξx(γ) − ξx(β) ≤ ξ1(γ) − ξ1(β).(2.2)In partiular , ξx,y and ξx are loally Lipshitz ontinuous funtions.Proof. From Lemma 2.1 we dedue that ωx(λ, γy) − ξx,y(β) ≤ ξ1(γ) −
ξ1(β) and, by Proposition 2.2, we obtain inequality (2.1), taking supremaover λ > 0. Inequality (2.2) follows similarly from (2.1), on taking supremaover y ∈ SX .Trying to simplify the expression for ξx,y obtained in Proposition 2.2,one an study the behaviour of the funtion ωx(·, y) for �xed x ∈ SX and
y ∈ B̊X . The next useful result is evident.Proposition 2.5. Let X be a normed spae and x ∈ SX . Then

1 ≤ ωx(λ) := sup{ωx(λ, y) : y ∈ B̊X} ≤ 1 + 2/λ.We now prove that the limit of the funtion ωx(λ, y) when λ goes to zeroalways exists and we ompute it.Reall that for a normed spae X and x, y ∈ X \ {0}, one an de�ne theright derivative of the norm at x in diretion y as the limit
N+(x, y) = lim

λց0

‖x + λy‖ − ‖x‖

λ
.Proposition 2.6. Let X be any normed spae, x ∈ SX , and y ∈ X with

‖y‖ < 1. Then
lim
λց0

ωx(λ, y) =
‖x − y‖

1 − N+(x, y)
.In order to prove this result we need to introdue some notation.Fix a normed spae X, x ∈ SX and y ∈ B̊X with y /∈ span{x}. We denoteby z′(λ) the unique vetor whih lies in span{zx(λ, y)} and on the ray whihstarts at x and has diretion y, that is,

z′(λ) = {x + µy : µ ≥ 0} ∩ span{zx(λ, y)}.We an write z′(λ) = x+µ(λ)y for some µ(λ) ≥ 0. Denote by fλ a ontinuousfuntional on X satisfying fλ(x) = fλ(zx(λ, y)) = 1. We an also write
zx(λ, y) = (1 + λ)x + ν(λ)(y − (1 + λ)x) for some ν(λ) ∈ [0, 1].



Loal moduli of squareness 5Lemma 2.7. Let X be a normed spae, x ∈ SX and y ∈ B̊X suh that
y /∈ span{x}. Then(a) limλց0 zx(λ, y) = x.(b) limλց0 µ(λ) = 0.() limλց0 fλ(y) = N+(x, y).Proof of Lemma 2.7. For (a) it is enough to show that ν(λ) tends tozero as λ → 0. First, observe that ϕ(t) = ‖(1 + λ)x + t(y − (1 + λ)x)‖is a onvex funtion satisfying ϕ(1) = ‖y‖ and ϕ(0) = 1 + λ. Therefore
ϕ(t) ≤ (1 + λ) + t(‖y‖− (1 + λ)) for t ∈ [0, 1]. Seondly, sine zx(λ, y) ∈ SX ,we have ϕ(ν(λ)) = 1, that is, 1 ≤ (1+λ)+ν(λ)(‖y‖− (1+λ)). Finally, sine
ν(λ) ∈ [0, 1], we obtain limλց0 ν(λ) = 0 and (a) is proved.For (b), observe that zx(λ, y) = (1 + λ)(1 − ν(λ))x + ν(λ)y. Sine z′(λ)lies in span{zx(λ, y)}, there exists α(λ) ∈ R suh that

x + µ(λ)y = z′(λ) = α(λ)zx(λ, y),from whih α(λ) = (1 + λ)−1(1 − νx(λ))−1 and then
µ(λ) = ν(λ)/[(1 + λ)(1 − ν(λ))].Sine ν(λ) onverges to 0 as λ → 0, (b) is proved.In order to show (), observe that, by (b), we have

