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Microbubbles, either in the form of free gas bubbles surrounded by a fluid or encapsulated bubbles

used currently as contrast agents for medical echography, exhibit complex dynamics under specific

acoustic excitations. Nonetheless, considering their micron size and the complexity of their interac-

tion phenomenon with ultrasound waves, expensive and complex experiments and/or simulations

are required for their analysis. The behavior of a microbubble along its equator can be linked to a

system of coupled oscillators. In this study, the oscillatory behavior of a microbubble has been

investigated through an acousto-mechanical analogy based on a ring-shaped chain of coupled pen-

dula. Observation of parametric vibration modes of the pendula ring excited at frequencies between

1 and 5 Hz is presented. Simulations have been carried out and show mode mixing phenomena. The

relevance of the analogy between a microbubble and the macroscopic acousto-mechanical setup is

discussed and suggested as an alternative way to investigate the complexity of microbubble dynam-

ics. VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4936949]

[CCC] Pages: 3600–3606

I. INTRODUCTION

When subjected to an external acoustic field, bubbles

can undergo complex radial oscillations. This oscillatory

behavior has been an important and continuously developing

research subject since the beginning of the 20th century. The

investigation of bubble dynamics started with the work of

Lord Rayleigh,1 who was mandated by the Royal Navy to

explain the origin of damages on submarine propellers.

Rayleigh focused on the oscillatory behavior of cavitation

bubbles suspended in a fluid. He showed that the overpres-

sure generated by the oscillations and the collapse of bubbles

could explain the damages caused on propellers. In the

1930s, Minnaert was interested in the origin of the sound of

running water.2 He supposed that bubbles oscillating periodi-

cally in water were at the origin of rivers whispering. After

these seminal works, many studies on bubble oscillations

have been carried out in different research fields.

In addition to the radial motion, bubbles can show non-

spherical oscillations or vibration modes. These vibration

modes, characterized by an index n, were first analyzed theo-

retically at the interface between immiscible and incompres-

sible fluids with spherical symmetries.3 Later, Neppiras4

analyzed the acoustic response from gas bubbles suspended

in a fluid and subjected to sound fields. Eller and Crum5 and

Prosperetti et al.6 focused on the instability of the motion

and the nonlinear dynamics of a bubble within a sound field.

In the 1990s, the discovery of single bubble sonolumines-

cence (SBSL) by Gaitan et al.7 led to additional studies on

nonlinear oscillations of bubbles.8–10 Finally, with the use of

ultrasound contrast agents,11 the understanding of bubble

dynamics have found a renewed interest in the field of ultra-

sound imaging and targeted drug delivery.12,13 Therefore,

the problem of vibration modes in bubbles is still under

investigation.

In this study, the interaction between ultrasound and a

microbubble, and especially the appearance of vibration

modes, are studied using a macroscopic analog system.14,15

The mechanisms underlying its nonlinear behavior are

sought to improve our understanding of the microbubble

dynamics. The study of a single microbubble is a difficult

task, particularly because of the interaction with other micro-

bubbles or microstreaming that sweep away the bubble.

Moreover, the smallness and the complexity of the phenom-

ena involved, require complex modeling and expensive

experiments. In this work, we propose the use of a macro-

scopic mechanical analog as an alternative way to investi-

gate microbubble dynamics.

The study of analog models in the field of physics is a

tool that allows recreating in the laboratory phenomena that

are difficult to observe directly. Concerning microbubbles,

some of its dynamic features (vibration modes, subharmonic

oscillations, chaos) can be captured by a system of coupled

oscillators. Here, the oscillatory behavior of a microbubble

and its vibration modes are investigated through the use of a

macroscopic analogy consisting of a chain of coupled pen-

dula, parametrically excited by a vertical force. Based on a

discrete nonlinear model of coupled pendula and its continu-

ous limit describing low frequency excitations, vibration

modes are investigated theoretically and experimentally.

This approach is used here to set up a formal basis for the

acousto-mechanical analogy of a gas microbubble.a)Electronic mail: chalinejennifer@gmail.com
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The structure of the paper is as follows: Mathematical

formulations of a gas microbubble in an ultrasound field, and

the analog acousto-mechanical system are given and com-

pared in Secs. II and III, respectively. The experimental

setup and the results of the measurement of vibration modes

in the macroscopic system are described in Sec. IV, where

numerical simulations are also presented. The conclusions of

the study are presented in Sec. V.

