Index

I.	Introduction	_ 1
	1. Functional foods	3
	1.1. Definition	
	1.2. Interest in functional foods	4
	1.3. Challenges in the design of enriched functional foods	4
	2. Microencapsulation	7
	2.1. Definition and advantages	
	2.2. Microencapsulation methods	8
	2.2.1. Physical/physic-mechanical microencapsulation techniques	9
	2.2.2. Physic-chemical microencapsulation techniques	11
	2.2.3. Chemical microencapsulation technologies	12
	2.2.4. Biological microencapsulation technologies	13
	3. Food-grade microencapsulation matrices	13
	3.1. Carbohydrates	13
	3.2. Proteins	15
	3.3. Lipids	15
	3.4. Selection of the encapsulation matrix	16
	4. Electrohydrodynamic processing	17
	4.1. Fundamentals of electrohydrodynamic processing	17
	4.1.1. Influence of the solution properties	19
	4.1.2. Influence of the process parameters	19
	4.2. Advantages of electrospraying for microencapsulation	
	4.3. Challenges of electrospraying for food applications	22

	4.3.1.	High surface tension and conductivity of aqueous solutions	_ 22
	4.3.2.	Incorporation of hydrophobic bioactive ingredients	
	4.3.3.	Electrospraying of biopolymeric matrices	24
4.4. 7	Trends in	electrospraying for food applications	_ 25
5. Refe	rences_		_ 26
II. Object	ives		_ 41
III. Resul	ts		_ 45
1. Chapt	er 1		49
Intro	duction t	o Chapter 1	51
C	arriers f	rayed gelatin submicroparticles as edible or the encapsulation of polyphenols of functional foods	53
ϵ	electrosp	f molecular weight on the formation of rayed chitosan microcapsules as delivery for bioactive compounds	81
		and bioaccessibility of EGCG within edible micros. Chitosan vs. gelatin, a comparative study	107
2. Chapt	er 2		143
		o Chapter 2	
9	submicro	ased emulsion electrosprayed micro- and particles for the encapsulation and stabilization osensitive hydrophobic bioactives	147
2.2. F	Potential	of microencapsulation through emulsion- raying to improve the bioaccesibility of β-carotene_	
[iposome	apsulation structures based on protein-coated s obtained through electrospraying for the on and improved bioaccessibility of curcumin	_ 207

2.4. A step forward towards the design of a continuous process to produce hybrid liposome/protein microcapsules	_ 231
3. Chapter 3	_247
Introduction to Chapter 3	_ 249
3.1. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion	_ 251
4. Chapter 4	_275
Introduction to Chapter 4	_ 277
4.1. Binding of dietary phenolic compounds to potato cells and individual cell components - nutritional and industrial implications	_279
5. Chapter 5	_ 303
Introduction to Chapter 5	_ 305
5.1. Microencapsulation of a whey protein hydrolysate within micro-hydrogels: Impact on gastrointestinal stability and potential for functional yoghurt development	_307
5.2. Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits	_ 329
IV. General discussion	_ 353
Microencapsulation of hydrophilic bioactive ingredients	355
2. Microencapsulation of hydrophobic bioactive ingredients	_ 356
3. Microencapsulation of probiotic microorganisms	_ 359
 Potential of plant cells as delivery vehicles for functional ingredients 	360

Index

5.	Application of microencapsulation in real food systems	360
V.	Conclusions	363 369
VI.	Annexes	
Ar	nnex A. List of publications included in this thesis	371
Ar	nnex B. List of additional publications	383