N+(x, y) = lim
λց0

‖x + µ(λ)y‖ − ‖x‖

µ(λ)
= lim

λց0

‖z′(λ)‖ − ‖x‖

µ(λ)
.Sine z′(λ) ∈ span{z}, ‖z′(λ)‖ = fλ(z′(λ)). Hene, as fλ(x) = ‖x‖,

N+(x, y) = lim
λց0

fλ(z′(λ)) − fλ(x)

µ(λ)
= lim

λց0

µ(λ)fλ(y)

µ(λ)
= lim

λց0
fλ(y).Proof of Proposition 2.6. First of all, if y ∈ span{x} then 1−N+(x, y) =

‖x−y‖, and sine ωx(λ, y) = 1, this ase is lear. So, assume that y /∈ span{x}and onsider the unique vetor w(λ) satisfying the onditions fλ(w(λ)) = 1and w(λ) ∈ {µ((1 + λ)x − y) : µ ≥ 0}. One an easily see, by omparingsimilar triangles, that ωx(λ, y) = ‖w(λ)‖. Sine fλ(w(λ)) = 1, it is lear that
w(λ) = (1 + λ − fλ(y))−1[(1 + λ)x − y],that is,

ωx(λ, y) =
‖(1 + λ)x − y‖

1 + λ − fλ(y)
.Using the ontinuity of the norm and item () of the previous lemma weobtain the desired equality.Remark 2.8. However, this last fat does not help to ompute ξx,y(β),sine the funtion ωx(·, y) is neither onvex nor monotoni as the followingexample shows.



6 A. J. GuiraoExample 2.9. For any 0 < ε < 1/2, onsider in R
2 the norm de�ned by

‖x‖ = max{(1 − ε)−1‖x‖∞, ‖x‖1},and the vetors x = (1 − ε, 0) and y = (ε, 1 − ε). Fix β ≥ 1 − ε. Here is thegraph of the funtion ωx(·, βy) for ε = 0.2 and β = 0.88.
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Fig. 13. On di�erentiability and loalized squareness moduli. Through-out this setion X will be a normed spae endowed with the norm ‖ · ‖. Theolletion of support funtionals for a norm one vetor x is de�ned as
D(x) = {f ∈ X∗ : ‖f‖ = 1, f(x) = ‖x‖ = 1}.We reall that the modulus of smoothness of a normed spae is the fun-tion ̺ : [0,∞) → R

+ de�ned by
̺(β) = sup{(‖x + βy‖ + ‖x − βy‖)/2 − 1 : ‖x‖ = ‖y‖ = 1}.Loalizations of this modulus are the loal modulus of smoothness, de�nedfor any x ∈ SX and all β ∈ [0,∞) by

̺x(β) = sup{(‖x + βy‖ + ‖x − βy‖)/2 − 1 : ‖y‖ = 1},and the pointwise modulus of smoothness, de�ned for any norm one vetors
x, y and all β ∈ [0,∞) by

̺x,y(β) = (‖x + βy‖ + ‖x − βy‖)/2 − 1.Reall that a normed spae is: Gâteaux smooth at x ∈ SX in diretion
y ∈ SX i� ̺x,y(β)/β → 0 as β → 0; Gâteaux smooth at x ∈ SX i� it isGâteaux smooth at x in every diretion y ∈ SX ; Gâteaux smooth i� it isGâteaux smooth at any x ∈ SX ; Fréhet smooth at x ∈ SX i� ̺x(β)/β → 0as β → 0; and Fréhet smooth i� it is Fréhet smooth at any x ∈ SX .



Loal moduli of squareness 7For any norm one vetors x, y, we de�ne the funtion εx,y : [0,∞) →
[0,∞) by the formula

εx,y(β) = sup

{

‖x + βw‖ − ‖x‖

β
− f(w) : w ∈ Y, f ∈ DY (x)

}

,where Y = span{x, y} and DY (x) = {f |Y : f ∈ D(x)}. One an observethat this funtion is inreasing and that the spae is Gâteaux smooth at xin diretion y if and only if εx,y(β) → 0 as β → 0. Let us show a relationbetween εx,y and the pointwise modulus of squareness ξx,y.Proposition 3.1. For any norm one vetors x, y and all β ∈ [0, 1),

