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Resumen	

El	 trabajo	 final	 de	 máster	 propuesto	 es	 un	 estudio	 centrado	 en	 la	 evaluación	 de	 la	 eficacia	 del	 método	
Bayesiano	para	reconstruir	el	problema	inverso	que	plantea	la	cartografía	eléctrica	no	invasiva	(ECGI),	así	como	
el	número	y	posición	de	señales	intracavitarias	que	serían	necesarias	para	su	correcto	funcionamiento.		

El	 ECGI	 permite	 identificar	 las	 regiones	 auriculares	 que	 causan	 la	 fibrilación	 auricular	 y	 que,	 por	 tanto,	 son	
susceptibles	 de	 ser	 ablacionadas.	 Sin	 embargo,	 los	 métodos	 que	 se	 utilizan	 para	 calcular	 los	 potenciales	
epicárdicos	 a	partir	 de	 señales	 en	el	 torso	 requieren	de	un	proceso	de	 regularización	muy	 sensible	 al	 ruido.	
Recientemente,	 se	 ha	 demostrado	 que	 el	 uso	 de	 registros	 superficiales	 en	 combinación	 con	 registros	
intracardiacos	 en	 métodos	 Bayesianos	 es	 más	 preciso	 que	 los	 métodos	 clásicos	 de	 regularización.	 La	
aplicabilidad	 clínica	 de	 este	 nuevo	 método	 depende	 de	 cuál	 sea	 la	 cantidad	 de	 registros	 intracavitarios	
necesarios	para	alcanzar	una	resolución	precisa.	

En	este	trabajo	se	han	implementado	diversos	métodos	de	interpolación	para	el	software	Matlab®,	con	el	fin	
de	 recuperar	 en	 primer	 lugar	 la	 totalidad	 de	 señales	 intracavitarias	 para	 después	 proceder	 con	 la	
reconstrucción	de	potenciales	epicárdicos.	Con	ello	 se	pretende	 reconstruir	el	problema	 inverso	mediante	el	
método	Bayesiano	utilizando	un	número	reducido	de	señales	 intracavitarias,	y	conseguir	con	este	método	de	
reconstrucción	una	mayor	precisión	que	el	método	clásico	de	Tikhonov.		

Para	ello	será	necesaria	la	implementación	de	diversos	algoritmos	de	interpolación	que	permitan	recuperar	el	
número	 inicial	 de	 señales	 intracavitarias.	 A	 continuación,	 se	 procederá	 con	 la	 reconstrucción	 del	 problema	
inverso	siguiendo	el	método	Bayesiano.	Finalmente	se	comparará	la	eficacia	en	este	proceso	de	reconstrucción	
con	la	proporcionada	por	el	método	de	Tikhonov	con	el	número	total	de	nodos.	

Se	 han	 empleado	 modelos	 geométricos	 de	 torso	 y	 aurícula	 humana,	 así	 como	 3	 modelos	 matemáticos	 de	
señales	intracavitarias,	cada	uno	representando	una	actividad	epicárdica	distinta:	ritmo	sinusal	(SR),	fibrilación	
auricular	 simple	 (SAF)	 y	 fibrilación	 auricular	 compleja	 (CAF).	 El	 número	 de	 nodos	 que	 proporcionan	 señales	
intracavitarias	ha	ido	disminuyéndose	progresivamente	desde	el	número	inicial	(2039),	hasta	una	octava	parte	
(255).	Para	estos	3	modelos	se	han	empleado	y	comparado	2	lugares	y	2	métodos	de	interpolación,	así	como	2	
alternativas	de	ventanas	temporales	para	proceder	con	el	método	Bayesiano.	Esto	ha	dado	lugar	a	8	algoritmos	
distintos:	 interpolación	 realizada	 sobre	 el	 electrograma	 (EG)	 o	 sobre	 una	matriz	 intermediaria	 creada	 en	 el	
método	Bayesiano	(matriz	de	covarianza);	método	de	interpolación	basado	en	el	vecino	más	cercano,	o	en	la	
segunda	derivada	espacial(Laplaciano);y	finalmente	simultaneidad	temporal	entre	todos	los	nodos	del	modelo,	
o	en	tandas	de	120	nodos.		

Los	 resultados	 dependen	 del	 modelo	 matemático	 empleado.	 Para	 SR	 y	 SAF,	 el	 algoritmo	 que	 permite	 una	
mayor	 disminución	 de	 la	 actividad	 intracavitaria	manteniendo	 o	 superando	 la	 eficacia	 de	 Tikhonov	 es	 el	 de	
interpolación	 sobre	 el	 EGM	 utilizando	 el	 Laplaciano,	 mientras	 que	 el	 modelo	 CAF	 presenta	 los	 mejores	
resultados	con	interpolación	sobre	el	EGM	mediante	el	vecino	más	cercano.	

Palabras	 clave:	 aurícula	 humana,	 cartografía	 eléctrica	 no	 invasiva,	 fibrilación	 auricular,	 interpolación,	
potenciales	 epicárdicos,	 problema	 inverso,	 reconstrucción,	 regularización,	 señal	 intracavitaria,	 simulación	
computacional.		

	 	





Resum	

El	treball	final	de	màster	proposat	és	un	estudi	centrat	en	l'evaluació	de	l'eficàcia	del	mètode	Bayesiano	per	a	
reconstruir	 el	 problema	 invers	 que	 planteja	 la	 cartografia	 elèctrica	 no	 invasiva	 (ECGI),	 així	 com	 el	 nombre	 i	
posició	de	senyals	intracavitàries	que	serien	necessàries	per	al	seu	correcte	funcionament.	

L'ECGI	 permet	 identificar	 les	 regions	 auriculars	 que	 causen	 la	 fibril·lació	 auricular	 i	 que,	 per	 tant,	 són	
susceptibles	 de	 ser	 ablacionades.	 No	 obstant	 això,	 els	 mètodes	 que	 s'utilitzen	 per	 a	 calcular	 els	 potencials	
epicàrdics	 a	 partir	 de	 senyals	 en	 el	 tors	 requerixen	 d'un	 procés	 de	 regularització	 molt	 sensible	 al	 soroll.	
Recentment,	 s'ha	 demostrat	 que	 l'ús	 de	 registres	 superficials	 en	 combinació	 amb	 registres	 intracardíacs	 en	
mètodes	Bayesianos	és	més	precís	que	els	mètodes	clàssics	de	regularització.	L'aplicabilitat	clínica	d'este	nou	
mètode	depén	de	quina	siga	 la	quantitat	de	registres	 intracavitaris	necessaris	per	a	aconseguir	una	resolució	
precisa.	

En	 aquest	 treball	 s'han	 implementat	 diversos	 mètodes	 d'interpolació	 per	 al	 programari	 Matlab®,	 a	 fi	 de	
recuperar	en	primer	 lloc	 la	totalitat	de	senyals	 intracavitàries	per	a	després	procedir	amb	la	reconstrucció	de	
potencials	 epicàrdics.	 Amb	 això	 es	 pretén	 reconstruir	 el	 problema	 invers	 per	 mitjà	 del	 mètode	 Bayesiano	
utilitzant	un	nombre	reduït	de	senyals	 intracavitàries,	 i	aconseguir	amb	aquest	mètode	de	reconstrucció	una	
major	precisió	que	el	mètode	clàssic	de	Tikhonov.	

Per	a	això	será	necessària	 la	 implementació	de	diversos	algoritmes	d'interpolació	que	permeten	recuperar	el	
nombre	inicial	de	senyals	intracavitàries.	A	continuació,	es	procedirà	amb	la	reconstrucció	del	problema	invers	
seguint	 el	 mètode	 Bayesiano.	 Finalment	 es	 compararà	 l'eficàcia	 d’aquest	 procés	 de	 reconstrucció	 amb	 la	
proporcionada	pel	mètode	de	Tikhonov	amb	el	nombre	total	de	nodes.	

S'han	 empleat	 models	 geomètrics	 de	 tors	 i	 aurícula	 humana,	 així	 com	 3	 models	 matemàtics	 de	 senyals	
intracavitàries,	 cada	 un	 representant	 una	 activitat	 epicàrdica	 distinta:	 ritme	 sinusal	 (SR),	 fibril·lació	 auricular	
simple	 (SAF)	 i	 fibril·lació	 auricular	 complexa	 (CAF).	 El	 nombre	 de	 nodes	 que	 proporcionen	 senyals	
intracavitàries	ha	anat	disminuint-se	progressivament	des	del	nombre	inicial	(2039),	fins	una	octava	part	(255).	
Per	a	aquestos	3	models	s'han	empleat	i	comparat	2	llocs	i	2	mètodes	d'interpolació,	així	com	2	alternatives	de	
finestres	 temporals	 per	 a	 procedir	 amb	 el	 mètode	 Bayesiano.	 	 Açò	 ha	 donat	 lloc	 a	 8	 algoritmes	 distints:	
interpolació	 realitzada	 sobre	 l'electrograma	 (EG)	 o	 sobre	 una	 matriu	 intermediària	 creada	 en	 el	 mètode	
Bayesiano	(matriu	de	covariança);	mètode	d'interpolació	basat	en	el	veí	més	pròxim,	o	en	la	segona	derivada	
espacial	 (Laplaciano);	 i	 finalment	 simultaneïtat	 temporal	 entre	 tots	 elsnodes	 del	model,	 o	 en	 tandes	 de	 120	
nodes.	

Els	 resultats	 depenen	 del	 model	 matemàtic	 empleat.	 Per	 a	 SR	 i	 SAF,	 l'algoritme	 que	 permet	 una	 major	
disminució	 de	 l'activitat	 intracavitària	mantenint	 o	 superant	 l'eficàcia	 de	 Tikhonov	 és	 el	 d'interpolació	 sobre	
l'EGM	utilitzant	el	Laplaciano,	mentres	que	el	model	CAF	presenta	els	millors	resultats	amb	interpolació	sobre	
l'EGM	per	mitjà	del	veí	més	pròxim.	

Paraules	clau:	Aurícula	humana,	cartografia	elèctrica	no	invasiva,	fibril·lació	auricular,	 interpolació,	potencials	
epicárdicos,	problema	invers,	reconstrucció,	regularització,	señal	intracavitària,	simulació	computacional.	

	 	



	 	



Abstract	
This	Master’s	final	project	evaluates	the	efficiency	of	Bayes’	regularization	to	reconstruct	the	inverse	problem	
of	electrocardiographic	 imaging	 (ECGI),	as	well	as	 the	number	and	position	of	 intracavitary	 signals	which	are	
needed	to	achieve	a	successful	performance	in	the	reconstruction.	

ECGI	is	a	useful	tool	for	identifying	atrial	regions	which	cause	atrial	fibrillation,	and	whose	ablation	terminates	
the	 fibrillation	 episode.	 However,	 the	methods	which	 are	 used	 to	 calculate	 epicardial	 potentials	 from	 torso	
signals	require	a	regularization	process	which	is	very	sensitive	to	noise.	Recently,	mathematical	models	of	atrial	
fibrillation	 have	 been	 used	 to	 demonstrate	 that	 the	 combination	 of	 surface	 and	 intracardiac	 signals	 used	 in	
Bayes’	 regularization	 is	 more	 accurate	 than	 classical	 methods.	 The	 clinical	 application	 of	 this	 new	 method	
depends	 on	 the	 amount	 of	 intracavitary	 signals	which	 are	 needed	 to	 achieve	 an	 adequate	 resolution	 in	 the	
reconstruction	process.		

This	work	 implements	 several	 interpolation	methods	 for	Matlab®’s	 software,	with	 the	purpose	of	 recovering	
the	 total	 intracavitary	 information	 to	proceed	with	 the	 reconstruction	of	 epicardial	 potentials.	 The	 aim	 is	 to	
solve	 the	 inverse	problem	using	Bayes’	 regularization	with	a	 reduced	number	of	 intracavitary	 signals,	and	 to	
achieve	with	this	reconstruction	process	a	better	precision	than	the	classical	Tikhonov	regularization	with	the	
total	number	of	nodes.	

To	 do	 so,	 several	 interpolation	 algorithms	 have	 been	 implemented	 to	 recover	 the	 complete	 signal	with	 the	
initial	number	of	nodes.	Then,	the	inverse	problem	was	solved	using	Bayes’	regularization.	Finally,	the	accuracy	
of	 this	 reconstruction	 process	was	 compared	with	 that	 obtained	 by	 Tikhonov’s	 regularization	with	 the	 total	
number	of	nodes.	

Geometrical	 models	 of	 human	 torso	 and	 atria	 have	 been	 used,	 as	 well	 as	 3	 mathematical	 models	 of	
intracavitary	 signals,	 each	 one	 representing	 a	 different	 epicardial	 activity:	 sinus	 rhythm	 (SR),	 simple	 atrial	
fibrillation	(SAF)	and	complex	atrial	fibrillation	(CAF).	The	number	of	nodes	which	provide	intracavitary	signals	
has	been	progressively	reduced	from	the	initial	number	(2039)	to	an	eighth	fraction	(255).	For	these	3	models,	
the	interpolation	has	been	performed	if	2	different	places,	using	2	different	methods,	as	well	as	2	alternative	
time	windows	to	proceed	with	Bayes’	regularization.	Therefore,	8	different	algorithms	have	been	implemented	
and	compared:	 interpolation	performed	 in	 the	electrogram	(EG),	or	 in	an	 intermediate	matrix	used	 in	Bayes’	
regularization	(covariance	matrix);	 interpolation	method	based	on	Nearest	Neighbour	(NN),	or	second	spatial	
derivative	 (Laplacian);	 and	 finally	 temporal	 simultaneity	 between	 all	 nodes	 in	 the	 model,	 or	 in	 sets	 of	 120	
nodes.		

The	interpolation	approach	with	the	best	performance	depends	on	the	mathematical	model	used.	For	SR	and	
SAF,	 the	 algorithm	which	 allows	 reducing	 the	 initial	 intracavitary	 activity	 the	most,	 while	 at	 the	 same	 time	
maintaining	 or	 surpassing	 Tikhonov’s	 performance	 is	 EGM	 Laplacian	 interpolation.	 CAF’s	 model	 however,	
shows	better	results	for	EGM	Nearest	Neighbour	interpolation	method.	

Keywords:	 Atrial	 fibrillation,	 computational	 simulation,	 electrocardiographic	 imaging,	 epicardial	 potentials,	
human	atria,	interpolation,	intracavitary	signal,	inverse	problem,	reconstruction,	regularization.		 	



	 	



Acronyms	
	

AF	 	 Atrial	Fibrillation	
AV	 	 Atrioventricular	node	
BEM	 	 Boundary	Element	Method	
BSPM	 	 Body	Surface	Potential	Mapping	
CAF	 	 Complex	Atrial	Fibrillation	
CC	 	 Pearson’s	Correlation	coefficient	
CCn	 	 Spatial	Correlation	Coefficient	
CCt	 	 Temporal	Correlation	Coefficient	
CRESO	 	 Composite	Residual	and	Smoothing	Operator	
CT	 	 Computed	Tomography	
Cx	 	 Epicardial	Potentials’	Covariance	Matrix	
DF	 	 Dominant	Frequency	
DSVD	 	 Damped	Singular	Value	Decomposition	
ECG	 	 Electrocardiogram	
ECGI	 	 Electrocardiographic	Imaging	
EGM	 	 Electrogram	
FEM	 	 Finite	Element	Method	
FDM	 	 Finite	Difference	Method	
FVM	 	 Finite	Volume	Method	
FIRM	 	 Focal	Impulse	Rotor	Modulation	
FRAW	 	 Free	Right	Atrial	Wall	
GMRES		 Generalized	Minimal	Residual	
GS	 	 Greensite	
LA	 	 Left	Atrium	
LV	 	 Left	Ventricle	
MD	 	 Mode	Distance	
NN	 	 Nearest	Neighbour	
RA	 	 Right	Atrium	
RDFE	 	 Relative	Dominant	Frequency	Error	
RDMSn		 Spatial	Relative	Difference	Measurement	Star	
RDMSt	 	 Temporal	Relative	Difference	Measurement	Star	
RSPV	 	 Right	Superior	Pulmonary	Vein	
RV	 	 Right	Ventricle	
SA	 	 Sinoatrial	Node	
SAF	 	 Simple	Atrial	Fibrillation	
SMF	 	 Spatial	Mass	Function	
SNR	 	 Signal	to	Noise	Ratio	
SP	 	 Singularity	Point	
SR	 	 Sinus	Rhythm	
TSVD	 	 Truncated	Singular	Value	Decomposition	
TV	 	 Total	Variation	
WCT	 	 Wilson	Central	Terminal	



WOI	 	 Weighted	Over-estimation	Indicator	
WUI	 	 Weighted	Under-estimation	Indicator	
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1. Introduction	
	

Most	 of	 the	 advances	 achieved	 in	 medicine	 in	 the	 last	 centuries	 have	 been	 possible	 due	 to	 the	
development	 of	 engineering	 technologies.	 The	 growth	 of	 basic	 scientific	 research	 has	 led	 to	 the	
appearance	 of	 new	 instruments,	 devices	 and	 techniques	 which	 have	 been	 applied	 in	 the	medical	
field,	especially	in	the	diagnosis	and	treatment	of	diseases.	These	developments	have	defined	a	new	
concept	 of	 medicine,	 which	 implies	 that	 nowadays	 health	 diseases	 must	 be	 addressed	 both	 by	
doctors	and	engineers.		