II. MICROBUBBLE DYNAMICS

In the presence of an acoustic field, microbubbles can be

forced to oscillate in different ways. The most common

oscillation mode is the radial mode (Fig. 1) with the index

n¼ 0, and where the bubble compresses and expands radially,

maintaining its spherical shape. The basic model describing

the radial dynamics of a bubble is the Rayleigh�Plesset equa-

tion for the time-dependent radius R,

q R €R þ 3

2
_R

2

� �
¼ Pg � P0 � PA tð Þ � 2r

R
� 4l

_R

R
; (1)

with q the density of the surrounding fluid, Pg ¼ ½P0

þð2r=R0Þ�ðR0=RÞ3c
, the gas pressure inside the bubble, P0 is

the hydrostatic pressure, R0 is the equilibrium radius of the

bubble, PAðtÞ the acoustic pressure, r the surface tension of

the bubble, l the dynamic viscosity and c the polytropic

exponent. Some generalizations of this model have been pro-

posed.16–19 The resonance frequency of the radial mode of

the bubble, the so called Minnaert frequency, can be

obtained from linearization of Eq. (1) and is given by

f ¼ 1

2pR0

3cP0

q

� �1=2

: (2)

Under typical conditions, the relation f � R0 is a magnitude

of order 1. In particular, for a bubble in water at standard

pressure (P0¼ 100 kPa, q¼ 1000 kg/m3, c ¼ 1:4), this equa-

tion gives the condition f � R0 � 3 m/s.

Microbubbles can also undergo non-spherical oscilla-

tions (see Fig. 2, left column) through instabilities at the

gas/fluid interface. In this case, the radius becomes a space-

dependent function,

RðtÞ ! Rðh;u; tÞ ¼ RðtÞ þ nðh;u; tÞ; (3)

where R(t) describes the evolution of the radial mode and

nðh;u; tÞ a perturbation depending on the spherical coordi-

nates h and u. As Fig. 2 (left) shows, microbubbles can de-

velop different surface patterns that depend on the excitation

parameters (amplitude and frequency of the ultrasound

wave) and the bubble radius. The radial oscillation corre-

sponds to the mode n¼ 0; the mode n¼ 1 corresponds to the

displacement of the center of mass. Non-spherical surface

modes are those modes with n � 2.

To describe non-spherical modes in bubbles, a com-

mon analytical approach is to expand the perturbation of

the radial mode, nðh;u; tÞ, on the basis of spherical

harmonics3

nðh;u; tÞ ¼
X
n;m

anðtÞYm
n ðh;uÞ; (4)

where anðtÞ is the time-dependent amplitude of the surface

mode of index n, and Ym
n ðh;uÞ is the spherical harmonic

defined as

FIG. 1. (Color online) A bubble oscillating volumetrically within an acous-

tic field. For positive and negative pressures, compression and expansion

phases are observed, respectively. Several modes can be observed: the radial

mode n¼ 0 and the non-spherical mode n¼ 4.

FIG. 2. (Color online) Representation of microbubble surface modes with n
the mode’s order. The left pictures are experimental results from Ref. 20,

and show a selection of surfaces modes observed for different microbubble

radius between 36�45 lm. The two columns in the center are 3D analytical

solutions from Eq. (5), and its equatorial cross section. The right column

shows the corresponding vibration modes experimentally observed with the

acousto-mechanical system, as described in Sec. IV.
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Ym
n h;uð Þ ¼ �1ð Þmffiffiffiffiffiffi

4p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� mð Þ!
nþ mð Þ!

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
p

Pm
n cos hð Þeimu;

(5)

where Pm
n are Legendre polynomials. Although Ym

n ðh;uÞ
defines a large set of possible surface modal oscillations,

experiments20 show that the observed modes present sym-

metry along the axis of the incident ultrasound beam, corre-

sponding to m¼ 0, also known as zonal harmonics. Then,

spherical harmonics Y0
nðh;/Þ are proportional to Legendre

polynomials Pnðcos hÞ. The evolution equation for the ampli-

tude of each mode can be found by matching velocity poten-

tials and pressures at both sides of the interface, and

linearizing for small amplitudes,3

€an þ
3 _R

R
þ 2 nþ 2ð Þ 2nþ 1ð Þ

qR2
l

 !
_an

þ nþ 1ð Þ nþ 2ð Þr
qR3

þ 2 nþ 2ð Þl _R

qR3
�

€R

R

 !