ξx,y(β) ≤ 1 +
2β

(1 − β)2
εx,y

(

2β

1 − β

)

.Proof. Fix x, y ∈ SX , λ > 0, β ∈ [0, 1) and a linear funtional f ∈ DY (x).Then there exists z0 ∈ [βy, (1 + λ)x] suh that f(z0) = 1. Pik a vetor
u suh that f(u) = 0 and z0 ∈ [u, (1 + λ)x]. It follows that there exists
µ ≥ 0 suh that u = (1 − µ)(1 + λ)x + µβy and, sine f(u) = 0, that
µ = (1 + λ)/(1 + λ − βf(y)). Thus,

‖u‖ ≤
(1 + λ)β

1 + λ − βf(y)
(|f(y)| + 1) ≤

2β

1 − β
.As z0 ∈ [u, (1+λ)x], there exists α ∈ (0, 1) suh that z0 = (1−α)(1+λ)x

+ αu. Using the fat that f(z0) = 1, it is easily seen that α = λ/(1 + λ).Therefore
‖z0 − x‖

λ
=

‖u‖

1 + λ
≤ ‖u‖ ≤

2β

1 − β
,(3.1)

‖z0 − x‖ =
λ

1 + λ
‖u‖ ≤ ‖u‖ ≤

2β

1 − β
.(3.2)Observe now that, from the de�nition of εx,y, it follows that

‖(1 + λ)x − z0‖ − ‖λx‖ ≤ ‖x − z0‖εx,y(‖x − z0‖/λ).Dividing by λ and using (3.1) one obtains the inequality(3.3) ‖(1 + λ)x − z0‖

λ
≤ 1 +

2β

1 − β
εx,y

(

2β

1 − β

)

.Now, put z = zx(λ, βy) and denote by ξX the modulus of squarenessof X. One an easily see that ‖z − z0‖ ≤ (‖z0‖ − 1)ξX(β) and ‖z0‖ − 1 ≤
‖x − z0‖εx,y(‖x − z0‖). Putting both together, and using (3.1), (3.2) and
ξX ≤ ξ1, one has(3.4) ‖z − z0‖

λ
≤ ξ1(β)

(

2β

1 − β

)

εx,y

(

2β

1 − β

)

.



8 A. J. GuiraoFinally, sine
ωx(λ, βy) ≤

‖(1 + λ)x − z0‖

λ
+

‖z − z0‖

λ
,using (3.3) and (3.4) one obtains

ωx(λ, βy) ≤ 1 +
2β

1 − β
εx,y

(

2β

1 − β

)

(1 + ξ1(β)) ,whih, on taking suprema over λ > 0, �nishes the proof.Now we establish a relation between the pointwise modulus of squareness
ξx,y and the pointwise modulus of smoothness ̺x,y.Proposition 3.2. For any norm one vetors x, y and for every β ∈
[0, 1),

̺x,y(β) ≤ ξx,y(β) − 1,(3.5)
̺x(β) ≤ ξx(β) − 1.(3.6)Proof. Observe that the seond inequality follows from the �rst on takingsuprema over y ∈ SX . Therefore we just have to show (3.5). Fix norm onevetors x, y. For a �xed β ∈ [0, 1) and λ > 0, we set

y1 = y1(λ, βy) = −(1 + λ)βy, y2 = y2(λ, βy) = (1 + λ)βy,

x′ = (1 + λ)x, zi = (1 − αi)x
′ + αiyi,where αi ∈ [0, 1] for i = 1, 2.On one hand, 1 = ‖zi‖ ≥ f(zi) for any f ∈ D(x). Therefore αi ≥

λ/(1 + λ − f(yi)). On the other hand, ‖x′ − yi‖ = (1 + λ)‖x ± βy‖. Sine,for λ < (1 − β)/β,
αi(λ)‖x′ − yi‖

λ
= ωx(λ,±(1 + λ)βy) ≤ ξx,y((1 + λ)β),we have

‖x′ − y1‖ + ‖x′ − y2‖ ≤ ξx,y((1 + λ)β)