Cardiac	 diseases	 have	 been	 one	 of	 the	 most	 deeply	 studied	 since	 the	 discovery	 of	
electrocardiography	by	Einthoven	[Einthoven	1906],	which	allowed	to	evaluate	the	heart’s	electrical	
activity	and	to	establish	links	with	a	given	cardiac	disease.	This	relationship	between	a	disturbance	in	
the	 cardiac	 electrical	 activity	 and	 the	 appearance	 of	 pathology	 becomes	 evident	 in	 cardiac	
arrhythmias.	 Regarding	 these	 arrhythmias,	 atrial	 fibrillation	 (AF)	 is	 the	 most	 frequent	 type	 in	 the	
clinical	practice.	There	are	several	treatments	for	AF,	however,	the	optimum	one	requires	the	precise	
study	of	the	atrial	electrical	activity	to	localize	the	source	of	the	arrhythmia.		

	

1.1. Motivation	
	

Mapping	 technologies	make	use	of	 catheters	 to	 record	 the	atrial	 electrical	 activity	once	 inside	 the	
atrial	chamber.	The	use	of	such	systems	has	allowed	a	better	understanding	of	the	nature	of	AF.	To	
this	 respect,	 it	 has	 been	 discovered	 that	 certain	 regions	 in	 the	 atrial	 tissue	 act	 as	 sources	 of	 the	
fibrillation	episode,	causing	the	abnormal	electrical	activity	in	the	rest	of	the	atria.	This	theory	has	led	
to	the	appearance	of	new	AF	treatments	which	focus	on	the	isolation	of	the	fibrillation	sources	and	
have	demonstrated	 to	be	 very	 successful	 in	 some	pilot	 studies	 [Narayan	2012,	Haissaguerre	2014,	
Atienza	2014].		

Despite	 the	 usefulness	 of	 mapping	 systems,	 distance	 between	 electrodes	 results	 in	 a	 loss	 of	
information	 from	the	atrial	electrical	activity.	Also,	 the	recording	 is	only	carried	out	once	a	patient	
has	 been	 diagnosed	 with	 AF	 and	 selected	 for	 an	 ablation	 procedure.	 These	 drawbacks	 have	
promoted	 the	 development	 of	 non-invasive	 technologies	 to	 map	 the	 atria,	 with	 the	 purpose	 of	
identifying	 AF	 sources	 to	 plan	 the	 ablation	 procedure	 in	 advance.	 These	 technologies	 use	 Body	
Surface	Potential	Mapping	(BSPM)	systems	to	record	the	atrial	electrical	activity	which	 is	projected	
on	 the	 torso	 [Guillem	2009,	Guillem	2013].	 These	 recordings	 can	 then	 be	 used	 to	 reconstruct	 the	
atrial	 activity	 by	 means	 of	 the	 electrocardiographic	 imaging	 (ECGI)	 technique	 [Messinger-Raport	
1990].	This	reconstruction	process	can	be	used	to	identify	AF	patterns	as	well	as	its	sources,	which	in	
turn	can	serve	to	guide	ablation	procedures.	

The	 reconstruction	 of	 epicardial	 potentials	 from	 signals	 recorded	 at	 the	 torso	 surface	 requires	 a	
regularization	 process	 which	 is	 very	 sensitive	 to	 noise.	 Several	 regularization	methods	 have	 been	
compared	using	mathematical	models	of	atrial	fibrillation	[Figuera	2016],	demonstrating	that	Bayes	
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regularization	 is	 more	 precise	 than	 the	 results	 provided	 by	 the	 classical	 Tikhonov	 regularization.	
Bayesian	Maximum	a	Posteriori	Estimation	is	a	regularization	method	which	uses	a	priori	information	
in	the	reconstruction	process	in	combination	with	surface	recordings.	The	a	priori	 information	used	
takes	the	form	of	a	spatial	covariance	matrix	between	epicardial	potentials	recorded	in	the	atria.			

To	this	extent,	the	solution	of	the	problem	posed	by	ECGI	previously	requires	the	computation	of	the	
torso	 potentials	 provided	 the	 epicardial	 signal,	 thereby	 solving	 the	 forward	 problem.	 This	 step	 is	
crucial	for	establishing	the	mathematical	relationship	between	atria	and	torso	geometries	needed	to	
solve	 the	 inverse	 problem.	 Then,	 epicardial	 potentials	 can	 be	 estimated	 from	 the	 computed	 torso	
projections.	 Taking	 this	 into	 account,	 the	 clinical	 application	 of	 this	 new	 Bayesian	 regularization	
depends	 on	 the	 number	 of	 intracavitary	 recordings	 which	 are	 needed	 to	 reach	 the	 optimum	
precision	 in	 the	 reconstruction	 of	 epicardial	 activity.	 All	 in	 all,	 the	 minimum	 amount	 of	 spatial	
information	to	outperform	Tikhonov	method	using	Bayes	regularization	to	solve	the	inverse	problem	
needs	to	be	determined.		

	

1.2. Objectives	
	

The	 hypothesis	 which	 was	 used	 to	 design	 this	 work	 is	 based	 on	 the	 assumption	 that	 Bayes	
regularization	method	 is	able	to	reconstruct	the	 inverse	problem	of	electrocardiography	with	more	
accuracy	than	the	classical	Tikhonov	regularization	without	needing	a	 large	number	of	 intracavitary	
signals.		

Therefore,	this	work	evaluates	the	efficiency	of	Bayes	regularization	method	with	a	reduced	number	
of	 intracavitary	 information	 in	 the	 reconstruction	 of	 the	 inverse	 problem.	 The	 target	 will	 be	 to	
establish	 the	 specific	 characteristics	 of	 the	 signals	 which	 are	 needed	 to	 achieve	 a	 correct	
performance,	 such	 as	 the	 number	 and	 positioning	 of	 intracavitary	 signals.	 As	 a	 reference,	 the	
classical	Tikhonov’s	regularization	method	with	the	complete	spatial	information	is	used.			

To	 do	 so,	 geometrical	 models	 of	 human	 atria	 and	 torso	 have	 been	 used,	 as	 well	 as	 3	 different	
mathematical	 models	 of	 epicardial	 activity,	 each	 one	 of	 them	 representing	 the	 most	 significant	
scenarios	 involved	 in	 the	development	of	AF:	 sinus	 rhythm	 (SR),	 simple	atrial	 fibrillation	 (SAF)	 and	
complex	atrial	fibrillation	(CAF).	The	workflow	to	achieve	the	mentioned	objective	can	be	divided	as	
follows:	

• To	evaluate	the	performance	of	all	variants	of	Tikhonov	regularization	in	solving	the	inverse	
problem	with	 the	complete	 spatial	 information	 from	the	models.	Then,	 to	choose	 the	best	
for	comparison	purposes.	

• To	 evaluate	 the	 reconstruction	 of	 epicardial	 activity	 provided	 all	 the	 intracavitary	 signals	
from	 the	 models,	 through	 Bayes	 regularization	 method.	 To	 compare	 results	 between	
Tikhonov	and	Bayes	performance	and	confirm	 the	hypothesis	 that	Bayesian	regularizations	
are	superior.		

• To	 progressively	 reduce	 the	 number	 of	 intracavitary	 information	 from	 the	 mathematical	
models.	To	do	so,	a	criterion	for	node	inclusion	or	exclusion	within	the	models	will	have	to	be	
established.	
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• To	 interpolate	 the	 signals	 from	 the	 nodes	which	 have	 been	 excluded	 so	 as	 to	 recover	 the	
initially	provided	spatial	 information.	To	so	do,	several	approaches	will	be	applied,	differing	
in	 the	 place	 of	 interpolation,	 method	 of	 interpolation,	 as	 well	 as	 simultaneity	 or	 non-
simultaneity	between	signals	from	different	sets	of	120	nodes	in	the	model.		

• To	 solve	 the	 forward	 problem,	 obtaining	 the	 mathematical	 relationship	 between	 the	
epicardial	activity	and	torso	potentials,	as	well	as	the	projection	on	the	body	surface.	

• To	 solve	 the	 inverse	 problem	 using	 Bayes	 regularization	 method,	 reconstructing	 the	
epicardial	potentials	with	the	original	number	of	initially	provided	intracavitary	signals.	

• To	 compare	 the	 accuracy	 of	 this	 new	 method	 with	 the	 results	 provided	 by	 Tikhonov	
regularization	algorithm	with	the	whole	set	of	nodes.	

• To	 determine	 the	 minimum	 number	 of	 nodes	 needed	 for	 each	 model,	 as	 well	 as	 the	
optimum	 interpolation	algorithm,	which	are	needed	to	outperform	Tikhonov	regularization	
with	the	initial	number	of	nodes.		
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2. State	of	the	art	

2.1. Atrial	fibrillation	
2.1.1. Cardiac	anatomy	and	electrical	activity	

	

The	heart	is	the	main	organ	of	the	circulatory	system,	it	is	located	at	the	centre	of	the	thoracic	cavity	
and	its	function	is	to	pump	oxygenated	blood	to	all	the	cells	in	the	body.	It	is	formed	by	muscle	tissue	
called	myocardium	and	it	is	divided	into	4	cavities:	Left	Atrium	(LA),	Right	Atrium	(RA),	Left	Ventricle	
(LV)	and	Right	Ventricle	(RV).	Blood	is	transported	to	and	from	the	heart	through	veins	and	arteries,	
respectively.	The	superior	and	inferior	vena	cava	carry	deoxygenated	blood	from	the	body	to	the	RA.	
The	pulmonary	artery	carries	deoxygenated	blood	from	the	RV	towards	the	lungs	so	that	it	can	take	
up	oxygen.	The	pulmonary	veins	then	take	oxygenated	blood	from	the	 lungs	to	the	LA.	Finally,	 the	
aorta	transports	oxygen-rich	blood	from	the	LV	to	the	systemic	circulation.	This	process	is	illustrated	
in	figure	2.1.		

The	atrial	and	ventricular	cavities	are	separated	by	valves:	the	tricuspid	valve	is	between	the	RA	and	
RV,	and	the	mitral	valve	separates	LA	and	LV.	Together	with	these	two	valves,	there	are	also	others	
which,	as	shown	in	figure	2.1,	act	as	a	barrier	between	ventricles	and	arteries:	the	pulmonary	valve	
separating	the	pulmonary	artery	 from	the	RV,	and	the	aortic	valve,	 located	between	the	aorta	and	
the	LV.	All	in	all,	the	function	of	these	valves	is	to	prevent	blood	retraction.	Finally,	the	internal	layer	
of	the	cavities	is	called	endocardium,	while	the	outer	is	known	as	epicardium.		

	

	

Figure	2.1:	Cardiac	anatomy.	
Location	 of	 atrial	 cavities	 and	 valves	 within	 the	 heart.	 Extracted	 from:	
http://www.texasheart.org/HIC/Anatomy/anatomy2.cfm	
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The	pumping	 activity	 of	 the	 heart	 is	 achieved	 through	 the	 contractions	 of	 the	myocardium.	 These	
contractions	 appear	due	 to	 the	 changes	 in	 transmembrane	electric	 potentials	 taking	place	 in	 each	
individual	cell,	which	 is	generally	 triggered	by	 the	sinus	node	or	sinoatrial	 (SA)	node	 located	 in	 the	
RA.	This	process	generates	a	signal	which	can	be	measured	at	the	torso	known	as	electrocardiogram	
(ECG).		

The	 electrical	 signal	 propagates	 from	 the	 SA	 to	 the	 RA	 and	 LA	 provoking	 atrialdepolarization	 and	
subsequent	contraction.	This	travelling	impulse	is	reflected	on	the	P	wave	of	the	ECG	recording.	The	
signal	 then	 reaches	 the	 atrioventricular	 (AV)	 node	 and	 experiences	 a	 delay	 which	 allows	 the	
ventricles	to	fill	up	with	blood,	which	is	observed	in	the	ECG	as	the	transition	between	the	P	and	Q	
waves.	The	propagation	 is	 then	produced	towards	 the	bundle	of	His	and	 then	to	 the	 right	and	 left	
bundle	 branches,	 provoking	 the	 depolarization	 and	 contraction	 of	 the	 ventricles,	 leading	 to	 the	
ejection	of	blood	to	the	whole	body.	This	is	represented	in	the	QRS	complex	of	the	ECG.	Finally,	the	
ventricles	 repolarise	 and	 return	 to	 their	 resting	 state,	 represented	 in	 the	 T	wave	 of	 the	 ECG.	 The	
whole	process	is	illustrated	in	figure	2.2.	

	

	
Figure	2.2:	Cardiac	electrical	activity.	
Propagation	 of	 the	 electrical	 signal	 within	 the	 heart	 and	 ECG	 recording	 resulting	 from	 it.	 Extracted	 from:	
https://clinicalgate.com/wp-content/uploads/2015/02/B9780702043154000279_f27-08-9780702043154.jpg	

	

The	electrical	signal	originating	at	the	SA	is	the	result	of	an	autonomous	stimulus	which	takes	place	
from	60	to	100	times	a	minute	in	healthy	patients.	This	normal	rhythm	is	referred	to	as	sinus	rhythm.	
However,	when	the	cardiac	activation	rate	is	out	of	this	range,	the	rhythm	is	referred	to	as	a	cardiac	
arrhythmia.	

	

	

	 	



15	
	

2.1.2. Initiation	and	maintenance	of	atrial	fibrillation	
	

Atrial	fibrillation	is	a	supraventricular	cardiac	arrhythmia	which	originates	in	the	atrial	cavities	of	the	
heart.	The	cause	underlying	AF	is	the	abnormal	activation	and	propagation	of	electrical	waves	within	
the	atria.	This	chaotic	electrical	activity	implies	an	inefficient	pumping	of	blood	from	the	atria	to	the	
ventricles.		

Atrial	fibrillation	may	not	cause	death	directly	but	it	leads	to	the	appearance	of	chronic	patients.	The	
inefficient	 pumping	 of	 blood	 between	 the	 atria	 and	 ventricles	 can	 result	 in	 the	 formation	 of	 clots	
which	 can	 travel	 to	 other	 parts	 of	 the	 body.	 Therefore,	 patients	 suffering	 from	 this	 condition	
generally	have	an	 increased	 risk	of	 stroke	and	heart	 failure,	which	may	 lead,	 eventually,	 to	death.	
There	 are	 many	 therapies	 to	 treat	 this	 condition,	 including	 the	 administration	 of	 anti-arrhythmic	
drugs,	electrical	cardioversion	and	catheter	ablation	[Guillem	2016].	Among	the	proposed	therapies,	
catheter	ablation	seems	to	be	the	optimal	treatment	[Dobrev	2010,	Wilber	2010,	Parkash	2011].	

The	 traditional	 treatment	 for	AF	 focused	on	 the	 isolation	of	 the	pulmonary	 veins,	 since	 they	have	
been	 identified	 as	 anatomical	 regions	 prone	 to	 initiating	 atrial	 fibrillation	 [Haissaguerre	 1998].	
However,	 other	 approaches	 have	 been	 recently	 used,	 which	 are	 based	 on	 the	 identification	 and	
isolation	 of	 specific	 sources	 which	 play	 a	 role	 in	 activating	 and	maintaining	 atrial	 fibrillation.	 This	
novel	treatment	has	shown	to	be	more	effective	than	conventional	therapies	used	for	AF	[Narayan	
2012,	Haissaguerre	2014].	

	

	
Figure	2.3:	Theories	for	atrial	fibrillation	initiation	and	maintenance.	
(A)	 Ectopic	 focus	 (B)	 Rotors	 (C)	 Multiple	 wavelets.	 Co-existence	 of	 the	 different	 theories	 (D)Rotor	 appearance	 due	 to	 a	
wavebreak	near	an	ectopic	focus	or	(E)endocardial	or	epicardial	breakthroughs.	Also,	rotor	drift	can	lead	to	the	appearance	
of	wavelets	(from	Guillem	et	al.	2016).	