� n� 1ð Þan ¼ 0; (6)

where, l is the viscosity and r the surface tension. Defining

bðtÞ ¼ aðtÞR3=2, the equation can be simplified as21

€bnþ
n�1ð Þ nþ1ð Þ nþ2ð Þr

qR3
�3 _R

2

4R2
� 2nþ1ð Þ €R

2R

 !
bn¼0:

(7)

Within this approach, each mode n obeys to the equation

of a harmonic oscillator, with time-dependent coefficients.

The resonance frequencies of the surface modes readily fol-

low from Eq. (7) by considering the static condition R¼R0,

and _R ¼ €R ¼ 0,

xn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ nþ 1ð Þ nþ 2ð Þr

qR3
0

s
; (8)

which is the Lamb expression for surface modes for a free

gas bubble.

The acoustic pressure term PAðtÞ in Eq. (1) is usually a

harmonic function with angular frequency xe, i.e., PAðtÞ
¼ pA cosðxetÞ. For sufficiently small amplitudes pA, the bub-

ble response will be also harmonic at the same frequency,

i.e.,

RðtÞ ¼ R0 þ Re cosðxetÞ; (9)

with Re � R0. Substituting Eq. (9) into Eq. (7) and lineariz-

ing, a Mathieu equation for each surface mode is obtained:21

€bn þ x2
n þ

2nþ 1ð Þx2
e

2
� 3x2

n

� �
Re

R0

cos xetð Þ

" #
bn ¼ 0:

(10)

The Mathieu equation is a special case of a linear second-order

homogeneous differential equation with time-dependent

coefficients, and appears in many applications in physics and

engineering, specially in the description of parametrically

driven systems,22 as the systems considered in this work.

III. THE PARAMETRICALLY DRIVEN CHAIN OF
COUPLED PENDULA

In this section the model equations for the macroscopic

analog of the microbubble are formulated. First, we consider

the exact problem of the discrete lattice of coupled masses,

which corresponds to our experimental system. Later, the

continuum limit of this model is used to establish the anal-

ogy with gas microbubble, by deriving an equation isomor-

phic to Eq. (10).

A. The discrete lattice

The equation of motion of a pendulum of length L is

given by

€H þ x2
0 sin H ¼ 0; (11)

where HðtÞ is the angle with respect to the vertical, and

x0 ¼
ffiffiffiffiffiffiffiffi
g=L

p
, g being the acceleration due to gravity. When a

set of oscillators are coupled to their nearest neighbors, they

form a lattice or chain, supporting waves. Consider that the

lattice is subjected to a parametric forcing with displacement

amplitude he and angular frequency xe, then its motion is

described by

€Hiþðx2
0þgcosxetÞsinHi�c2ðHiþ1�2HiþHi�1Þ¼0;

(12)

where Hi is the angle of the ith pendulum, g ¼ 4x2
ehe=L is

the forcing parameter, and c is a constant denoting the

strength of the coupling, equivalent to the speed of sound for

the waves for the lattice waves. Lattice models like Eq. (12)

have been extensively studied, in the context of Frenkel-

Kontorova chain.23 Most of the work is theoretical, and

focused on the formation of localized states (breathers, soli-

tons, and kinks). There are few experimental works,24–26

where different parametric driving mechanisms and coupling

have been implemented. In Ref. 24, coupling is achieved by

strings and knots, while in Ref. 26 torsional springs are used.

In all the cases, a linear arrangement of pendula was consid-

ered. Boundary conditions typical of this configuration are ei-

ther fixed or free ends. For the sake of simplicity, in the

forthcoming analytical treatment we have ignored dissipation,

which is small but finite in our experiment. It can be added as

a phenomenological term in Eq. (12) by including an addi-

tional term b _H. Our numerical simulations later will take into

account such dissipative term, with b ¼ 5� 10�4.

Here, in order to mimic a bubble-like behavior, we con-

sider the chain in a circular arrangement. This implies the

periodic boundary condition HNþ1 ¼ H1. In addition to this,

the circular configuration incorporates curvature effects,

which are not present in the linear chain. We assume a

V-shaped coupling [see Fig. 3(a)], for which coupling

strength is given by
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c2 ¼ gda2

4L L� dð Þ ; (13)

where d is the distance from the knot to the support, and a
the distance between masses.24 Note that, in this model, the

coupling strength can be varied by selecting the position of

the knot.