(

λ

α1

+
λ

α2

)

.Sine αi ≥ λ/(1 + λ − f(yi)) we dedue that
‖x′ − y1‖ + ‖x′ − y2‖ ≤ ξx,y((1 + λ)β)(2 + 2λ − (f(y1) + f(y2)))

= ξx,y((1 + λ)β)(2 + 2λ) = 2ξx,y((1 + λ)β)(1 + λ),and therefore
‖x + βy‖ + ‖x − βy‖ ≤

‖x′ − y1‖ + ‖x′ − y2‖

1 + λ
≤ 2ξx,y((1 + λ)β),whih means that

̺x,y(β) ≤ ξx,y((1 + λ)β) − 1.



Loal moduli of squareness 9Sine this is true for λ < (1 − β)/β, we an let λ tend to 0 and, by theontinuity of ξx,y, we obtain the desired inequality.Theorem 3.3. Let ξx and ξx,y be the loalized squareness moduli of X.Then(a) X is Gâteaux smooth at x ∈ SX in diretion y ∈ SX if and only if
ξ′x,y(0) = 0.(b) X is Gâteaux smooth at x ∈ SX if and only if ξ′x,y(0) = 0 for all
y ∈ SX .() X is Gâteaux smooth if and only if ξ′x,y(0) = 0 for all x, y ∈ SX .(d) X is Fréhet smooth at x ∈ SX if and only if ξ′x(0) = 0.(e) X is Fréhet smooth if and only if ξ′x(0) = 0 for all x ∈ SX .Proof. (a) First, by inequality (3.5) of Proposition 3.2, it is straightfor-ward that if ξ′x,y(0) = 0 then ̺x,y(β)/β tends to 0 as β → 0, i.e. the norm isdi�erentiable at x in diretion y.Seondly, assume that X is Gâteaux smooth at x in diretion y. If x and

y are linearly dependent the result is trivial. Suppose then that x and y arelinearly independent; then applying Proposition 3.1 one has
ξx,y(β) − 1

β
≤

2

(1 − β)2
εx,y

(

2β

1 − β

)

.Sine the norm of X is Gâteaux smooth at x in diretion y, we have εx,y(t)
→ 0 as t → 0. This implies that ξ′x,y(0) = 0.(b) This follows from (a) sine for onvex funtions the existene of alldiretional derivatives at x implies Gâteaux smoothness at x.() Evident from (b).(d) On one hand, by inequality (3.6) of Proposition 3.2, it is lear that if
ξ′x(0) = 0 then ̺x(β)/β tends to 0 as β → 0, i.e. the spae is Fréhet smoothat x.On the other hand, if we assume that X is Fréhet smooth at x, thenapplying Proposition 3.1, for any y ∈ SX we have

ξx,y(β) − 1

β
≤

2

(1 − β)2
εx,y

(

2β

1 − β

)

.Taking suprema over y ∈ SX we obtain
ξx(β) − 1

β
≤

2

(1 − β)2
sup

y∈SX

{

εx,y

(

2β

1 − β

)}

.Sine the spae is Fréhet smooth at x, the right-hand side tends to 0 as
β → 0. Therefore ξ′x(0) = 0.(e) This follows from (d).



10 A. J. Guirao4. On onvexity and loalized squareness moduli. This setion isdevoted to showing a relation between the behaviour of the loalized moduliof squareness near 1 and the onvexity properties of a normed spae X. Inthe �rst subsetion the loal modulus of squareness ξx is related to loaluniform onvexity, and in the seond subsetion the pointwise modulus ofsquareness ξx,y is related to strit onvexity.4.1. Loal uniform onvexity. Fix a normed spae X and x ∈ SX . Thespae X is said to be loally uniformly onvex at x if its loal modulus ofonvexity
δx(ε) = inf