	

The	 specific	 cause	 of	 atrial	 fibrillation	 is	 still	 a	 topic	 of	 debate.	 Researchers	 have	 proposed	many	
theories	 with	 respect	 to	 the	 mechanisms	 which	 lead	 to	 the	 initiation	 and	 maintenance	 of	 this	
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condition,	 illustrated	 in	 figure	 2.3.	 Some	 argue	 that	 the	 cause	 lies	 in	 the	 existence	 of	 multiple	
wavelets	which	propagate	randomly	within	the	atria	[Moe	1962].	As	shown	in	figure	2.3C,	this	theory	
sustains	 that	 the	 presence	 of	 multiple	 wavelets	 leads	 to	 the	 characteristic	 disorganized	 electrical	
activity	 of	 fibrillation	 events,	without	 the	 need	 of	 any	 arrhythmic	 trigger.	 Other	 researchers	 claim	
that	the	existence	of	electrically	organized	regions	is	the	ones	responsible	for	the	fibrillation	episode.	
These	sources	are	classified	either	as	ectopic	foci	or	as	rotors	[Jais	1997,	Jalife	2002],	shown	in	figures	
2.3A	and	2.3B,	respectively.	Rotors	are	also	termed	functional	re-entries	[Cabo	1996]	since	they	tend	
to	 surround	 atrial	 regions	 without	 exciting	 them,	 showing	 a	 characteristic	 action	 potential	
propagation	wavefront.	

These	three	theories,	although	they	might	seem	contradictory	at	first,	can	actually	be	consistent	with	
one	another.	As	shown	in	figure	2.3D,	an	ectopic	focus	may	cause	a	wavefront	break	in	the	vecinity,	
thereby	leading	to	the	formation	of	a	rotor.	Also,	rotors	with	an	intramural	localization	could	be	the	
cause	of	endocardial	or	epicardial	breakthroughs,	illustrated	in	figure	2.3E.	Finally,	in	figure	2.3F	it	is	
shown	that	a	drifting	rotor	could	be	the	cause	of	multiple	wavelets.	Consequently,	the	rotor	theory	
seems	to	be	the	most	likely	mechanism	which	causes	and	maintains	atrial	fibrillation.	

	

	

2.1.3. Rotors	
	

Rotors	have	been	deeply	studied	in	order	to	understand	their	nature,	characteristics	and	implication	
in	atrial	fibrillation	episodes.	Langendorff-perfused	isolated	hearts,	optical	mapping	technologies,	as	
well	 as	 the	 use	 of	mathematical	models	 have	 helped	 to	 reach	 important	 findings	with	 respect	 to	
rotors	 [Guillem	 2016].	 The	 most	 relevant	 features	 are,	 among	 others,	 the	 correlation	 between	 a	
rotor’s	 rotation	period	 and	 the	dominant	 frequencies	 (DFs)	 at	 their	 localization	 [Mandapati	 2000].	
Other	researchers	have	been	able	to	identify	not	only	the	main	characteristics	of	rotors,	but	also	the	
region	within	the	atria	which	has	more	probability	of	containing	a	rotor.	To	this	respect,	rotors	have	
been	detected	with	more	frequency	in	the	left	atrium	(LA).		

	

	

Figure	2.4:	Dominant	frequency	distribution	within	the	atria	due	to	a	rotor.	
(A)	Decrease	in	dominant	frequency	between	the	left	and	right	atria.	(B)	Directionality	of	activation	from	the	left	to	the	right	
atrium.	(From	Mansour	et	al.	2001)	
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Since	the	presence	of	rotors	is	associated	to	the	appearance	of	DF	regions,	the	specific	localization	of	
a	 rotor	at	 the	LA	generates	a	decreasing	activation	 frequency	gradient	between	 the	LA	and	RA,	as	
illustrated	 in	 figure	 2.4A.	 Furthermore,	 this	 also	 implies	 a	 propagation	 of	 the	 electrical	 wavefront	
from	the	LA	to	the	RA	[Mandapati	2000,	Mansour	2001],	as	seen	in	figure	2.4B.	

Regarding	the	propagation	of	rotors,	two	different	patterns	have	been	described.	On	the	one	hand,	
rotors	can	meander	around	a	fixed	region	[Guillem	2016].	This	propagation	of	rotors	can	be	analysed	
by	 using	 the	 Hilbert	 transform	 and	 representing	 a	 phase	 map	 of	 action	 potential	 recordings	
[Zlochiver	2008],	as	 illustrated	 in	 figure	2.5A.	This	phase	map	representation	 is	a	useful	 tool	which	
serves	to	identify	the	electrical	wavefront	and	its	propagation	direction,	as	well	as	singularity	points	
(SPs),	which	are	points	within	the	wave	to	which	all	phases	converge	[Guillem	2016].	On	the	other	
hand,	rotors	can	also	show	a	propagation	pattern	within	the	atria	which	has	been	described	as	a	drift	
through	a	given	distance.	In	figure	2.5B,the	fractionation	of	the	electrogram	(EGM)	recordings	during	
rotor	drift	 is	shown.	This	 is	explained	by	the	fact	that	the	local	drifting	direction	changes	with	each	
beat	and	also	by	the	Doppler	Effect,	which	appears	due	to	the	acceleration	of	the	wavefront	ahead	of	
the	rotor	[Guillem	2016].		

	

	

Figure	2.5:	Phase	maps	and	propagation	patterns	of	rotors.	
(A)	Phase	map	of	the	left	atrium	of	a	sheep	during	atrial	fibrillation.	Trajectory	of	the	tip	and	spectral	peaks	(from	Zlochiver	
et	al.	2008).	(B)	Comparison	of	the	variation	in	activation	times	between	a	stationary	and	a	drifting	rotor	(from	Guillem	et	al.	
2016)	
	
To	sum	up,	the	most	relevant	features	of	rotors	that	have	been	described	are	one	the	one	hand,	the	
high	frequency	at	the	region	where	they	are	located,	on	the	other	hand	the	meandering	or	drifting	
propagation,	 and	 finally,	 the	 usefulness	 of	 phase	maps	 to	 characterize	 them.	 The	 presence	 of	 DF	
zones,	as	well	as	the	propagating	rotors	are	responsible	for	the	appearance	of	atrial	fibrillation	and	
consequently,	irregular	EGMs.	
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2.2. Mapping	technologies	for	atrial	fibrillation	
2.2.1. Introduction	

	

Electrocardiographic	(ECG)	signals	recorded	on	the	torso	represent	the	electrical	activity	of	the	heart	
which	 is	responsible	for	the	efficient	pumping	of	oxygenated	blood	to	the	whole	body.	Despite	the	
simplicity	of	a	healthy	ECG	signal,	the	study	of	the	pattern	can	reveal	important	characteristics	of	the	
heart’s	activity.	These	recordings	have	been	extensively	used	to	diagnose	cardiac	diseases,	especially	
those	in	which	the	electrical	propagation	within	the	heart	is	altered,	such	as	atrial	fibrillation.		

The	 ECG	 signal	 is	 recorded	 by	 using	 3	 electrodes	 placed	 on	 the	 right	 arm,	 left	 arm	 and	 left	 foot,	
forming	the	so-called	Einthoven’s	triangle	[Einthoven	1906].	From	these	recordings,	6	different	leads	
are	calculated.	The	first	3	are	computed	as	the	potential	difference	between	each	pair	of	leads.	The	
other	3	are	augmented	derivations	(aVR,	aVL,	aVF),	and	are	calculated	as	the	difference	between	each	
lead	and	the	average	of	the	remaining	two	 leads.	Then,	six	additional	electrodes	are	placed	on	the	
anterior	and	left	side	of	the	chest	and	measured	with	respect	to	the	Wilson	Central	Terminal	(WCT).	
Therefore,	the	system,	which	is	illustrated	in	figure	2.6,	includes	a	total	of	12	leads	in	the	recording	of	
the	ECG	signal.	

	

	

Figure	2.6:	Traditional	ECG	recording	system	defined	by	Einthoven.	
Extracted	from:	http://www.nottingham.ac.uk/nursing/practice/resources/cardiology/images/bipolar_triangle02.gif	
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Atrial	fibrillation	can	be	detected	using	this	system	and	analysing	the	recorded	ECG	signal.	The	main	
features	 of	 an	 ECG	 signal	 from	 a	 patient	 suffering	AF	 are,	 on	 the	 one	 hand,	 the	 absence	 of	 the	 P	
wave,	 representing	 atrial	 depolarization	 and	 contraction,	 as	 depicted	 in	 figure	 2.7.	 On	 the	 other	
hand,	the	signal	tends	to	be	irregular	and	there	is	heart	rate	variability,	this	is	observed	through	the	
RR	intervals,	which	are	not	constant	[Guillem	2008].		

	

	

Figure	2.7:	Differences	in	ECG	between	sinus	rhythm	and	atrial	fibrillation	(from	Guillem	2008).	

	

Although	the	12-lead	ECG	signal	can	be	used	to	detect	the	global	atrial	fibrillation	episode,	the	local	
characterization	cannot	be	performed	using	this	technique	[Guillem	2013]	due	to	the	complexity	of	
the	fibrillation	process	and	the	limitations	in	recording	both	atria	[Lankveld	2014].		

	

	

2.2.2. Invasive	mapping	technologies	
	

The	complex	nature	of	atrial	fibrillation	requires	technologies	different	from	the	classical	12-lead	ECG	
to	 be	 able	 to	 characterize	 the	 disease	 accurately.	 As	 described	 previously,	 rotors	 have	 been	
discovered	to	play	an	important	role	in	initiating	and	maintaining	AF.	Therefore,	the	recording	of	AF	
episodes	has	been	closely	linked	to	the	identification	of	rotors	responsible	for	the	fibrillation	process.		

The	initial	invasive	mapping	technology	which	was	used	to	identify	rotors	was	based	on	sequential	or	
small	 regional	 mapping	 of	 a	 small	 number	 of	 sites.	 The	 technique	 for	 predicting	 the	 presence	 of	
rotors	consisted	on	using	 the	sequential	 recordings	at	9	different	 sites.	These	measurements	were	
then	 used	 to	 establish	 relationships	 between	 those	 regions	 having	 a	 high	 dominant	 frequency,	
fractionation,	as	well	as	a	certain	temporal	regularity	and	stability	[Berenfeld	2007].	This	technology	
allowed	 observing	 the	 frequent	 localization	 of	 regions	 with	 high	 dominant	 frequency	 near	 the	
pulmonary	 veins,	 as	 well	 as	 a	 hierarchical	 pattern	 of	 activation	 rates	 [Sanders	 2005].	 Another	
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important	finding	with	this	technology	was	the	effect	of	tissue	remodelling	in	AF,	which	was	shown	
to	 modify	 the	 dynamics	 of	 rotors	 [Atienza	 2009],	 making	 more	 difficult	 the	 termination	 of	 the	
fibrillation	event.		

	

	
Figure	2.8:	Atrial	maps	from	multipolar	spiral	catheters	with	20	electrodes.	
(A)	Dominant	frequency	map	of	the	left	atrium.	(B)	Activation	map	of	the	posterior	left	atrium	showing	an	incoming	wave	
travelling	 from	 the	 high	 dominant	 frequency	 site	 at	 the	 left	 inferior	 pulmonary	 vein	 (white)	 to	 the	 right	 (purple),	 which	
shows	the	relation	between	activation	patterns	and	dominant	frequency	sites	(from	Atienza	et	al.	2011).	

The	second	invasive	mapping	technology	was	based	on	the	use	of	a	multipolar	spiral	catheter	with	20	
electrodes.	This	technique	allowed	creatingfrequency	and	activation	maps	of	the	atria,	as	shown	in	
figures	2.8A	and	2.8B,	respectively.	These	maps	were	able	to	illustrate,	for	the	first	time,	rotational	
activity	 in	the	atria	due	to	the	presence	of	rotors	[Atienza	2011].	However,	the	reduced	number	of	
electrodes	 implies	 that	 there	 is	 a	 high	 percentage	 of	 atrial	 tissue	 that	 is	 not	 being	 recorded.	
Consequently,	this	translates	to	an	underestimation	of	the	number	of	rotors	that	are	being	detected.	

	

	
Figure	2.9:	FIRM	mapping	of	rotors	during	atrial	fibrillation	on	two	different	patients.	
(A)	FIRM	mapping	of	rotors	for	patient	1	and	(B)	patient	2	(from	Narayan	et	al.	2012)	
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The	limitations	presented	by	the	use	of	the	previously	described	catheter	lead	to	the	use	of	a	64-pole	
catheter	and	phase	based	signal	processing,	giving	rise	to	a	technique	known	as	focal	impulse	rotor	
modulation	(FIRM)	mapping	[Narayan	2012].	The	increased	number	of	electrodes	allows	to	map	the	
entire	atria.	This	is	turn	can	enable	the	construction	of	activation	maps,	as	illustrated	in	figures	2.9A	
and	2.9B,	and	consequently	the	observation	of	rotors	or	ectopic	focus	which	act	as	sources	for	atrial	
fibrillation.		

	

	

2.2.3. Non-invasive	mapping	technologies	
	

Invasive	mapping	technologies	for	atrial	fibrillation	have	shown	to	be	useful	tools	for	characterizing	
the	electrical	activity	within	the	atria.	However,	non-invasive	technologies	are	desired	to	be	able	to	
localize	 atrial	 fibrillation	 sources.	 In	 this	 sense,	 using	 this	 type	 of	 technology,	 the	 specific	 atrial	
activity	of	a	patient	could	be	observed	in	a	non-invasive	manner,	rotors	could	be	identified,	and	the	
ablation	procedures	could	be	planned	in	advance.		

The	most	extensively	used	non-invasive	technologies	for	mapping	atrial	fibrillation	are	Body	Surface	
Potential	Mapping	 (BSPM)	and	 inverse-solution	Electrocardiographic	 Imaging	 (ECGI)	systems.	BSPM	
makes	use	of	a	vest	containing	 from	32	 to	256	electrodes,	which	 records	 the	patient’s	ECG	on	 the	
torso	surface.	The	computation	of	the	dominant	frequency	from	these	recordings	has	been	shown	to	
correlate	with	the	ones	in	the	atria	[Guillem	2013],	as	shown	in	figures	2.10A	and	2.10B,	proving	its	
usefulness	 in	detecting	atrial	 fibrillation	episodes.	Also,	 the	use	of	 this	 technology	has	allowed	 the	
identification	of	unstable	and	short	re-entries	by	means	of	creating	phase	maps	from	TQ	intervals	of	
64	surface	potentials	[Guillem	2009].	

	
Figure	2.10:	Correlation	between	intra-cardiac	and	BSPM	dominant	frequency	maps.	
	(A)	Dominant	frequency	map	of	the	atria	and	(B)	Dominant	frequency	map	of	the	torso	by	BSPM	(from	Guillem	et	al.	2013).	

	

ECGI	 allows	 to	 non-invasively	 obtain	 the	 atrial	 activity	 provided	 torso	measurements.	 To	 do	 so,	 it	
makes	 use	 of	 a	 patient’s	 torso	 and	 atria	 geometries	 provided	 by	 the	 segmentation	 of	 Computed	
Tomography	(CT)	images,	or	models	of	torso	and	atria.	Recordings	provided	by	BSPM	are	then	used	
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to	reconstruct	the	electrical	activity	of	the	atria.	The	reconstruction	process	requires	the	use	of	the	
inverse	 solution	 to	 compute	 the	 virtual	 potentials	 on	 the	 epicardial	 layer	 of	 the	 atria	 from	
measurements	 on	 the	 torso	 [Cuculich	 2010],	 giving	 rise	 to	 the	 inverse	 problem	 of	
electrocardiography.	 The	 forward	 problem	 would	 be	 the	 computation	 of	 the	 torso’s	 electric	
potentials	provided	the	activity	in	the	atria.		

	
Figure	2.11:	Atrialphase	map	of	the	reconstructed	signal	by	ECGI.	
Identification	of	atrial	fibrillation	sources	by	ECGI	(from	Haissaguerre	et	al.	2014)	

The	 computed	 virtual	 potentials,	 estimated	 by	 means	 of	 ECGI,	 can	 be	 used	 to	 build	 phase	 and	
activation	 maps	 during	 atrial	 fibrillation,	 as	 illustrated	 in	 figure	 2.11.	 This	 process	 allows	 the	
identification	of	wavelets	 and	 rotors,	which	 serve	 to	 guide	 ablation	procedures.	Nevertheless,	 this	
process	is	conditioned	by	the	loss	of	information	from	signals	propagating	from	the	atria	to	the	torso,	
which	gives	rise	to	a	problem	that	is	ill-posed	[Rodrigo	2014].		