The chain supports different oscillation modes, labeled

with an integer index n, corresponding to standing waves

with wavenumber kn. For the circular chain of radius R0, the

relation kn ¼ n=R0 holds. The relation between driving fre-

quency and mode index (the dispersion relation) can be

obtained, for negligible damping and forcing, after lineariza-

tion and assuming a solution in the form of a harmonic

wave, exp iðkna� xtÞ. This results in the relation

xn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

L� d
1� d

L
cos2

na

2R0

� �" #vuut : (14)

As shown in Fig. 3(b), which illustrates the chain

viewed from the top, the ring of oscillators is equivalent to

an equatorial section of a bubble with equilibrium radius R0,

RiðtÞ ¼ R0 þ L sin HiðtÞ; (15)

where R0 is the radius of the ring (equivalent to the equilibrium

radius of the bubble). Assuming small angles sin Hi ’ Hi, the

position of each pendulum at a time t can be given by

RiðtÞ ¼ R0 þ LHiðtÞ.

B. Continuous description

The bubble surface is a continuum, while the chain of

pendula is a discrete system. Therefore, analogies must be

searched in the limit where a continuum version of Eq. (12)

applies. This is the case when we restrict our analysis to

long-wavelength modes (low index n), where the mode scale

are much larger than the distance between two pendula,

kna� 1, or na=R0 � 1. Considering this limit, the discrete

angle coordinates HiðtÞ can be replaced by the continuous

function Hðx; tÞ.
The equation of motion Eq. (12) leads to the parametri-

cally driven, small amplitude, sine–Gordon model that reads

€H � c2Hxx þ ½x2
0 þ g cosðxetÞ�H ¼ 0; (16)

where H is a surface deformation related to the bubble radius

as H ¼ ðR� R0Þ=L.

Solutions of Eq. (16) can be expressed as a superposi-

tion of normal modes. For a linear (straight) chain, a proper

basis is given by the harmonic functions

Hðx; tÞ ¼
X

n

bnðtÞ cosðknxÞ: (17)

Some solutions of Eq. (16) have been discussed for a one-

dimensional straight geometry.27,28

In the ring geometry considered here, angular coordi-

nates are more suitable to describe the position of a point on

the deformed ring, and we use the transformation x ¼ Rh,

where h ¼ ½0; 2p� and R¼R0 is the equilibrium radius. The

Laplacian operator takes the form Hxx ¼ R�2Hhh. A proper

basis for the expansion in this case is

Hðh; tÞ ¼
X

n

bnðtÞPnðcos hÞ; (18)

where Pnðcos hÞ is a Legendre polynomial and h is the angu-

lar coordinate.

The equation for the temporal evolution of the mode

amplitudes can be obtained by substituting Eq. (17) or Eq.

(18) into Eq. (16) and projecting over the different modes

(Galerkin projection) using the orthogonality properties of

harmonic functions or Legendre polynomials. Independently

of the basis chosen for the expansion, the following equation

is obtained:

€bn þ ½x2
n þ g cosðxetÞ�bn ¼ 0; (19)

which is a Mathieu equation, where the parametric excitation

amplitude is g ¼ ð4x2
eheÞ=L and the frequency on the nth

mode is given by

x2
n ¼ x2

0 þ c2 n2

R2
0

: (20)

The same result is obtained from the exact dispersion rela-

tion Eq. (14) for the discrete system, evaluated in the limit of

low index n, where na=R0 � 1.

FIG. 3. (Color online) Schematic representation of the chain of pendula

coupled by V-shaped strings and knots, hanging from a rigid support. (a)

Lateral view of a section of the chain, (b) top view of the whole chain in a

circular arrangement. Deviation of one mass with respect to its equilibrium

position, and its coordinates are shown for illustration.
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C. Analogy

In this paper, the analogy between the ultrasound driven

gas bubble and the ring of coupled pendula subjected to a

time-dependent acceleration is considered at different levels.

One first level is just descriptive, where the mechanical ana-

logue behaves similarly to the microbubble surface under an

ultrasound field. The vertical forcing is equivalent to the

ultrasound pressure field, in the sense that it excites paramet-

rically the motion, and the chain of pendula play the role of

the surface of the bubble, coupling represents surface ten-

sion, and so on. In a second level of analogy, we have shown

that in both cases the product fe � R0 can be chosen to be of

the same order (the product is fixed for a gas microbubble,

given by the Minnaert formula, however in the mechanical

analogue the radius of the bubble can be chosen independ-

ently of the resonant frequency, which depends on the length

of the pendula). So at this level the analogy become quantita-

tive. The ring of pendula in this work, with R0 ’ 0:3 m, was

designed to be excited in the Hz frequency range. The third,

and deeper level of analogy is based on the demonstration

that the dynamics of both systems is described by the same

Mathieu equation, whose coefficients depend on the specific

system and can be obtained analytically in simple form.