{

1 −

∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

: ‖y‖ = 1, ‖x − y‖ ≥ ε

}is stritly positive for eah ε > 0. The number ε0(x) = sup{ε : δx(ε) = 0}will be alled the harateristi of onvexity at x. Obviously, X is loallyuniformly onvex at x if and only if ε0(x) = 0.One alls D(x, β) = co({x} ∪ βBX) the drop of βBX with respet to thepoint x, and R(x, β) = D(x, β)\βBX the residue. In [1℄ the authors observethat X is loally uniformly onvex at x i� diam R(x, β) → 0 as β → 0.Reall that the radius of a set A relative to a point x is de�ned by
rad(x,A) = supa∈A ‖x − a‖. It is lear that diam(A)/2 ≤ rad(x,A) ≤
diam(A) whenever x ∈ A. For ‖x‖ = 1 and 0 < β < 1, Kadets [6℄ de-�ned the set G(x, β) = {y : [y, z] ⊂ BX \ βB̊X}, and noted that X is loallyuniformly onvex at x i� rad(x,G(x, β)) → 0 as β → 1. Moreover, it isknown that the funtion ǫ(x, β) = rad(x,G(x, β)) is uniformly ontinuouson the set SX × [0, r] for all r < 1 and that ǫ is ontinuous at (x, 1) if thenorm is loally uniformly onvex at x ∈ SX (see [2, 5℄).It is also well known that the norm is loally uniformly onvex at x ifand only if whenever a sequene {xn}n satis�es

lim
n→∞

(2(‖x‖2 + ‖xn‖
2) − ‖x + xn‖

2) = 0,then limn ‖xn−x‖ = 0. This an be shown easily by using the loal modulusof onvexity de�ned above. Finally, we say that the norm of X is loallyuniformly onvex if it is loally uniformly onvex at all x ∈ SX .Lemma 4.1. If a normed spae is loally uniformly onvex at x ∈ SX ,then
lim
λ→0

sup
y∈B̊X

‖x − zx(λ, y)‖ = 0.Proof. Observe that for any λ > 0 and y with ‖y‖ < 1 all points ofthe segment [(1 + λ)x, zx(λ, y)] di�erent from zx(λ, y) are outside the losedunit ball. Indeed, the funtion f(α) = ‖α(1 + λ)x + (1 − α)z(λ, y)‖ satis�es
f(0) = 1 and there exists α0 < 0 suh that f(α0) = ‖y‖ < 1. Sine f is



Loal moduli of squareness 11onvex we obtain f(α) > 1 whenever α > 0. In partiular,
f(1/2) =

1 + λ

2

∥

∥

∥

∥

x +
zx(λ, y)

1 + λ

∥

∥

∥

∥

> 1.Therefore,
0 ≤ 2‖x‖2 + 2

∥

∥

∥

∥

zx(λ, y)

1 + λ

∥

∥

∥

∥

2

−

∥

∥

∥

∥

x +
zx(λ, y)

1 + λ

∥

∥

∥

∥

2

< 2 +
1

(1 + λ)2
−

4

(1 + λ)2

= 2 −
2

(1 + λ)2where the right hand side tends to 0 uniformly over all y ∈ B̊X and, sinethe spae is loally uniformly onvex at x, zx(λ, y) onverges to x uniformlyin y ∈ B̊X .Theorem 4.2. For any normed spae X and for any x ∈ SX , the fol-lowing are equivalent :(a) X is loally uniformly onvex at x.(b) diam G(x, β) → 0 as β → 1.() diam R(x, β) → 0 as β → 1.(d) lim supβ→1(1 − β)ξx(β) = 0.(e) lim infβ→1(1 − β)ξx(β) = 0.Moreover , lim infβ→1(1 − β)ξx(β) ≥ ε0(x).Proof. The equivalene between (a), (b) and () is known. We laim thatfor all 0 ≤ β < 1,(4.1) ε0(x) − 1 + β ≤ (1 − β)ξx(β).Letting β → 1 proves the last assertion and (e)⇒(a).Inequality (4.1) is trivial if ε0(x) = 0, so suppose that X is not loallyuniformly onvex at x. This means that, given any λ > 0, we an �nd anorm one vetor y, at distane at least ε0(x) from x, and suh that for all
γ, µ ≥ 0,