The	ill-conditioned	problem	posed	by	ECGI	requires	regularization	techniques	to	be	able	to	perform	
the	reconstruction	of	epicardial	potentials	from	torso	measurements.	The	use	of	such	regularization	
methods	has	allowed	to	 identify	activation	sequences,	arrhythmogenic	substrates	and	regions	with	
high	 dominant	 frequencies	 within	 the	 atria	 [Milanic	 2014,	 Van	 Dam	 2009,	 Rudy	 2013,	 Pedrón-
Torrecilla	2016].	Furthermore,	 the	use	of	signal	processing	such	as	 filtering,	wavelet	 transform	and	
phase	 mapping	 has	 allowed	 researchers	 to	 observe	 unstable	 rotors	 and	 pulmonary	 vein	 foci	
[Haissaguerre	2013].	Although	the	technique	has	not	been	yet	validated	for	identifying	rotors	using	
simultaneous	panoramic	 intracardiac	mapping,	 it	 is	 a	 valid	 technique	 for	 high	dominant	 frequency	
sites	and	dominant	frequency	gradients	[Guillem	2013].		
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2.3. Models	in	atrial	fibrillation	
	

The	 advance	 of	 technology	 has	 allowed	 to	 use	 mathematical	 models	 in	 computer	 simulations	 to	
study	cardiac	arrhythmias.	This	has	provided	a	deeper	insight	into	the	analysis	of	different	pathologic	
conditions.	The	better	understanding	of	atrial	fibrillation	in	particular	has	been	incredibly	enhanced	
by	the	use	of	such	simulations.	 In	order	to	do	so,	different	models	and	geometries	of	the	atria	and	
torso	have	been	developed.	

	

2.3.1. Atrial	models	
	

Several	models	of	the	atria	have	been	developed	in	order	to	study	the	initiation	and	maintenance	of	
atrial	 fibrillation.	 The	 building	 of	 these	 models	 aims	 at	 fitting	 the	 electrical	 activity	 of	 cardiac	
myocytes	 into	the	three	dimensional	geometry	of	the	atria.	The	facts	that	have	been	considered	in	
creating	realistic	tissue	properties	for	atria	models	can	be	summarized	as	follows:	

• The	 potential	 difference	 between	 adjacent	 myocytes	 leads	 to	 the	 flow	 of	 ionic	 currents	
through	gap	junctions	that	connect	neighbouring	cells.		

• The	inward	flow	of	current	into	these	cells	causes	their	depolarization.	
	

These	 tissue	properties	can	be	simulated	by	means	of	a	 reaction-diffusion	model,	which	 takes	 into	
account	not	only	the	inward	and	outward	flow	of	currents	through	each	cell,	but	also	the	anisotropy	
of	the	medium.	Regarding	the	reaction-diffusion	models	which	have	been	built,	they	can	be	classified	
into	two	categories,	depending	on	the	considerations	taken:	

• Monodomain	model:	only	takes	 into	account	the	cells	membrane	potential	 in	the	electrical	
propagation	and	despite	their	simplicity,	have	been	very	useful	[Dössel	2012].	

• Bidomain	 model:	 considers	 the	 differences	 between	 the	 intracellular	 ionic	 concentrations	
and	potentials	and	the	extracellular	ones	[Trayanova	2006].	This	model	 is	more	complex	to	
solve	but	allows	the	study	of	other	phenomena.	

	
Once	the	electrical	properties	of	the	atrial	tissue	have	been	defined,	they	have	to	be	fitted	into	the	
geometry	of	the	atria	 in	order	to	model	the	organ’s	activity.	For	this	purpose,	different	geometries	
have	been	developed,	which	can	be	broadly	classified	as	follows:	

• Non-inclusion	of	the	atrial	wall:	these	models	neglect	the	effect	of	the	atrial	wall	thickness,	
and	they	are	built	with	triangular	meshes	and	a	single	face	[Jacquement	2006].	

• Inclusion	of	the	atrial	wall:	these	models	take	into	account	the	atrial	wall	thickness,	and	they	
are	built	by	tetrahedrons	or	cubes	by	means	of	extracting	information	from	medical	images	
[Krueger	2011,	Aslanidi	2011].	Also,	they	may	include	anisotropic	properties	or,	as	shown	in	
figure	2.12,	 they	may	divide	the	model	 into	regions	with	different	properties	 [Dössel	2012,	
Tobón	2013].		
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Figure	2.12:	3D	Atrial	model	including	areas	with	different	conductivities.	
(A)	 Frontal	and	 (B)	Dorsal	 view	of	a	3D	atrial	model	used	 to	 study	atrial	 fibrillation.	Coloured	 regions	 represent	different	
conductivities	and	tissue	heterogeneity.	(Extracted	from	Tobón	et	al.	2013)	

	

	

2.3.2. Torso	models	
	

The	activity	of	the	atria	gives	rise	to	the	appearance	of	an	electric	potential	on	the	torso,	which	can	
be	obtained	by	solving	the	forward	problem	if	a	torso	model	is	provided.	This	forward	problem	can	
be	described	in	the	following	manner:	

	

𝑌 = 𝐴 ∙ 𝑋																																																																																							(1)	
	

where	 Y	 is	 the	 potential	 at	 the	 torso	 created	 by	 the	 electrical	 activity	 of	 the	 atria	 (X)	 and	 A	 is	 a	
transfer	matrix	which	depends	on	the	geometry	of	both	atria	and	torso.	Since	the	electric	potentials	
which	 are	 projected	 on	 the	 torso	 due	 to	 the	 atrial	 activity	 can	 be	 directly	 measured,	 solving	 the	
forward	 problem	does	 not	 have	 a	 straightforward	 application.	 However,	 it	 is	 an	 essential	 step	 for	
solving	 the	 inverse	problem	posed	by	ECGI,	 since	 the	 reconstruction	process	 requires	 knowing	 the	
transfer	matrix	A	relating	atria	and	torso	electrical	activity.		

The	 problem	 poses	 a	 set	 of	 differential	 equations	 which	 can	 be	 solved	 with	 several	 numerical	
approaches	which	differ	in	the	way	the	torso	is	treated:	

• Finite	difference	method	(FDM):	this	method	divides	the	torso	into	a	set	of	nodes	and	it	aims	
to	solve	Kirchoff’s	 law	at	each	node.	To	do	so,	 it	uses	tissue	conductivity	and	anisotropy	to	
determine	 the	 conductivity	 between	 de	 nodes	 at	 the	 torso	 [Walker	 1987].	 The	 results	
obtained	are	the	electric	potentials	both	at	the	torso	surface	and	entire	volume.	

• Finite	element	method	(FEM):	this	method	divides	the	torso	into	volume	elements	and	uses	
continuous	functions	to	solve	the	equations	in	each	one	of	them,	producing	results	with	high	
accuracy	[Fischer	2000].	

• Finite	volume	method	(FVM):	this	method	also	treats	the	torso	as	a	set	of	volume	elements,	
and	 the	 equations	 are	 solved	 for	 a	 point	 located	 at	 the	 centre	 of	 each	 of	 them	 [Abboud	
1994].	
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• Boundary	 elements	 method	 (BEM):	 this	 method	 uses	 Green’s	 theorem	 and	 solves	 the	
equations	 for	 surface	 elements	 instead	 of	 volume	 elements.	 The	 use	 of	 this	 method	 is	
illustrated	in	figure	2.13,	and	it	requires	the	volumes	inside	each	surface	to	be	homogeneous	
and	isotropic	[Seger	2005].	

	

	
Figure	2.13:	Torso	model.	
Computed	body	surface	potentials	using	BEM	method	(Extracted	from	Seger	et	al.	2005)	
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2.4. Regularization	 methods	 to	 solve	 the	 inverse	 problem	 of	
electrocardiography	

	

2.4.1. Inverse	problem	formulation	
	

The	 electrical	 activity	 in	 the	 atria	 gives	 rise	 to	 the	 appearance	 of	 electric	 potentials	 on	 the	 torso	
which	 result	 from	 the	 projection	 of	 such	 activity.	 The	 inverse	 problem	 of	 electrocardiography	
consists	on	estimating	the	source	epicardial	activity	(X)	given	the	measurements	of	torso	potentials	
(Y)	 and	 the	 transfer	matrix	 (A)	 relating	 atria	 and	 torso	 geometries.	 The	 solution	 requires	 the	prior	
knowledge	of	the	transfer	matrix	A,	which	is	obtained	by	first	solving	the	forward	problem	through	
the	 methods	 described	 in	 the	 previous	 section.	 Then,	 the	 inverse	 problem	 aims	 at	 solving	 the	
following	equation:	

	

𝑋 = 𝐴&' ∙ 𝑌																																																																																		(2)	

	

This	 problem	 is	 ill-conditioned,	 since	 the	 values	 of	 the	 resulting	 epicardial	 potentials	 are	 very	
sensitive	 to	 perturbations	 in	 the	 initial	 conditions,	 for	 example	 changes	 in	 geometries	 or	 the	
presence	of	electrical	noise	in	the	torso	potentials.	Also,	the	transfer	matrix	A	is	either	non-invertible	
or	its	inverse	form	contains	so	many	errors	that	the	computation	of	the	epicardial	potentials	is	highly	
inaccurate.		

Traditionally,	two	main	approaches	have	been	implemented	to	solve	this	inverse	problem.	The	first	
one	 consists	 on	 numeric	 regularization	 methods	 where	 atrial	 activity	 is	 reconstructed	 in	 form	 of	
surface	 or	 volumetric	 sources	 and	 accepts	 all	 possible	 potential	 distributions	 [Wang	 2010].	 The	
second	approach	 limits	 the	 solution	 to	 certain	a	priori	 constraints	which	are	 chosen	with	different	
basis	 [Rahimi	 2016].	 However,	 for	 the	 case	 of	 atrial	 fibrillation,	 electrophysiological	 constraints	
cannot	be	established,	 therefore,	 the	 first	approach	 is	 the	most	used,	where	 the	 reconstruction	of	
electrical	potentials	does	not	imply	any	restriction	[Wang	2010,	Pedrón-Torrecilla	2016].	

	

	

2.4.2. Regularization	parameter	
	

Numerical	 regularization	 methods	 aim	 to	 modify	 the	 matrix	 A	 which	 relates	 atria	 and	 torso	
geometries	 in	order	 to	obtain	an	 invertible	matrix,	which	 implies	 that	 the	solution	will	 incorporate	
certain	errors.	This	regularization	process	depends	on	a	regularization	parameter(λ)	which	helps	to	
choose	a	value	that	will	imply	the	smallest	amount	of	errors	introduced	into	the	solution	due	to	the	
implementation	of	the	method.	Therefore,	the	regularization	parameter	controls	the	aggressiveness	
of	the	technique	by	choosing	the	degree	of	regularization	that	balances	the	errors	introduced	by	the	
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non-reversibility	 of	 A	 and	 the	 regularization	 itself	 [Rodrigo	 2016].	 Some	 of	 these	 regularization	
methods	are	summarized	in	section	2.4.3.	

There	exist	a	number	of	mathematical	methods	to	choose	the	appropriate	regularization	parameter.	
These	methods	 are	 needed	 because	 for	 small	 values	 of	λ,	 the	 computed	 epicardial	 potentials	 are	
very	 sensitive	 to	perturbations	 (under-regulated),	whereas	 for	high	values	 	of	λ,	 the	potentials	are	
over	smoothed	(over-regulated)	[Rodrigo	2016].	The	most	popular	approaches	in	bioengineering	for	
choosing	the	optimal	λare	the	composite	residual	and	smoothing	operator	 (CRESO)	 [Colli-Franzone	
1985],	which	is	based	on	a	mathematical	formulation,	and	the	L-curve	method	[Hansen	1993],	which	
uses	a	graphical	approach.		

The	 L-curve	 represents	 the	 logarithm	 of	 the	 solution	 error	 norm	 ||L·X(λ)||2	 as	 a	 function	 of	 the	
logarithm	of	the	residual	error	norm	||A(λ)·X(λ)-Y||2.	These	norms	measure,	respectively,	the	error	
due	to	the	non-reversibility	of	the	transfer	matrix	A,	which	increases	with	decreasing	values	of	λ,	and	
the	error	caused	by	the	regularization	itself,	which	is	higher	for	increasing	values	of	λ	[Rodrigo	2016].	
Such	 graphical	 representation	 places	 the	 optimal	 regularization	 parameter	 on	 the	 corner	 of	 the	
curve,	as	shown	in	figure	2.14,	and	is	usually	found	by	measuring	the	curvature	at	each	point	of	the	
graph	[Horácek	1997].	

	

	

Figure	2.14:	L-curve	representation.	
Logarithmic	representation	of	the	errors	introduced	due	to	the	non-invertibility	of	the	transfer	matrix	A	(vertical	axis)	as	a	
function	of	the	errors	 introduced	due	to	the	regularization	 itself	 (horizontal	axis).	The	optimal	regularization	parameter	 is	
located	at	the	point	of	maximum	curvature	of	the	curve	(represented	with	a	red	circle)	

	
The	 choice	 of	 the	 optimal	 regularization	 parameter	 𝜆	 through	 the	 L-curve	 approach	 can	 be	
performed	for	each	different	time	instant	𝜆),	or	it	can	be	computed	globally	for	the	whole	set	of	time	
instants	𝜆*.	For	the	global	regularization	parameter	case,	a	constant	𝜆*	is	used	for	the	reconstruction	
of	epicardial	potentials	at	all	 time	 instants.	For	the	 instantaneous	𝜆)	case,	each	time	 instant	of	 the	
epicardial	potentials	is	computed	using	a	different	value	of	𝜆,	which	would	be	the	optimum	value	for	
that	instant	in	particular,	as	shown	in	figure	2.15.		
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Figure	2.15:	Example	of	optimal	choice	of	instantaneous	λ	for	a	model	of	simple	atrial	fibrillation.	
Optimal	λ	at	each	time	instant	for	zero-order	Tikhonov's	algorithm	with	instantaneousλ.	

	

Finally,	 the	 value	of	 the	optimal	 regularization	parameter,	whether	 global	 or	 instantaneous,	 varies	
with	the	level	of	input	noise	carried	in	the	input	signal.	In	this	sense,	for	increasing	values	of	signal	to	
noise	ratio	(SNR),	the	value	of	the	optimal	𝜆	decreases.	This	means	that	for	decreasing	noise	content	
within	the	signal,	the	value	for	the	regu	

larization	parameter	decreases,	as	shown	in	figure	2.16.	

	

	

Figure	2.16:	Example	of	 the	 relationship	between	the	value	of	 the	optimal	 regularization	λ	 chosen	and	the	SNR	of	 the	
input	signal.	
Variation	of	the	optimal	λ	with	the	signal	to	noise	ratio	from	the	input	signal.		
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2.4.3. Regularization	techniques	
	

As	mentioned	in	previous	sections,	regularization	techniques	are	used	to	modify	the	transfer	matrix	
A	which	 relates	 atria	 and	 torso	 geometries	 to	make	 it	 invertible.	 These	methods	 commonly	 use	 a	
regularization	parameter	 (𝜆)	which	helps	 to	decide	 the	amount	of	errors	 that	will	 be	 incorporated	
into	 the	 solution.	 The	 use	 of	 the	 regularization	 methods	 described	 in	 this	 section	 has	 helped	 in	
solving	the	inverse	problem	posed	by	ECGI,	thereby	leading	to	the	estimation	of	epicardial	potentials	
provided	measurements	at	the	torso.		

	

Tikhonov	regularization	

The	first	regularization	method	to	solve	the	inverse	problem	was	developed	by	Tikhonov	[Tikhonov	
1963].	Tikhonov	regularization	helps	to	stabilize	the	solution	of	inverse	problems	by	penalizing	their	
complexity	[Figuera	2016].	The	regularization	consists	on	minimizing	the	following	function:	

	

𝑌 − 𝐴 ∙ 𝑋 ,-.
/ + 𝜆 𝐿 ∙ 𝑋 /

/																																																																		(3)	

	

Where	Y	is	an	M	x	T	matrix	containing	the	torso	recordings	on	M	different	places	for	T	time	instants	
and	 X	 is	 an	N	 x	 T	matrix	 containing	 the	 reconstructed	 epicardial	 potentials	 at	 N	 nodes	 for	 T	 time	
instants,	𝜆	 is	the	regularization	parameter	and	L	 is	an	N	x	N	spatial	regularization	matrix	which	can	
adopt	 three	different	 forms.	 Finally, ∙ ,-.	 stands	 for	 the	Frobenius	norm	and	 ∙ /	 is	 the	 L2	norm,	
which	are	computed	as	follows:	

	

𝑌 − 𝐴 ∙ 𝑋 ,-.
/ = 𝑦 − 𝑎𝑥 56

/7
58'

9
58' 																																																				(4)	

	

𝐿 ∙ 𝑥) /
/ = 𝐿 ∙ 𝑥)5

/:
58' 																																																																				(5)	

	

where	xt	represents	each	time	instant	in	matrix	X.As	described	previously	through	the	explanation	of	
the	L-curve,	the	first	part	of	the	function	to	minimize	 𝑌 − 𝐴 ∙ 𝑋 ,-.