Such coefficients are listed in Table I, which is the main

result of this work. Once the connections between the param-

eters in both systems are established, experimental investiga-

tion with the macroscopic analogue may result in insight of

new phenomena in acoustically driven bubbles.

IV. EXPERIMENTS

A. Experimental setup

The setup consists of an aluminum ring, on which pen-

dula of mass m¼ 6 g are fixed with nylon strings forming a

“V” shape with the vertical axis as shown in Fig. 3(a). The

coupling between pendula is obtained by overlapping the

strings and fixing them by a knot.24 The parameter with a

stronger influence on the dynamics of the chain is the cou-

pling strength. Here, we focus on a ring with a medium

coupling. The ring has a radius R¼ 31 cm, N¼ 54 pendula,

pendulum’s length is L¼ 10 cm and the distance between

the ring and the node is d¼ 5 cm. As Fig. 4 shows, the

pendula ring lies on the excitation system. The mechanical

excitation system consists of a subwoofer loudspeaker driven

by an arbitrary waveform generator (Agilent33220A,

Agilent Technologies, Loveland, CO) through an audio

amplifier. Thus, the pendula ring is attached to the

subwoofer cone and therefore is excited mechanically by a

vertical oscillatory force, as shown in Fig. 4. The sinusoidal

excitation varies from fe¼ 0 to 5 Hz with amplitudes varying

from A¼ 0.5 to 3.5 Vpp, corresponding to a vertical displace-

ments ranging from he ¼ 0:5 to 3.5 mm. The pendula are

driven near the volumetric resonant frequency and its double

to allow the development of surface modes during the me-

chanical excitation through parametric instability.

The motion of pendula has been recorded from the top

with a video camera. The data processing have been per-

formed with the software Image J and the plug-in MJ Track.

This plug-in enables us to track the motion of each pendulum

and thus to determine the distance RiðtÞ between the center

of the ring and a pendulum at a fixed time t. Applying a spa-

tial fast Fourier transform on RiðtÞ, the amplitude of each

vibration mode of order n can be obtained.

B. Results

A set of measurements has been carried out for excitation

amplitudes between he ¼ 0:5 and 3.5 mm and frequencies vary-

ing from fe¼ 0 to 5 Hz. Vibration modes have been observed up

to n¼ 22, including an unstable volumetric mode for n¼ 0. The

mode n¼ 1 corresponding to the displacement of the center of

mass has also been observed. An example of the observed pat-

terns is given in Fig. 5 for an excitation amplitude he¼ 2 mm

and frequency fe ¼ 3:20 Hz. Here, the pendula ring shows a

mode n¼ 3. A fit to the corresponding Legendre polynomial,

shown in continuous line, shows a good agreement.

To compare with the experimental results, Eq. (12) has

been integrated numerically by an explicit central finite dif-

ferences scheme, with a temporal step Dt ¼ ð2p=x0Þ1000. A

set of solutions were simulated for amplitudes ranging from

he¼ 0 to 3.5 mm and excitation frequency ranging from

TABLE I. Table of analogies between parameters of microbubble and those

of the pendula ring.

Parameter Microbubble Pendula ring

R0 [m] ’10�6 ’0:3

fe [s�1] ’106 ’3

fe � R0 [m s�1] Oð1Þ Oð1Þ
x2

n [s�2] ðn� 1Þðnþ 1Þðnþ 2Þ r

qR3
0

g

L
þ n2 c

R2
0

g [s�2] ð2nþ 1Þ
2

x2
e

Re

R0

� �
4x2

e

he

L

� �

FIG. 4. (Color online) Scheme of the experimental setup. The ring of

coupled pendula is driven vertically by an sinusoidal force generated by a

loudspeaker.
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xe ¼ 0:5 to 3x0 rad/s. The amplitudes of the vibration

modes were evaluated by a spatial fast Fourier transform of

each numerical solution. A phase diagram showing the do-

main of existence of vibration modes n for different excita-

tion parameters is presented in Fig. 6. The numerical

simulation of Eq. (12) evidences the existence of different

sets of resonances. Due to the damping, there exists a thresh-

old for the excitation of the different modes. The lowest

threshold is obtained for the so-called p=q ¼ 2 : 1, (p, q inte-

gers) or subharmonic resonance, where the frequency of the

excitation is twice the natural frequency of the pendulum.