(1 + λ2)‖γx + µy‖ ≥ γ + µ.Set x′ = (1 + λ)x and y′ = βy, so that ‖x′ − y′‖ ≥ ε0(x)−λ− (1−β). Then
z = zx(λ, y′) = (1 − α)x′ + αy′ must satisfy

1 = ‖z‖ ≥
1 + λ − α(1 + λ − β)

1 + λ2
and so α ≥

λ − λ2

1 + λ − β
.But then

‖x′ − z‖

λ
=

α‖x′ − y′‖

λ
≥

(1 − λ)(ε0(x) − λ − (1 − β))

1 + λ − β
.Letting λ → 0, we see that ξx(β) ≥ (ε0(x) − 1 + β)/(1 − β), whih is (4.1).



12 A. J. GuiraoIt is obvious that (d) implies (e), so it only remains to show (a)⇒(d).Pik sequenes {βn}n tending to 1, {δn}n tending to 0, λn > 0 and vetors
yn ∈ βnBX suh that

ξx(βn) < ωx(λn, yn) + δn.We have to distinguish two ases:(a) If lim infn λn > 0, Lemma 2.5 shows that M = supn{ωx(λn)} < ∞and so
ξx(βn) < ωx(λn, yn) + δn ≤ ωx(λn) + δn ≤ M + δn.Therefore,
lim sup

n→∞
(1 − βn)ξx(βn) ≤ lim

n→∞
(1 − βn)(M + δn) = 0.(b) If lim infn λn = 0, then we an assume, passing to a subsequene,that λn → 0. If neessary we an hoose y′n in suh a way that ‖y′n‖ = βnand y′n ∈ [yn, (1 + λn)x] ∩ G(zx(λn, yn), βn)). Set

zn = zx(λn, yn) = αn(1 + λn)x + (1 − αn)y′n.Then 1 = ‖zn‖ ≤ αn(1 + λn) + (1 − αn)βn, from whih it follows that
(1 − αn)(1 − βn) ≤ αnλn and

(1 − αn)(1 − βn)ωx(λn, y′n) ≤ αn‖(1 + λn)x − zn‖ = (1 − αn)‖y′n − zn‖

≤ (1 − αn) rad(zn, G(zn, β)).That is, (1 − βn)ωx(λn, yn) = (1 − βn)ωx(λn, y′n) ≤ ǫ(zn, βn). Lemma 4.1tells us that zn tends to x and therefore, sine ǫ(·, ·) is ontinuous at (x, 1),we have
lim sup

n→∞
(1 − βn)ξx(βn) ≤ lim sup

n→∞
(1 − βn)ωx(λn, yn)

≤ lim
n→∞

ǫ(zn, βn) = ǫ(x, 1) = 0,whih is what we wanted to show.This proposition yields a new haraterization of loal uniform onvexity.Corollary 4.3. For any normed spae X the following are equivalent :(a) X is loally uniformly onvex.(b) diam G(x, β) → 0 as β → 1 for all x ∈ SX .() diam R(x, β) → 0 as β → 1 for all x ∈ SX .(d) lim supβ→1(1 − β)ξx(β) = 0 for all x ∈ SX .(e) lim infβ→1(1 − β)ξx(β) = 0 for all x ∈ SX .4.2. Strit onvexity. Let X be a normed spae and x,w ∈ SX . The normof X is said to be stritly onvex at x in diretion w if there is no propersegment inluded in the unit sphere starting at x with diretion w. Similarly,it is said to be stritly onvex at x if there is no proper segment inluded in