/ 	quantifies	the	error	caused	by	
the	 non-invertibility	 of	 matrix	 A,	 and	 the	 second	 part	 𝜆* 𝐿 ∙ 𝑋 /

/	 makes	 reference	 to	 the	
regularization	error.	The	different	forms	of	the	spatial	regularization	matrix	L	determine	the	order	of	
the	method	[Figuera	2016],	and	they	are	the	ones	summarized	below:	

1. Identity	matrix	(zero-order	Tikhonov,	which	minimizes	the	L2	norm	of	the	solution).	
2. Gradient	 operator	 (first-order	 Tikhonov,	 which	 favours	 constant	 solutions	 and	 penalizes	

gradients).	
3. Laplacian	operator	(second-order	Tikhonov,	which	favours	constant	gradient	solutions).	
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Once	the	function	in	Equation	3	has	been	minimized,	the	solution	of	the	problem	becomes:	

	

𝑋 = 𝐴7 ∙ 𝐴 + 𝜆 ∙ 𝐿7 ∙ 𝐿 &' ∙ 𝐴7 ∙ 𝑌																																																				(6)	

	

Where	 suffix	 T	denotes	 the	 transpose	operator.	Hence,	 the	non	 invertible	A-1	matrix	 is	 replaced	by	
A(𝜆)=(AT·A+	𝜆·LT·L)-1,	which	becomes	invertible	for	high	values	of	𝜆.	

	

Truncated	and	damped	singular	value	decomposition	(TSVD	and	DSVD)	regularization	

The	transfer	matrix	A	can	be	decomposed	into	singular	values,	giving	rise	to	three	matrices	following	
the	formula:	

	

𝐴 = 𝑈Σ𝑉∗																																																																																				(7)	

	

With	 respect	 to	 equation	 7,	 A	 is	 the	 transfer	 matrix	 relating	 torso	 and	 heart	 potentials,	 and	 has	
dimension	of	M	x	N,	where	M	is	the	number	of	nodes	at	the	torso	and	N	the	number	of	nodes	at	the	
atria.	In	the	singular	value	decomposition,	U	and	V	are	unitary	matrices,	each	with	dimensions	of	M	x	
M	and	N	x	N,	 respectively.	The	suffix	 *	denotes	 the	conjugate	 transpose	of	V.	Finally,	matrix	Σ	 is	a	
diagonal	M	x	N	matrix,	whose	entries	are	positive	and	real,	and	are	known	as	the	singular	values	𝜎	of	
A.		

Taking	 this	 into	 account,	 zero-order	 Tikhonov	 regularization	 can	 be	 modified	 by	 expressing	 the	
transfer	matrix	A	in	its	singular	value	decomposition	form	[Figuera	2016].	With	this	formulation,	both	
TSVD	 and	 DSVD	 regularization	 processes	 act	 as	 a	 high	 pass	 filter,	 since	 they	 have	 the	 effect	 of	
attenuating	the	smallest	singular	values	𝜎	contained	in	matrix	Σ.	The	filtering	function	was	described	
by	Hansen	and	co-workers	[Hansen	2007]	as:		

	

𝐻 = B
BCD

																																																																																						(8)	

	

where	σ	 represents	 each	 singular	 value	 in	 the	 diagonal	 of	matrix	Σ.	 The	 difference	 between	 both	
methods	 lies	on	 the	 fact	 that	DSVD	smoothly	 filters	 the	 smallest	 singular	 values	and	TSVD	directly	
ignores	the	smallest	ones	[Hansen	2007].	Both	methods	require	a	priori	information,	𝜆	for	DSVD	and	
the	 number	 of	 ignored	 singular	 values	 for	 TSVD	 [Hansen	 2007].	 Since	 TSVD	 uses	 Tikhonov’s	
formulation	to	solve	the	inverse	problem,	this	regularization	technique	was	later	modified.	This	was	
performed	 so	 that	 TSVD	 could	 also	 be	 performed	 with	 the	 three	 different	 orders	 of	 Tikhonov’s	
algorithm	 depending	 on	 the	 nature	 of	 the	 spatial	 regularization	 matrix	 L	 (zero	 order	 for	 identity	
matrix,	first	order	for	Gradient	operator	and	second	order	for	Laplacian)	[Hansen	1992].		
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Total	variation	(TV)	regularization	

Total	variation	regularization	method	is	a	slight	variation	of	first	order	Tikhonov	regularization,	where	
the	 spatial	 regularization	matrix	 L	 is	 the	 gradient	 operator.	 The	modifications	which	 are	made	 are	
based	 on	 the	 use	 the	 L1	 instead	 of	 the	 L2	 norm	 on	 the	 term	 which	 makes	 reference	 to	 the	
regularization	 error,	 𝐿 ∙ 𝑋.	 Also,	 the	 L2	 instead	 of	 the	 Frobenius	 norm	 is	 performed	 on	 the	 error	
introduced	due	 to	 the	non-invertibility	of	matrix	A,	𝑌 − 𝐴 ∙ 𝑋.	With	 this	 technique,	 it	 is	possible	 to	
obtain	more	detailed	and	less	smoothed	solutions	than	the	original	method	[Ghosh	and	Rudy	2009].	
The	function	to	minimize	becomes:	

	

𝑌 − 𝐴 ∙ 𝑋 / + 𝜆 𝐿 ∙ 𝑋 '																																																														(9)	

	

where	the	L1	norm	is	computed	as	follows:	

	

𝐿 ∙ 𝑥) ' = 𝐿 ∙ 𝑥)5
:
58' 																																																													(10)	

	

Bayesian	maximum	a	posteriori	estimation	(Bayes)	regularization	

Bayesian	 regularization	method	uses	 a	priori	 information	 in	 the	estimation	of	 epicardial	 potentials	
from	torso	measurements	[Serinagaoglu	2005].	Particularly,	the	information	that	needs	to	be	known	
a	 priori	 for	 this	 regularization	 is	 the	 epicardial	 potentials’	 spatial	 covariance	matrix.	 This	matrix	 is	
estimated	either	using	measurements	from	multielectrode	coronary	venous	catheters	[Serinagaoglu	
2006],	or	using	results	from	the	forward	problem	as	a	priori	information	[Hanna	2009].	Once	one	of	
these	 two	 types	 of	 a	 priori	 information	 is	 available,	 the	 computation	 of	 the	 epicardial	 potentials’	
covariance	matrix	follows	the	equation:	

	

𝐶F =
'

:GHIJKLG
𝑋 − 𝑋MNOP 𝑋 − 𝑋MNOP 7 																																											(11)	

	

To	calculate	the	covariance	matrix,	𝐶F,	first	of	all,	a	given	number	of	the	atrial	signal’s	time	instants,	
Nsamples,	 are	 used	 for	 the	 matrix	 X.	 A	 different	 time	 window,	 typically	 containing	 1	 second	 of	 the	
signal,	is	used	to	calculate	Xmean.	Among	the	samples	to	compute	the	Xmean	matrix,	150	are	randomly	
selected,	and	the	mean	is	then	calculated	for	this	150	random	samples.	Finally,	the	covariance	matrix	
is	 computed	 following	 Equation	 11,	 and	 it	 represents	 the	 spatial	 correlation	 between	 epicardial	
potentials	within	the	atria.	The	reconstructed	signal	can	then	be	estimated	by	the	following	formula:		

	

𝑋 = 𝐶F ∙ 𝐴7 𝐴 ∙ 𝐶F ∙ 𝐴7 + 𝐶P &' ∙ 𝑌																																																(12)	



32	
	

	

where	 Cx	 represents	 the	 epicardial	 potentials’	 and	 Cn	 the	 noise’s	 covariance	 matrix.	 This	
regularization	 method	 has,	 so	 far,	 been	 identified	 as	 the	 one	 with	 the	 best	 performance	 in	 the	
reconstruction	of	epicardial	potentials	from	torso	measurements	[Figuera	2016].		

	

Greensite	(GS)	regularization	

Greensite’s	regularization	method	modifies	Bayes’,	and	introduces	not	only	the	spatial	correlation	of	
the	 epicardial	 potentials,	 but	 also	 the	 temporal	 correlation	 by	 assuming	 isotropic	 conditions	
[Greensite	 2003].	 This	 spatial-temporal	 covariance	 matrix	 can	 be	 calculated	 with	 the	 following	
formula:	

	

𝐶Q = 𝐶)⨂𝐶F																																																																									(13)	

	

where	Cx	is	the	spatial	covariance	matrix	and	Ct	is	the	temporal	covariance	matrix.	The	dimensions	of	
this	matrix	can	be	very	large,	therefore,	the	problem	is	commonly	simplified	by	means	of	applying	a	
whitening	 filter	 to	 the	 data	 [Onal	 and	 Serinagaoglu	 2009]	 or	 filtering	 together	 with	 a	 Tikhonov	
approach	[Figuera	2016].	

	

Generalized	minimal	residual	(GMRES)	regularization	

Generalized	minimal	residual	(GMRES)	regularization	is	an	iterative	method	which,	unlike	Tikhonov,	
TV	and	MAP,	does	not	use	any	a	priori	constraint	or	assumption.	The	objective	of	this	regularization	
is	 to	 obtain	 the	 optimum	 number	 of	 iterations	 that	 will	 give	 a	 solution	with	 the	 least	 amount	 of	
errors	[Ramanathan	2003].	

	 	



33	
	

3. Materials	and	methods	

3.1. Geometrical	models	
	

For	the	purpose	of	this	work	two	different	atria	and	torso	geometrical	models	were	provided.	These	
were	 needed	 for	 the	 reconstruction	 of	 the	 inverse	 problem.	 To	 this	 respect,	 geometrical	 models	
were	not	only	needed	for	the	mere	purpose	of	visualizing	the	estimated	atrial	activity,	but	also	in	the	
specific	characterisation	of	atrial	fibrillation	as	well	as	in	further	steps	for	interpolation	purposes,	as	
will	be	described	in	following	sections.		

	

3.1.1. Atrial	models	
	

The	 three	 dimensional	 geometries	 of	 the	 atria	 for	 both	models	 consisted	 on	 a	 volume	 formed	 by	
triangular	meshes.	One	of	the	models,	shown	in	figure	3.1A	(Atria	model	1),	contained	nodes	in	the	
atria	holes.	This	type	of	geometry	is	needed	to	calculate	the	specific	location	of	the	atrial	fibrillation’s	
rotors.	The	other	model,	shown	in	figure	3.1B,	(Atria	model	2)	has	empty	atrial	holes,	and	was	used	
for	 visualization	purposes.	 This	model	was	also	used	 in	 the	algorithms	 that	 selected	nodes	 for	 the	
interpolation	steps.	

	

	
Figure	3.1:Three-dimensional	geometries	of	atrial	models.	
(A)	Atria	model	with	filled	geometry	and	(B)	Atria	model	without	a	filled	geometry.	

	

Regarding	 the	 specifications	 of	 these	 models,	 Atrial	 model	 1	 includes	 the	 coordinates	 of	 each	
triangle’s	 vertices,	 indexes	 and	 norms.	 Atrial	 model	 2	 also	 contains	 the	 distances	 between	 each	
triangle’s	 vertices	 as	well	 as	 the	 areas	 of	 the	 triangles.	 Despite	 being	 the	 same	 three	 dimensional	
models,	the	fact	that	Atrial	model	1	is	the	filled	geometry	of	Atrial	model	2	explains	why	the	first	one	
contains	a	larger	number	of	vertices	and	triangles,	as	can	be	seen	in	table	3.1.	
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Table	3.1:	Variables	specified	in	the	two	atrial	models	used.	

	 Atria	model	1		

(filled	geometry)	

Atria	model	2	

Vertices	 [2048x3]	 [2039x3]	

Faces	 [4092x3]	 [3860x3]	

Norms	 [2039x3]	 [2039x3]	

Areas	 	 [2039x1]	

Distances	 	 [2039x2039]	

	

	

3.1.2. Torso	model	
	

A	single	model	was	used	for	the	torso.	The	three	dimensional	geometry	of	such	model	also	consisted	
on	a	volume	defined	by	triangular	meshes.	The	specifications	contained	within	the	model	were,	once	
again,	the	triangle´s	vertices,	and	faces.	Unlike	the	atrial	models,	a	filled	geometry	of	the	torso	model	
was	not	needed,	since	the	computation	of	the	rotor’s	location	is	performed	directly	on	the	estimated	
epicardial	potentials	in	the	atria.	The	three	dimensional	geometry	of	the	torso	model	can	be	seen	in	
figure	 3.2A,	 while	 the	 torso	 enclosing	 the	 atrial	 geometrical	 model	 is	 shown	 in	 figure	 3.2B.	 The	
specifications	of	the	torso	model	are	shown	in	table	3.2.	

	

	
Figure	3.2:	Three	dimensional	geometry	of	torso	model.	
Torso	geometry	(A)	and	torso	enclosing	atria	geometry	(B).	
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Table	3.2:	Variables	specified	in	the	torso	model	used.	

Torso	model	1	

Vertices	 [659x3]	

Faces	 [1255x3]	

	

Together	with	these	atrial	and	torso	model,	a	transfer	matrix	(A)	relating	both	geometries	was	also	
provided	 to	 be	 able	 to	 solve	 both	 the	 forward	 and	 inverse	 problem	 of	 electrocardiography.	 This	
transfer	 matrix	 was	 originally	 obtained	 by	 using	 the	 Boundary	 Element	 Method	 (BEM)	 in	 the	
propagation	 of	 the	 atrial	 signal	 towards	 the	 torso	 surface	 [Figuera	 2016].	 Taking	 into	 account	 the	
dimensions	of	the	atria	and	torso	models,	this	transfer	matrix	had	dimensions	of	M	x	N,	being	M	the	
nodes	at	the	torso	(659),	and	N	the	nodes	at	the	atria	(2039).		

	

	

3.2. Mathematical	models	of	epicardial	activity	
	

Three	different	mathematical	models	of	monopolar	epicardial	activity	were	provided,	consisting	on	
spatio-temporal	 signals	 representing	 different	 electrical	 propagation	 patterns	 within	 the	 atria.	
Provided	 the	 EGMs,	 a	 set	 of	 target	 parameters	 can	 be	 computed	 from	 these	 potentials.	 These	
additional	target	parameters	are	useful	in	the	characterization	of	atrial	fibrillation	episodes	and	can	
be	computed	from	the	provided	epicardial	potentials	as	follows:	

• Dominant	 frequency:	 it	 is	 computed	 from	 the	 epicardial	 potentials.	 To	 do	 so,	 the	 power	
spectral	 density	 of	 the	 signal	 as	 a	 function	 of	 the	 frequency	 is	 estimated	 using	 Welch’s	
periodogram.	 The	 specifications	 for	 this	 estimation	 were	 a	 2	 Hamming	 window	 for	
evaluation	 with	 50%	 overlap	 and	 a	 sampling	 frequency	 of	 500Hz	 [Figuera	 2016].	 Upon	
obtaining	the	periodogram	estimation,	the	frequency	with	the	maximum	density	is	selected	
after	having	eliminated	the	harmonics	[Guillem	2013].	This	procedure	 is	performed	one	by	
one	for	each	node.		
This	 parameter	 is	 an	 important	 target,	 since	 the	 localization	of	 regions	 in	 the	 atria	with	 a	
common	dominant	frequency	can	be	a	key	factor	in	the	successful	performance	of	ablation	
procedures	which	end	with	atrial	fibrillation	episodes	[Guillem	2013].	

• Instantaneous	 phase:	 this	 parameter	 is	 also	 computed	 from	 the	 epicardial	 potentials.	 The	
procedure	is	performed	first	of	all	by	band	pass	filtering	the	signal	between	a	specified	low	
pass	frequency	and	a	high	pass	frequency.	The	low	pass	frequency	is	the	same	as	the	filtering	
step	 described	 in	 previous	 sections,	 0	 Hz	 for	 the	model	 of	 sinus	 rhythm	 and	 3	 Hz	 for	 the	
models	of	simple	and	complex	atrial	fibrillation.	Regarding	the	high	pass	frequency,	its	value	
varies	for	each	node,	and	it	is	equal	to	the	dominant	frequency	at	the	node	whose	phase	is	
being	evaluated.	Also,	the	DC	component	is	removed	from	the	reconstructed	and	band	pass	
filtered	signal.		
The	Hilbert	transform	is	then	performed	to	this	processed	signal,	so	that	it	is	expressed	as	a	
contribution	of	a	real	and	imaginary	part.	Finally,	the	angle	between	the	imaginary	part	and	
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the	 signal	 is	 computed	 and	 stored	 as	 the	 instantaneous	 phase	 for	 each	 node	 and	 time	
instant.	These	phases	can	then	be	used	to	create	phase	maps,	which	can	in	turn	be	used	to	
detect	re-entrant	activity	in	the	atria	and	potential	ablation	targets	[Rodrigo	2014].	