Within each resonance set, each mode has its own instability

region, or Arnold tongues, which are represented in Fig. 6

with a different color for each mode. The dark shaded region

corresponds to numerically unstable solutions. Note also the

existence of a second set at lower frequencies, with a higher

threshold, denoting the 1:1 resonance, which corresponds to

modes excited when driving the system at the natural fre-

quency of the pendulum f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðg=LÞ

p
� 1:6 Hz. The sym-

bols in Fig. 6 correspond to experimental data. From left to

right in each set, the mode number increases, similarly to the

numerical results. No vibration modes are observed at fre-

quencies below fe=f0 ¼ 0:95, as there are no instability

regions predicted by the theory. From fe=f0 ¼ 0:95 to 1.90, a

first group of vibration modes appears when the excitation

amplitude is greater than a threshold. These modes oscillate

at a frequency equal to the excitation frequency (fosc ¼ fe),

and correspond to the p=q ¼ 1 : 1 parametric resonance of

the system. From fe=f0 ¼ 1:90 to fe=f0 ¼ 3:17, a second

group of vibration modes oscillating at subharmonics of the

excitation frequency (2fosc ¼ fe) is observed, corresponding

to the 2:1 resonance. Therefore, two sets of resonance modes

have been observed. Comparing the trend of simulation and

experimental data shown in Fig. 6, we can conclude that

there exists a good agreement.

It is important to note that pure modes exist only in a

narrow region. Close to the parametric instability threshold,

the Arnold tongues corresponding to each mode n overlap.

Thus, most of the modes observed actually correspond to a

mixing of neighboring modes, with one mode being clearly

dominant. Mode mixing is therefore expected to occur also

in ultrasound-driven bubbles; however, such mode mixing

has been postulated but not analyzed or observed in such

microbubbles. The mechanical analog presented here could

be used to explore these complex phenomena.

Finally, we note that the maximum excitation has been

measured at fe¼ 5 Hz (fe=f0 ¼ 3:2). Above this frequency,

measurements cannot be performed due to the setup vulner-

ability. Oscillations becomes jerky and the coupling between

pendula often breaks.

V. CONCLUSIONS

The interaction between a microbubble and an acousti-

cal field has been studied through the use of a macroscopic

acousto-mechanical analogy. As for real bubbles, vibration

modes and modes mixing have been observed. It is known

that, in the case of microbubbles, vibration modes display a

strong subharmonic behavior. Here, with the pendula ring,

vibration modes have also been excited in the region where

fosc ¼ fe, corresponding to a p=q ¼ 1 : 1 resonance, p, q
integer.

Localized modes like breather have not been discussed

here but a previous study on the pendula ring shows the

appearance of such modes.29,30 One can thus expect to

observe these oscillatory behaviors in microbubbles. These

results allow us to offer new insights in the study of micro-

bubble’s dynamics. The analogy between the macroscopic

behavior of the pendula ring and the microscopic behavior

of a microbubble presented here is valid for low order modes

(i.e., in the limit na=R0 � 1) and provides important insights

FIG. 5. Experimental mode n¼ 3 (symbols) and the corresponding fit to a

Legendre polynomial P3ðcos hÞ. Two different representations, in Cartesian

coordinates (a) and in polar coordinates (b).

FIG. 6. (Color online) (a) Phase diagram showing the appearance of vibra-

tion modes for different excitation parameters. The symbols correspond to

the experimental data whereas the colored areas are the instability regions

obtained numerically. (b) Oscillation frequencies of the pendulum (denoted

by f0) versus the excitation frequency (fe). On both graphics, each symbol

corresponds to a vibration mode.

J. Acoust. Soc. Am. 138 (6), December 2015 Chaline et al. 3605

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  158.42.59.178 On: Wed, 16 Dec 2015 15:53:45



for the comprehension of microbubble dynamics. Further

studies are underway, particularly an expansion of the anal-

ogy to consider encapsulated microbubbles to get informa-

tion for both imaging and therapeutic applications using

contrast microbubbles.
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