Loal moduli of squareness 13the unit sphere starting at x in any diretion. X is said to be stritly onvexif it is stritly onvex at all its norm one vetors. We de�ne ε0(x,w) to bethe supremum of ε > 0 suh that the segment [x, x + εw] or [x, x − εw] lieson the unit sphere. We also de�ne Cw
x = {y ∈ SX : ∃λ ∈ R, y = x + λw}.Proposition 4.4. Let X be a normed spae and x, w two norm onevetors. If lim infβ→1(1 − β)ξx,y(β) = 0 for all y ∈ Cw

x , then X is stritlyonvex at x in diretion w. Moreover ,
sup

y∈Cw
x

lim inf
β→1

(1 − β)ξx,y(β) ≥ ε0(x,w).Proof. Assume that X is not stritly onvex at x in diretion w. Thismeans that ε0(x,w) > 0, and that for any ε0(x,w) > δ > 0 there exists
y ∈ Cw

x suh that ‖y − x‖ ≥ ε0(x,w) − δ. Write z = zx(λ, βy). There exists
α ∈ [0, 1] suh that z = (1 − α)(1 + λ)x + αβy. Let us ompute α. Fix
f ∈ D(x) suh that f([x, y]) = 1. We have 1 = f(z) = (1 − α)(1 + λ) + αβ.Therefore α = λ/(1 + λ − β).On the other hand,
‖(1 + λ)x − βy‖ ≥ ‖x − y‖ − ‖λx + (1 − β)y‖ ≥ ε0(x,w) − δ − λ − (1 − β).Therefore,

ξx,y(β) ≥ ωx(λ, βy) = α
‖(1 + λ)x − βy‖

λ
≥

ε0(x,w) − δ − λ − (1 − β)

1 + λ − β
.Letting λ → 0, we obtain (1 − β)ξx,y(β) ≥ ε0(x,w) − δ − (1 − β). Therefore

lim inf
β→0

(1 − β)ξx,y(β) ≥ ε0(x,w) − δ.This implies that lim infβ→0(1 − β)ξx,y(β) > 0, whih shows the �rst and,whenever ε0(x,w) > 0, the seond assertion of the theorem. The proof is�nished, sine the seond assertion is lear when ε0(x,w) = 0.Theorem 4.5. For any normed spae X and for any x ∈ SX the follow-ing are equivalent :(a) X is stritly onvex at x.(b) lim supβ→1(1 − β)ξx,y(β) = 0 for all y ∈ SX .() lim infβ→1(1 − β)ξx,y(β) = 0 for all y ∈ SX .Proof. The impliation (b)⇒() is evident. The impliation ()⇒(a) fol-lows from Proposition 4.4. In order to see (a)⇒(b), �x y ∈ SX , and pik
{βn}n tending to 1, {δn}n tending to 0, λn > 0 and vetors yn = γny ∈ βnBXsuh that

ξx,y(βn) < ωx(λn, yn) + δn.We have to distinguish two ases:



14 A. J. Guirao(a) If lim infn λn > 0, then Lemma 2.5 shows that M = supn{ωx(λn)}
< ∞ and so

ξx,y(βn) < ωx(λn, yn) + δn ≤ ωx(λn) + δn ≤ M + δn.Therefore,
lim sup

n→∞
(1 − βn)ξx,y(βn) ≤ lim

n→∞
(1 − βn)(M + δn) = 0.(b) If lim infn λn = 0, we an assume, passing to a subsequene, that

λn → 0. If neessary we an hoose y′n suh that ‖y′n‖ = βn and y′n ∈ [yn,
(1+λn)x]∩GY (zx(λn, yn), βn)), where Y = span{x, y}. Write zn = zx(λn, yn)
= αn(1+λn)x+(1−αn)y′n. Then 1 = ‖zn‖ ≤ αn(1+λn)+ (1−αn)βn, fromwhih it follows that (1 − αn)(1 − βn) ≤ αnλn and

(1 − αn)(1 − βn)ωx(λn, y′n) ≤ αn‖(1 + λn)x − zn‖ = (1 − αn)‖y′n − zn‖

≤ (1 − αn) rad(zn, GY (zn, β)).That is, (1 − βn)ωx(λn, yn) = (1 − βn)ωx(λn, y′n) ≤ ǫY (zn, βn). Sine Y isloally uniformly onvex at x, Lemma 4.1 tells us that zn tends to x andtherefore, sine ǫY (·, ·) is ontinuous at (x, 1), we have
lim sup

n→∞
(1 − βn)ξx,y(βn) ≤ lim sup

n→∞
(1 − βn)ωx(λn, yn)

≤ lim
n→∞
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