• Singularity	Point	(SP)	location:	it	is	identified	using	the	phase	maps	described	previously.	SP	
are,	by	definition,	regions	within	a	phase	map	which	are	surrounded	by	0	and	2𝜋	and	whose	
duration	 is	 larger	 than	 two	 full	 rotations	 [Rodrigo	 2016].	 Among	 these	 SP,	 the	 dominant	
singularity	 points	 are	 the	 ones	 within	 the	 region	 of	 the	 atria	 with	 the	 highest	 dominant	
frequency	[Figuera	2016].		
Just	 like	 the	 other	 parameters,	 the	 identification	 of	 singularity	 points	 can	 serve	 to	 localize	
ablation	targets	which	can	eventually	terminate	the	fibrillation	episodes.		

The	 first	 model	 was	 the	 simplest	 one,	 sinus	 rhythm	 (SR),	 which	 corresponds	 to	 the	 normal	 atrial	
activity.	The	characteristics	of	this	atrial	activity	are	a	periodical	activation	with	a	frequency	of	1.2	Hz	
(Hz),	a	planar	propagation	wavefront,	and	the	absence	of	dominant	frequency	regions	and	singularity	
points.	 This	 model	 can	 be	 observed	 in	 figure	 3.3.	 In	 figure	 3.3A	 the	 distribution	 of	 epicardial	
potentials	 in	 the	 atria	 at	 second	 1.652	 of	 the	 signal	 is	 shown,	 as	well	 as	 the	 instantaneous	 phase	
(figure	3.3B).		

	

	

Figure	3.3:	Representation	of	sinus	rhythm	model	propagation	wavefront	and	instantaneous	phase	in	the	atria.	
(A)	Epicardial	potentials	distribution	in	the	atria	at	t=1.652	seconds.	(B)Instantaneous	phase	in	the	atria	at	t=1.652	seconds.	

	

The	second	mathematical	model	corresponded	to	an	episode	of	 simple	atrial	 fibrillation	 (SAF).	The	
propagation	pattern	of	 this	model,	as	 seen	 in	 figure	3.4,	 is	different	 from	planar	and	slightly	more	
complex.	The	SAF	model	used	has	a	dominant	 frequency	gradient	 from	the	right	 to	the	 left	atrium	
which	 leads	 to	 the	 appearance	 of	 different	 DF	 regions	 (figure	 3.4C).	 The	 underlying	 cause	 is	 the	
presence	of	a	rotor	in	the	RA,	which	can	be	seen	in	figure	3.4D.	The	functional	re-entry	rotates	at	7.3	
Hz,	while	the	rest	of	the	atria	has	a	periodical	activation	frequency	at	4.7	Hz.	All	these	facts	explain	
the	distribution	of	potentials	at	second	3.446	being	different	from	planar	(figure	3.4A),	as	well	as	for	
the	instantaneous	phase	(figure	3.4B).		
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Figure	3.4:	Representation	of	simple	atrial	fibrillation	model	propagation	wavefront,	instantaneous	phase,	frequency	and	
singularity	point	distribution	in	the	atria.	
(A)	 Epicardial	 potentials	 in	 the	 atria	 at	 t=3.446	 seconds.	 (B)	 Instantaneous	 phase	 at	 t=3.446	 seconds.	 (C)	 Dominant	
frequency	map	(D)	Location	of	singularity	points.	

	

Finally,	 the	 third	mathematical	 model	 represented	 a	 case	 of	 complex	 atrial	 fibrillation	 (CAF).	 This	
type	 of	 atrial	 activity	 is	 represented	 by	 a	 chaotic	 electrical	 propagation	 within	 the	 atria.	 The	
underlying	 cause	 is	 the	 same	as	 that	 for	 the	SAF	model,	but	now	 the	model	makes	 reference	 to	a	
more	severe	and	complex	condition	of	atrial	fibrillation	with	slightly	different	constants	in	the	model,	
as	well	as	a	percentage	of	fibrosis	to	account	for	a	remodelled	state	in	the	atria.	In	particular,	the	CAF	
model	 includes	 a	 25%	 of	 atrial	 cells	 under	 fibrotic	 conditions	 [Rodrigo	 2016],	 as	 well	 as	 a	 rotor	
located	at	the	LA	(figure	3.5D).	The	rotation	frequency	of	this	rotor	is	of	6.8	Hz,	and	the	activation	at	
the	 rest	of	 the	atria	 takes	place	at	5.4Hz.	 In	 figure	3.5A	 the	distribution	of	 epicardial	 potentials	 at	
second	 2.426	 is	 shown,	 which	 is	 completely	 different	 from	 planar,	 and	 the	 same	 applies	 to	 the	
instantaneous	phase	(figure	3.5B).	Also,	the	presence	of	a	rotor	in	the	LA	gives	rise	to	the	appearance	
of	different	dominant	frequency	regions	(figure	3.5C).	The	specific	features	of	the	three	models	are	
summarized	in	table	3.3.	
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Figure	3.5:	Representation	of	complex	atrial	 fibrillation	model	propagation	wavefront,	 instantaneous	phase,	 frequency	
and	singularity	point	distribution	in	the	atria.	
(A)	 Epicardial	 potentials	 in	 the	 atria	 at	 t=2.426	 seconds.	 (B)	 Instantaneous	 phase	 at	 t=2.426	 seconds.	 (C)	 Dominant	
frequency	map.	(D)Location	of	singularity	points.	

	

Table	3.3:	Characteristics	of	the	three	models	of	epicardial	activity.	

	 Sinus	rhythm	 Simple	atrial	fibrillation	 Complex	atrial	fibrillation	

Nodes	 2039	 2039	 2039	

Samples	 2500	 5000	 5000	

Sampling	Frequency	(Hz)	 500	 500	 500	

Time	(s)	 5	 10	 10	

Mean	Frequency	(Hz)	 1.2	 4.7	 5.4	

Singularity	Point	Location	 None	 Right	atrium	 Left	atrium	

Nearest	point	to	SP	 None	 FRAW	 RSPV	

Rotor	Frequency	(Hz)	 None	 7.3	 6.8	

Fibrosis	(%)	 0	 0	 25	
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As	shown	in	table	3.3,	the	three	models	of	epicardial	activity	included	different	electrical	signals	for	
2039	nodes	distributed	in	the	atria,	and	the	location	of	these	nodes	coincided	with	those	provided	in	
the	atria	geometrical	model.	The	number	of	samples	that	were	provided	differed	from	one	model	to	
another.	 For	 the	 SR	model,	 2500	 samples	were	 included	 in	 the	model,	 whereas	 the	 SAF	 and	 CAF	
models	 contained	 a	 total	 of	 5000	 samples.	 Since	 the	 sampling	 frequency	 is	 set	 to	 500	 Hz,	 this	
translates,	respectively,	to	5	and	10	seconds	of	electrical	activity.	The	mean	activation	frequency	of	
each	model	was	of	1.2,	4.7	and	5.4	Hz	for	the	SR,	SAF	and	CAF	models,	respectively.	The	SR	model	did	
not	 contain	any	 singularity	points	 (SPs)	whereas	 the	SAF	model	 contained	one	 in	 the	RA,	near	 the	
Free	Right	Atrial	Wall	 (FRAW)	with	a	 rotation	 frequency	of	7.3	Hz.	Finally,	 the	CAF	model	 included	
25%	 of	 fibrotic	 cells	 and	 a	 rotor	 at	 the	 LA	 with	 a	 rotation	 frequency	 of	 6.8	 Hz,	 whose	 nearest	
clinically-relevant	point	was	the	Right	Superior	Pulmonary	Vein	(RSPV).		

Regarding	the	samples	for	the	SAF	and	CAF	models,	not	all	of	them	were	used	for	the	performance	of	
the	forward	problem,	interpolation,	and	inverse	problem.	This	has	two	different	reasons.	The	first,	is	
the	fact	that	if	the	SR	model	contained	only	5	seconds	of	signals,	then	the	same	time	interval	must	be	
used	for	the	other	two	models,	or	at	 least	a	similar	one.	The	second	reason	is	the	time	needed	for	
the	 signals	 to	 stabilize	 and	 the	 fibrillation	 episodes	 to	 begin	 for	 the	 SAF	 and	 CAF	 models.	 This	
translates	to	the	presence	of	signals	which	are	initially	either	very	close	to	zero	(figure	3.6B),	or	with	
very	different	patterns	to	the	middle	transients	of	the	same	signal,	which	lasted	for	a	certain	amount	
of	time,	depending	on	the	model.	Also,	the	end	transients	were	irregular	and	different	from	the	rest	
of	the	signal	for	some	of	the	registered	nodes,	as	shown	in	figure	3.6A.	Therefore,	the	initial	and	end	
transients	were	removed	from	the	SAF	and	CAF	models	so	that	only	the	nonzero	and	stable	signals	
were	used	in	further	steps,	and	to	ensure	that	the	number	of	samples	was	more	or	less	the	same	for	
all	of	the	models.	The	samples	eliminated	and	used	in	each	model	are	summarized	in	table	3.4.	

	

	

Figure	3.6:	Presence	of	irregular	transients	in	the	simple	and	complex	atrial	fibrillation	models.	
(A)	Unstable	end	transients	in	the	SAF	model	and	(B)	close	to	zero	initial	transients	in	the	SAF	model.	
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Table	3.4:	Samples	eliminated	and	used	for	each	of	the	models.	

	 Sinus	rhythm	 Simple	atrial	fibrillation	 Complex	atrial	fibrillation	

Number	of	samples	 2500	 5000	 5000	

Removed	initial	transients	 1	 1:1001	 1:501	

Removed	end	transients	 None	 3501:5000	 3001:5000	

Samples	used	 2:2500	 1002:3500	 502:3000	

	

The	samples	described	in	table	3.4	can	be	used	to	calculate	the	forward	problem	in	order	to	obtain	
the	projection	of	 the	epicardial	potentials	on	the	torso	surface.	As	mentioned	 in	previous	sections,	
the	 computation	of	 the	 forward	problem	 requires	 a	matrix	 relating	 atria	 and	 torso	 geometry.	 This	
transfer	matrix	was	also	provided,	and	was	calculated	originally	through	BEM.		

In	order	to	proceed	with	the	forward	problem,	the	epicardial	potential	signals	were	first	filtered.	The	
filtering	method	depends	on	the	model	that	is	being	used.	For	sinus	rhythm,	the	Direct	Current	(DC)	
component	 of	 the	 signal	 is	 removed	 and	 then	 it	 is	 filtered	 by	means	 of	 a	 4th	 order	 low	pass	 filter	
which	 is	built	using	Matlab®.	For	 the	other	 two	models,	 the	DC	component	 is	also	eliminated,	and	
then	 the	 signal	 is	 band	 pass	 filtered	 using	 a	 4th	 order	 filter,	 also	 built	 with	 Matlab®.	 The	 cut-off	
frequencies	 and	 filtering	methods	 are	 summarized	 in	 table	 3.5,	 as	well	 as	 the	 sampling	 frequency	
which	is	used	to	build	the	filters.	

	

Table	3.5:	Filtering	specifications	for	each	of	the	models.	

	 Sinus	rhythm	 Simple	atrial	fibrillation	 Complex	atrial	fibrillation	

Type	of	filter	 Low	pass	 Band	pass	 Band	pass	

Cut-off	frequencies	(Hz)	 0-30	 3-30	 3-30	

Sampling	frequency	(Hz)	 500	 500	 500	

	

Once	the	epicardial	potentials	for	the	models	are	filtered,	an	additional	step	needs	to	be	performed	
before	proceeding	with	the	forward	problem.	This	step	consists	on	modifying	the	transfer	matrix	(A)	
relating	atria	and	torso	geometries	to	refer	the	computed	surface	potentials	to	the	Winston’s	Central	
Terminal	(WCT),	as	used	as	reference	in	the	patients.	In	order	to	do	so,	a	new	matrix	is	created.	This	
matrix	is	squared,	and	has	dimensions	of	the	N	number	of	nodes	present	at	the	torso.	The	entries	of	
the	matrix	are	the	inverse	of	the	number	of	nodes	at	the	torso,	following	equation	14:	

	

𝑀UV) =
'
:
×
1 ⋯ 1
⋮ ⋱ ⋮
1 … 1 :F:

																																																												(14)	
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Where	 N	 is	 the	 number	 of	 nodes	 at	 the	 torso	 and	 Mwct	 is	 the	 matrix	 used	 in	 Winston’s	 Central	
Terminal	correction.	Upon	obtaining	this	matrix,	the	transfer	matrix	A	is	corrected	using	equation	15:	

	

𝐴V.-- = 𝐴 − (𝑀UV)×𝐴) 																																																									(15)	

	

The	corrected	 transfer	matrix	A	 is	 then	multiplied	 times	 the	 filtered	epicardial	potentials	 to	obtain	
the	projected	potentials	at	the	torso’s	surface.	For	the	purpose	of	making	the	situation	as	realistic	as	
possible,	 white	 Gaussian	 noise	 is	 added	 to	 these	 computed	 torso	 potentials,	 and	 then	 they	 are	
filtered	in	the	same	manner	as	the	epicardial	potentials,	which	has	been	described	previously.	These	
final	 torso	potentials	 for	each	of	 the	models	available	can	be	visualized	 in	 figure	3.7.	 In	 this	 figure,	
the	torso	projections	of	SR	(figure	3.7A),	SAF	(figure	3.7B)	and	CAF	(figure	3.7C)	are	shown.	All	in	all,	
it	 is	 these	 torso	 potentials	 the	 ones	 that	 are	 going	 to	 be	 used	when	 proceeding	with	 the	 inverse	
problem.		

	
Figure	3.7:	Torso	potentials	for	each	of	the	models	computed	through	the	forward	problem.	
Potentials	at	the	torso	computed	for	a	sample	time	instant	through	the	forward	problem	for	the	models	of	(A)	sinus	rhythm,	
(B)	simple	atrial	fibrillation	and	(C)	complex	atrial	fibrillation.		
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3.3. Reconstruction	of	epicardial	potentials	
	

The	purpose	of	computing	the	forward	problem	and	obtaining	the	potentials	at	the	torso’s	surface	
for	 each	 of	 the	 models	 is	 to	 perform	 the	 inverse	 problem.	 Upon	 proceeding	 with	 the	 inverse	
problem,	the	epicardial	activity	can	be	estimated	using	the	 information	on	the	torso	as	well	as	 the	
transfer	 matrix	 relating	 atria	 and	 torso	 geometries.	 In	 this	 work,	 the	 reconstruction	 of	 epicardial	
potentials	was	performed	using	Bayes	and	Tikhonov	 regularizations,	which	have	been	described	 in	
previous	 sections.	 Tikhonov	 reconstruction	 was	 performed	 on	 the	 models	 with	 all	 the	 available	
spatial	 information,	 and	 the	 results	 were	 used	 for	 comparison	 purposes.	 Bayes	 regularization	
however,	was	applied	to	the	provided	models	but	also	to	a	modified	version	of	the	original	data.	This	
modified	 version	 consisted	on	 the	models	with	 reduced	 intracavitary	 information,	with	 the	 aim	of	
reconstructing	 the	original	number	of	epicardial	 signals	provided	a	 reduced	number	of	 initial	data.	
This	will	be	explained	in	further	detail	in	section	3.4.	

Computing	the	inverse	problem	allows	to	obtain	epicardial	potentials.	In	this	work,	these	potentials	
are	computed	directly	by	using	torso	potentials,	the	transfer	matrix,	and	two	different	regularization	
methods:	 Tikhonov	and	Bayes.	 Tikhonov	 regularization	method	was	used	on	 the	 raw	data	and	 the	
results	 obtained	were	 used	 for	 comparison	 purposes.	 Bayes	 regularization	method	was	 used	 on	 a	
modified	version	of	the	original	data,	where	the	amount	of	spatial	information	from	the	signals	was	
reduced.	 The	 purpose	 was	 to	 interpolate	 such	 signal	 and	 reconstruct	 the	 problem	 by	 Bayesian	
methods	to	obtain	the	original	amount	of	spatial	information.	Also,	it	was	desired	to	obtain	a	better	
resolution	than	Tikhonov	regularization	with	the	raw	data.	

As	well	as	reconstructing	the	epicardial	potentials,	the	target	parameters	described	in	section	3.2	can	
also	 be	 computed	 from	 the	 estimated	 potentials:	 dominant	 frequency,	 instantaneous	 phase	 and	
singularity	 point,	 as	 depicted	 in	 figure	 3.8.	 The	 calculation	 of	 these	 target	 parameters	 follows	 the	
same	procedure	as	the	one	described	in	section	3.2,	but	using	the	estimated	potentials	instead	of	the	
real	ones.	

	
Figure	3.8:	Schematic	representation	of	the	inverse	problem	procedure	to	compute	the	target	parameters.	
Target	parameters	computed	from	reconstructed	epicardial	potentials,	which	are	estimated	from	torso	potentials.	Extracted	
from	Figuera	et	al.	(2016)	
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3.3.1. Performance	metrics	
	

The	efficiency	of	the	reconstruction	of	epicardial	activity	was	assessed	using	different	performance	
metrics.	These	metrics	were	used	to	compare	the	degree	of	similarity	between	the	computed	target	
parameters	 after	 the	 reconstruction	 and	 the	 target	 parameters	 calculated	 from	 the	 models	 of	
epicardial	potentials.	To	this	respect,	on	the	one	hand,	the	reconstructed	epicardial	potentials	were	
compared	with	the	actual	epicardial	potentials	after	applying	the	same	filtering	procedure	that	has	
been	described	in	section	3.2.	On	the	other	hand,	the	estimated	dominant	frequencies,	phases,	and	
location	 of	 singularity	 points	 were	 compared	 with	 these	 same	 measurements	 computed	 directly	
from	the	actual	epicardial	potentials.	

Depending	 on	 the	 value	 of	 each	metric,	 the	 performance	 of	 each	 regularization	method	 could	 be	
analysed	in	a	straightforward	manner.	The	application	of	these	performance	metrics	was	not	only	to	
evaluate	Tikhonov	and	Bayes	regularization	on	the	original	data,	but	also	on	the	data	with	reduced	
spatial	 information	 reconstructed	 through	 Bayes	 regularization.	 For	 such	 purpose,	 each	 of	 the	
previously	 described	 target	 parameters	 was	 treated	 differently	 and	 assessed	 with	 a	 different	
performance	metric,	focusing	either	on	temporal	or	spectral	features.		

The	performance	metrics	used	for	each	target	parameter	were:	

• Epicardial	 potentials:	 the	 similarity	 between	 the	 estimated	 and	 actual	 epicardial	 potentials	
was	 assessed	with	 two	 different	metrics.	 The	 first	 one	 is	 Pearson’s	 Correlation	 Coefficient	
(CC),	 which	 is	 the	 covariance	 between	 two	 variables	 divided	 by	 the	 multiplication	 of	 the	
variance	of	each	one	of	them,	as	described	by	the	following	formula:	
	

𝐶𝐶F =
V._	(F,F)
BaBa

																																																																				(16)	

	
Taking	into	account	the	formulas	for	the	covariance	and	the	variance	between	two	variables,	
the	definition	for	CC	can	be	rewritten	as:	

	

𝐶𝐶F =
(b FF)& F)( F

b Fc& F c [b Fc&( F)c]
																																														(17)	

	
Where	 𝑥	 and	 𝑥	 represent,	 respectively,	 the	 actual	 and	 the	 reconstructed	 epicardial	
potentials.	The	measurement	can	be	computed	in	two	different	manners	to	obtain	either	the	
temporal	or	the	spatial	version.	The	temporal	version	consists	on	using	all	time	instants	and	
obtaining	the	correlation	between	nodes	on	the	actual	and	estimated	epicardial	potentials.	
The	 spatial	 version	 however,	 uses	 all	 nodes	 and	 the	 correlation	 between	 time	 instants	 is	
obtained.	Therefore,	the	k-sum	specified	in	the	formula	depends	on	whether	the	temporal	or	
spatial	 version	 is	 being	 computed.	 For	 the	 temporal	 case,	 since	 matrix	 𝑥	 and	 𝑥	 have	
dimensions	of	NxT,	being	N	the	number	of	nodes	and	T	the	number	of	time	instants,	the	sum	
is	performed	for	each	time	instant	across	all	nodes,	and	k	is	the	total	number	of	nodes.	For	
the	spatial	case	however,	the	sum	is	performed	for	each	node	across	all	time	instants,	and	k	
is	the	total	number	of	time	instants.		



44	
	

The	second	performance	metric	is	the	Relative	Difference	Measurement	Star	(RDMS)	which	
is	calculated	using	the	following	formula:	

	

𝑅𝐷𝑀𝑆F =
Fi
𝒙c

− Fi
𝒙c

/
b 																																																			(18)	

	
Once	again,	𝑥	and	𝑥	 	make	reference	to	the	actual	and	estimated	epicardial	potentials,	and	
analogously	 to	the	 first	metric,	 there	exists	a	 temporal	and	a	spatial	version	for	 the	RDMS.	
The	temporal	version,	just	like	the	CC,	implies	a	sum	over	the	nodes	for	each	time	instant	of	
the	 signal,	 and	 in	 the	 spatial	 version,	 the	 sum	 over	 the	 time	 instants	 for	 each	 node	 is	
performed.			

• Dominant	 frequency:	 the	performance	metric	used	to	evaluate	the	difference	between	the	
dominant	 frequency	 computed	 from	 the	 estimated	 and	 actual	 epicardial	 potentials	 is	 the	
relative	dominant	frequency	error	(RDFE).	This	metric	is	calculated	by	averaging	the	relative	
error	for	each	node	through	the	equation:	

	

𝑅𝐷𝐹𝐸 % = 	 'nn
:

o,p&o,p
o,p

:
P8' 																																																					(19)	

	
Where	𝐷𝐹P	and	𝐷𝐹P	represent,	respectively,	the	dominant	frequencies	at	node	n	from	the	
actual	and	estimated	epicardial	potentials.	

• Phase:	 the	 performance	 metrics	 used	 to	 evaluate	 the	 accuracy	 between	 the	 phases	
computed	 from	 the	 actual	 and	 estimated	 potentials	 are	 the	 same	 as	 those	 used	 for	 the	
epicardial	potentials,	the	CC	and	RDMS.	The	formulas	for	their	calculation	is	the	same	as	the	
one	described	above	but	substituting	the	epicardial	potentials	matrix	by	the	phase	vector:	
	

𝐶𝐶q =
(b qq)& q)( q

b qc& q c [b qc&( q)c]
																																																(20)	

	

𝑅𝐷𝑀𝑆q =
qi
𝝋c

− qi
𝝋c

/
b 																																																				(21)	

	
Where	𝜑	 and	𝜑	 represent,	 respectively,	 the	phase	 computed	 from	 the	 real	 and	estimated	
epicardial	potentials.		

• Singularity	Point	(SP)	location:	the	similarity	between	the	location	of	singularity	points	from	
the	 real	 and	 estimated	 epicardial	 potentials	 was	 assessed	 by	 means	 of	 4	 different	
performance	 metrics.	 The	 preliminary	 step	 in	 computing	 such	 metrics	 is	 to	 know	 the	
probability	of	a	singularity	point	being	at	a	specific	site,	since	it	has	been	shown	that	this	is	
more	clinically	relevant	than	knowing	the	location	of	SPs	for	every	time	instant	[Haissaguerre	
2014].	 This	 probability	 of	 SP	 location	 can	 be	 obtained	 by	means	 of	 creating	 a	 normalized	
spatial	 histogram	 representing	 the	 frequency	 of	 SP	 occurrence	 at	 each	 node,	 obtaining	 a	
Spatial	Mass	 Function	 (SMF).	 Then,	 the	 SP	 regions	 will	 be	 those	 nodes	 where	 the	 SMF	 is	
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different	 from	zero.	Taking	this	 into	account,	 the	performance	metrics	used	for	SP	 location	
will	assess	the	SMF	computed	from	the	real	and	reconstructed	epicardial	potentials.		
The	 first	 metric	 is	 the	 Weighted	 Under-estimation	 Indicator	 (WUI),	 which	 measures	 the	
percentage	of	true	SP	regions	that	are	not	detected	from	the	whole	true	SP	region	[Figuera	
2016].	The	WUI	can	be	calculated	by	using	equation	22:		

	

𝑊𝑈𝐼 % = 100 ∙ w(P)xpp∈z{
w P xpC w(P)xpp∈|}p∈z{

																																						(22)	

	
where	𝐴P	is	the	area	of	the	faces	surrounding	node	𝑛	and	𝑝(𝑛)	is	the	probability	of	having	a	
SP	 in	 that	 node.	𝐹𝑁	 stands	 for	 False	 Negative,	 and	 it	 represents	 the	 nodes	 that	 are	 not	
present	in	the	SP	region	of	estimated	potentials	but	actually	belong	to	a	SP	region	in	the	real	
potentials.	Finally,	𝑇𝑃	stands	for	True	Positive	and	it	represents	the	set	of	nodes	belonging	to	
the	true	SP	region,	therefore	they	are	present	in	both	the	real	and	estimated	potentials.	
The	 second	 metric	 is	 the	 Weighted	 Over-estimation	 indicator	 (WOI)	 which	 measures	 the	
percentage	of	erroneous	SP	regions	from	the	entire	SP	region	through	equation	23:	

	

𝑊𝑂𝐼 % = 100 ∙ w(P)xpp∈z}
w P xpC w(P)xpp∈|}p∈z}

																																						(23)	

	
Once	 again,	 𝐴P	 represents	 the	 area	 of	 the	 faces	 surrounding	 node	 𝑛	 and	 𝑝(𝑛)	 is	 the	
probability	of	having	a	 SP	 in	 that	node.	𝐹𝑃	 stands	 for	 False	Positive,	 and	 it	 represents	 the	
nodes	 that	 do	 not	 belong	 to	 the	 SP	 region	 for	 the	 real	 potentials	 but	 are	 identified	 as	 SP	
regions	for	the	inverse-estimated	ones.	Analogous	to	the	previous	case,	𝑇𝑃	stands	for	True	
Positive	and	it	represents	the	set	of	nodes	belonging	to	the	SP	regions	for	both	the	real	and	
estimated	potentials.	
The	 third	metric	 is	 the	Correlation	Coefficient	 (CC)	between	 the	 real	Spatial	Mass	Function	
(SMF)	 and	 the	 SMF	 computed	 from	 the	 estimated	 potentials.	 This	 parameter	 is	 computed	
through	equation	24:	

	

𝐶𝐶�9, =
(P w(P)w(P))& w(P))( w(P)

P w(P)c& w(P) c [P w(P)c&( w(P))c]
																																(24)	

	
Where	𝑝(𝑛)	 and	𝑝(𝑛)	 represent,	 respectively,	 the	probability	of	having	a	SP	 from	 the	 real	
and	 estimated	 potentials	 in	 node	 n.	 This	measure	 effectively	 compares	 both	 spatial	 mass	
distributions	and	is	able	to	include	information	from	the	previously	mentioned	metrics	(WUI	
and	WOI).	
Finally,	the	fourth	performance	metric	is	the	mode	distance	(MD)	between	the	modes	of	the	
Spatial	Mass	Functions	from	the	real	and	estimated	potentials.	The	MD	is	calculated	as	the	
Dijkstra	 distance;	 so	 that	 it	 is	 assured	 that	 the	 distance	 between	 both	modes	 will	 be	 the	
minimum	 length	 of	 vertices	 connecting	 them.	 This	 metric	 is	 useful	 when	 the	 real	 and	
estimated	SMFs	are	near	but	do	not	overlap.	
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3.4. Interpolation	
	

As	 mentioned	 in	 previous	 sections,	 one	 of	 the	 objectives	 of	 this	 project	 has	 been	 to	 reduce	 the	
number	 of	 spatial	 information	 available	 from	 the	 different	models	 of	 epicardial	 activity.	Once	 this	
data	 had	 been	 eliminated,	 different	 interpolation	 techniques	 were	 used	 to	 recover	 the	 original	
amount	 of	 spatial	 information	 before	 proceeding	 with	 the	 reconstruction	 of	 epicardial	 potentials	
through	 Bayes	 regularization	 algorithm.	 	 The	 aim	 was	 to	 identify	 the	 amount	 of	 initial	 spatial	
information	 from	 the	 signals	 that	 was	 needed	 to	 reconstruct	 the	 inverse	 problem	 using	 Bayes	
regularization	with	at	 least	 the	same	accuracy	 (if	not	better)	 than	Tikhonov	 reconstruction	with	all	
the	original	spatial	information.		

Regarding	 the	 interpolation	 techniques,	 different	 approaches	 have	 been	 used.	 The	 difference	
between	them	lies	either	in	the	place	where	the	interpolation	is	performed,	the	method	that	is	used	
for	 interpolating,	 and	 simultaneity	 between	 all	 signals’	 nodes	 or	 just	 in	 sets	 of	 120	 nodes.	 These	
approaches	are	described	in	detail	in	the	following	sections.		

	

	

3.4.1. Place	of	interpolation	
	

Reducing	the	spatial	information	from	the	models	of	epicardial	activity	amounts	to	dividing	the	set	of	
nodes	of	the	atrial	model	 into	two	groups:	those	whose	signals	are	going	to	be	 included	and	those	
whose	signals	are	going	to	be	excluded.	Among	the	excluded	nodes,	the	set	of	signals	belonging	to	
this	 group	are	eliminated,	while	 the	 set	of	 signals	 from	 the	 included	nodes	are	kept	 in	 the	model.	
Then,	this	truncated	signal	has	to	be	interpolated	to	recover	the	information	for	the	original	number	
of	 nodes,	 so	 that	 the	 reconstruction	 of	 epicardial	 potentials	 could	 be	 performed	 with	 the	 same	
spatial	resolution	as	if	all	nodes	had	been	present.		

Two	 different	 approaches	 were	 used	 for	 the	 place	 of	 interpolation	 of	 the	 truncated	 signal:	 the	
electrogram	 (EGM)	 itself	 and	 the	 Covariance	 matrix	 (Cx)	 used	 in	 the	 reconstruction	 of	 epicardial	
potentials	through	Bayes	regularization.	The	first	approach	consisted	on	eliminating	the	EGM	signal	
from	a	set	of	nodes,	and	then	assigning	to	the	excluded	nodes	a	certain	EGM	value	which	depended	
on	the	method	of	interpolation	used,	and	will	be	described	in	this	section.	Then,	once	the	EGM	had	
been	reconstructed	and	the	total	number	of	nodes	had	been	restored,	Bayes	algorithm	proceeded	in	
its	usual	manner,	and	the	covariance	matrix	of	epicardial	potentials	was	built	with	the	information	of	
the	 interpolated	EGM.	The	second	approach	consisted	on	eliminating	the	EGM	signal	 from	a	set	of	
nodes,	and	then	proceeding	with	the	computation	of	the	covariance	matrix	of	epicardial	potentials	
with	 the	 information	 of	 the	 truncated	 signal.	 Then,	 before	 the	 reconstruction	 of	 the	 epicardial	
potentials	 through	 Bayes	 regularization,	 the	 covariance	 matrix	 was	 interpolated	 to	 recover	 the	
dimensions	 it	 should	have	had	according	 to	 the	original	EGM	with	all	nodes.	Again,	 the	covariance	
value	that	was	assigned	to	the	missing	nodes	depended	on	the	interpolation	method	used,	and	will	
be	described	in	section	3.4.2.		
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The	detailed	performance	of	each	approach	is	as	follows:		

• EGM	interpolation.	This	approach	was	performed	following	a	number	of	steps.	The	first	step	
consisted	on	selecting	which	nodes	from	the	atrial	model	were	going	to	be	used.	To	do	so,	
the	fraction	of	nodes	that	was	going	to	be	used	needed	to	be	set	a	priori.	To	this	respect,	8	
different	 sets	of	nodes	were	 selected,	which	 corresponded,	 respectively	 to	 the	8th,	 7th,	 6th,	
5th,	4th,	3rd,2nd,	and	1.5th	fraction	of	the	original	number	of	nodes.	Having	set	the	number	of	
spatial	 information	 that	 was	 going	 to	 be	 used,	 the	 criteria	 for	 node	 selection	 was	 the	
following:	

1. First	node:	node	which	is	farthest	apart	from	the	whole	set	of	nodes.		
2. Second	node:	node	which	is	farther	away	from	the	first	selected	node.	
3. Rest	of	nodes:	node	which	is	farther	away	from	all	the	previous	ones.		

Since	the	geometrical	atrial	model	provided	included	a	matrix	for	the	distances	between	all	
nodes,	this	could	be	implemented	in	a	straightforward	manner.	 Initially,	the	distances	from	
all	nodes	to	the	rest	are	sorted	in	descending	order,	so	that	the	highest	distances	are	located	
in	 the	 first	 positions	 inside	 a	 matrix.	 The	 nodes	 corresponding	 to	 each	 distance	 are	 also	
stored.		
Then,	the	first	node	is	selected,	which	is	the	one	which	is	farthest	away	from	the	general	set	
of	nodes.	This	was	performed	by	means	of	adding,	for	each	node,	all	the	distances	to	the	rest	
of	 nodes.	 The	 location	 within	 the	matrix	 for	 which	 the	maximum	 value	 of	 such	 sum	 was	
obtained	was	identified	as	the	node	which,	in	general	terms,	was	the	farthest	away	from	the	
whole	set.		Upon	selecting	the	first	node,	the	second	one	is	simply	the	one	whose	distance	is	
the	 highest	 from	 the	 first.	 This	 can	 be	 obtained	 in	 a	 straightforward	 manner	 since	 all	
distances	for	all	nodes	were	previously	sorted	in	descending	order.		
Once	the	first	two	nodes	have	been	selected,	a	loop	is	created	to	select	the	rest	of	nodes.	For	
the	first	iteration	(the	algorithm	is	looking	for	the	third	node),	all	the	distances	from	the	first	
node	 to	 the	others	 are	evaluated	 in	descending	order.	 The	program	 takes	 the	node	which	
corresponds	to	the	distance	under	study,	and	evaluates	the	distance	from	the	second	node	
to	the	node	under	study.	Then,	the	distances	from	both	nodes	the	new	node	is	added,	and	
this	sum	is	stored	in	a	vector,	as	well	as	the	node	corresponding	to	the	sum.	Once	the	whole	
vector	 has	 been	 built	 (all	 the	 distances	 from	 the	 first	 node	 to	 the	 others	 have	 been	
evaluated),	the	program	takes	the	maximum	entry	in	such	vector,	and	the	selected	node	will	
be	 the	 one	 corresponding	 to	 this	maximum.	 The	 identified	 node	will	 be	 the	 one	which	 is,	
simultaneously,	the	farthest	from	the	two	previous	nodes.	
Upon	 finding	 the	 third	 node,	 the	 distances	 between	 this	 new	 node	 and	 all	 the	 others	 are	
added	to	the	previous	vector,	entry	by	entry,	so	that	each	entry	corresponds	to	the	sum	of	
distances	of	a	different	node.	To	ensure	that	there	are	no	duplicated	nodes,	a	security-check	
loop	 is	 also	 created.	 This	 loop	 will	 find	 any	 coincidences	 between	 a	 new	 node	 and	 the	
previously	 selected	 ones.	 If	 there	 are	 any	 repetitions,	 that	 entry	 is	 put	 to	 zero	 and	 a	 new	
maximum	is	 looked	for.	Finally,	 the	nodes	which	are	going	to	be	 included	 in	the	model	are	
stored	in	ascending	order,	as	well	as	the	nodes	which	are	not	going	to	be	used.	The	program	
then	stores	from	the	original	EGM,	the	signals	which	correspond	to	the	chosen	nodes.	
Now	the	EGM	contains	a	fraction	of	the	initial	nodes,	which	has	been	set	a	priori,	and	all	the	
initial	 samples	 from	 the	 nodes	 that	 have	 been	 included.	 At	 this	 point,	 the	 first	 approach	
performs	 the	 EGM	 interpolation	 through	 different	 methods	 to	 reconstruct	 the	 EGM	 and	
ensure	 that	 it	 has	 the	 initial	 dimensions.	 The	 different	 algorithms	 used	 to	 perform	 the	
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interpolation	on	 the	 EGM	will	 be	described	 in	 section	3.4.2.	 The	 interpolated	EGM	 is	 then	
used	 to	 build	 the	 spatial	 covariance	 matrix,	 and	 Bayes	 regularization	 algorithm	 and	
reconstruction	of	epicardial	potentials	proceeds	normally.	

• Cx	 interpolation.	 The	 covariance	 matrix	 interpolation	 approach	 begins	 just	 like	 the	 EGM	
approach,	by	eliminating	the	information	belonging	to	a	set	of	nodes	from	the	original	EGM	
signal.	 The	 choice	 of	 the	 nodes	 that	will	 be	 included	 and	 those	 that	will	 be	 excluded	was	
performed	 in	 the	 same	 way	 as	 for	 the	 previous	 case.	 Also,	 the	 elimination	 of	 spatial	
information	 from	 the	original	 EGM	signal	proceeds	 in	 the	 same	way	as	 the	EGM	approach	
described	previously.	However,	this	time	the	algorithm	will	return	the	truncated	EGM	signal	
only	with	 the	selected	nodes,	as	well	as	 the	set	of	nodes	 that	have	been	 included	and	 the	
ones	 that	 have	 been	 excluded	 from	 the	 original	model.	 Furthermore,	 the	 function	 returns	
the	 neighbours	 from	 the	 nodes	 that	 are	 not	 used,	 which	 will	 be	 used	 for	 one	 of	 the	
interpolation	methods	that	will	be	described	in	the	following	section.	These	variables	will	be	
used	later	to	interpolate	the	covariance	matrix	appropriately.		
The	 code	 continues	 executing	 normally,	 and	 the	 covariance	 matrix	 is	 created	 with	 the	
specified	 fraction	 of	 the	 original	 EGM	 information.	 After	 this,	 before	 reconstructing	 the	
epicardial	 potentials	 using	 Bayes	 regularization	 method,	 a	 function	 is	 introduced	 to	
interpolate	Cx	and	restore	the	dimensions	of	the	covariance	matrix	that	corresponds	to	the	
dimensions	 of	 the	 initially	 provided	 EGMs.	 This	 function	 is	 different	 depending	 on	 the	
method	of	interpolation	and	will	be	described	in	the	following	section.		

	

	

3.4.2. Method	of	interpolation	
	

Two	 different	 interpolation	 methods	 were	 applied,	 both	 on	 the	 EGM	 and	 Cx	 interpolation	
approaches,	 to	 restore	 the	 initial	number	of	 spatial	 information	 from	 the	 truncated	data.	 The	 first	
approach	was	Nearest	Neighbour	(NN)	interpolation,	which	basically	consists	on	giving	to	the	missing	
nodes	 values	 corresponding	 to	 their	 nearest	 neighbour	 within	 the	 atrial	 geometrical	 model.	 The	
second	 approach	was	 based	 on	 using	 the	 second	 spatial	 derivative	 (Laplacian)	 between	 a	missing	
node	and	its	connected	neighbours.	For	this	last	approach,	an	interpolation	matrix	is	created,	which	
multiplied	by	 the	 truncated	 EGM	or	Cx,	 restores	 the	dimensions	of	 the	original	 data.	 The	detailed	
description	of	these	interpolation	methods	is	as	follows:	

• Nearest	Neighbour	(NN)	interpolation.	The	adequate	performance	of	this	method	requires	a	
preliminary	 step	which	 consists	 on	 finding	 the	 nearest	 nodes	 to	 the	 ones	 that	 have	 been	
excluded	from	the	signal.	As	described	previously,	the	atrial	model	 included	a	variable	with	
the	distances	between	all	nodes.	Hence,	by	sorting	the	distances	for	each	node	to	the	rest	of	
nodes	 in	ascending	order,	 and	 taking	 into	account	 that	 the	minimum	distance	of	all	nodes	
will	be	the	one	with	itself,	the	closest	node	will	be	the	one	in	the	second	entry.		
However,	 this	 is	 not	 so	 straightforward.	 For	 most	 of	 the	 cases,	 especially	 when	 a	 high	
number	of	nodes	are	excluded,	the	nearest	neighbour	is	also	going	to	belong	to	the	excluded	
set.	 Therefore,	 it	 was	 necessary	 to	 check	 whether	 the	 nearest	 node	 to	 a	 missing	 node	
belonged	to	the	set	of	included	nodes.		If	a	given	node	was	not	in	the	set,	even	if	its	distance	
to	an	excluded	node	was	the	minimum,	it	was	discarded,	and	the	next	nearer	neighbour	was	
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taken.	 Once	 the	 loop	 ended,	 it	 returned	 a	 vector	 containing	 the	 neighbours	 from	 the	
excluded	nodes	from	which	the	information	was	going	to	be	copied.		
At	 this	point,	 the	nearest	neighbour	 interpolation	method	differs	slightly	depending	on	the	
interpolation	 approach	used	previously,	whether	 EGM	or	Cx.	 This	 is	 simply	because	of	 the	
values	 that	 the	 covariance	matrix	 represents.	 For	 EGM	 interpolation,	 the	dimensions	were	
restored	first	of	all	by	creating	an	empty	EGM	with	the	same	dimensions	as	the	original	one,	
with	all	the	spatial	information.	A	loop	is	created	which	fills	each	node	in	the	EGM	with	the	
following	criteria:	

o For	 each	 node	 in	 the	 new	 EGM,	 if	 it	 belongs	 to	 the	 set	 of	 included	 nodes	 in	 the	
truncated	EGM,	the	node	is	given	the	same	values	as	the	reduced	EGM.		

o If	the	node	does	not	belong	to	the	set	of	included	nodes,	then	it	is	given	the	values	in	
the	reduced	EGM	from	its	nearest	neighbour.	

Once	the	dimensions	of	 the	EGM	have	been	recovered,	 the	covariance	matrix	 is	computed	
through	 equation	 11	 and	 the	 epicardial	 potentials	 are	 estimated	 through	 Bayes	
regularization	method,	following	equation	12.		
For	the	covariance	matrix	interpolation	approach,	this	algorithm	works	slightly	different.	This	
is	 due	 to	 the	 fact	 that	 the	 covariance	 matrix	 is	 a	 squared	 matrix	 which	 represents	 the	
covariance	 values	 between	 all	 nodes.	 Therefore,	 the	 first	 step	 requires	 building	 an	 empty	
squared	matrix	which	will	have	the	same	dimensions	of	the	original	number	of	nodes	in	the	
atrial	 geometrical	model.	 These	 are	 the	 dimensions	 that	 the	matrix	 should	 have	 had	 if	 no	
spatial	information	has	been	reduced	from	the	EGMs.		
Then,	for	each	entry	in	such	matrix,	the	code	checks	whether	the	row	and	column	are	within	
the	set	of	included	nodes.	If	they	are,	then	the	value	of	the	empty	covariance	matrix	at	such	
point	will	be	the	one	of	the	truncated	covariance	matrix	at	the	corresponding	pair	of	nodes.	
If	either	the	row,	or	column,	or	both	of	them,	are	not	within	the	set	of	nodes,	the	code	gets	
the	nearest	neighbour	to	the	missing	row,	column	or	both,	as	well	as	the	covariance	value	in	
the	truncated	Cx	for	each	row-column	pair.	Finally,	each	selected	entry	in	the	interpolated	Cx	
is	given	values	that	either	belong	to	covariance	values	of	 included	nodes,	or	to	the	nearest	
neighbours.		
Once	 the	 covariance	 matrix	 has	 restored	 its	 original	 dimensions,	 Bayes	 formula	 for	 the	
reconstruction,	 defined	 by	 equation	 12,	 is	 applied,	 and	 the	 epicardial	 potentials	 are	
estimated.	

• Laplacian	 interpolation.	 The	 first	 step	 in	 the	 Laplacian	method	of	 interpolation	 consists	 on	
computing	the	second	spatial	derivative	of	the	irregular	triangular	meshes	defined	within	the	
atrial	geometry,	as	well	as	the	linear	distances	between	vertices	belonging	to	the	same	face	
in	 the	 atrial	 geometrical	model.	 The	 Laplacian	 is	 calculated	by	 initializing	 an	 empty	 square	
matrix	 which	 will	 have	 the	 dimensions	 of	 the	 total	 number	 of	 nodes	 in	 the	 atrial	 model.	
Then,	 for	each	node,	 the	direct	neighbours	are	 stored,	which	are	 the	nodes	which	 share	a	
face	with	the	node	under	evaluation.	The	Laplacian	is	then	computed	for	that	node	and	itself	
and	for	its	direct	neighbours	according	to	the	formulas	that	are	shown	below,	while	its	value	
is	zero	for	indirect	neighbours.		
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Where	𝐿𝑎𝑝 𝑖, 𝑖 	is	the	Laplacian	of	node	i	and	itself,	𝐿𝑎𝑝 𝑖, 𝑘 	is	the	Laplacian	of	node	i	and	
its	k	direct	neighbours,	ℎ5 	 is	the	mean	distance	from	a	node	to	all	its	connected	neighbours	
and	𝑑𝑖𝑠𝑡(𝑖, 𝑘)	 is	 the	 distance	 from	 node	 i	 to	 its	 connected	 neighbour	 k.	 Finally,	𝑛5 	 is	 the	
number	of	direct	neighbours	for	node	i.	
Once	 the	 Laplacian	 is	 calculated,	 it	 is	 used	 together	with	 the	 set	 of	 nodes	 that	 have	 been	
included	in	the	truncated	signal	to	calculate	an	interpolation	matrix.	This	interpolation	matrix	
will	 include	 the	coefficients	 that	will	 contribute	 to	 the	computation	of	 the	values,	whether	
from	 the	 EGMs	 or	 the	 covariance	matrix,	 for	 the	 excluded	 set	 of	 nodes,	 given	 the	 known	
values	at	the	set	of	included	nodes.			
The	Laplacian	matrix	calculated	previously	is	reshuffled,	so	that	the	entries	belonging	to	the	
set	 of	 included	 nodes	 are	 located	 in	 the	 first	 entries,	 and	 those	 belonging	 to	 the	 set	 of	
excluded	nodes	 are	 the	 last	 entries	 of	 the	matrix.	 Then,	 this	 reshuffled	 Laplacian	matrix	 is	
separated	into	2	different	matrices	depending	on	whether	the	values	belong,	or	not,	to	the	
set	of	included	nodes.	Finally,	the	interpolation	matrix	is	computed	as:	
	

𝑀5P) = −𝐴�𝐵																																																																											(27)	

	 		

Where	𝐴�	is	a	E	x	N	matrix	representing	the	pseudoinverse	of	A,	being	A	the	matrix	with	the	
values	of	the	Laplacian	at	the	excluded	set	of	nodes,	N	is	the	total	number	of	original	nodes	
in	 the	model	and	E	 is	 the	number	of	excluded	nodes,	B	 is	an	N	x	 I	matrix	 representing	 the	
values	of	the	Laplacian	at	the	included	set	of	nodes	and	I	is	the	number	of	included	nodes	in	
the	model.		
The	computed	interpolation	matrix,	Mint,	has	dimensions	of	E	x	I.	Since	this	matrix	also	has	to	
take	 into	 account	 the	 values	 that	 are	 known	 from	 the	 truncated	 signal	without	modifying	
them,	 and	 identity	 matrix	 is	 appended	 to	 Mint.	 Finally,	 the	 rows	 and	 columns	 of	 the	
interpolating	matrix	are	reshuffled	taking	into	account	the	order	of	the	nodes.		
Once	the	Laplacian	interpolation	matrix	has	been	calculated,	the	interpolation	proceeds	in	a	
straightforward	manner.	 For	 the	 EGM	 approach,	 the	matrix	 is	multiplied	 by	 the	 truncated	
signal:	
	

𝐸𝐺𝑀5P) = 𝑀5P)×𝐸𝐺𝑀)-V 																																																													(28)	

	 	

Where	𝐸𝐺𝑀5P)	 is	 the	 interpolated	 signal	 that	 includes	 all	 the	 original	 spatial	 information,	
𝑀5P)	 is	 the	 interpolation	 matrix	 and	 𝐸𝐺𝑀)-V 	 is	 the	 EGM	 signal	 with	 reduced	 spatial	
information.		
For	the	covariance	matrix	approach,	since	it	has	squared	dimensions,	it	has	to	be	multiplied	
twice	by	the	interpolating	transfer	matrix.		
	

𝐶F5P) = 𝑀5P)× 𝑀5P)×𝐶F)-V
) )

																																																					(29)	
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Where	 𝐶F5P)	 is	 the	 interpolated	 covariance	 matrix	 that	 includes	 all	 the	 original	 spatial	
information,	𝑀5P)	is	the	interpolation	matrix	and	𝐶F)-V 	is	the	covariance	matrix	that	has	been	
computed	from	the	EGM	with	reduced	spatial	information.		

Upon	performing	each	of	the	interpolation	methods,	whether	on	the	electrogram	or	the	covariance	
matrix,	 the	 estimation	 of	 epicardial	 potentials	 proceeded.	 The	 results	 from	 the	 execution	 of	 the	
inverse	problem	contained	the	same	spatial	information	as	the	original	signal.	This	is	because	due	to	
the	 interpolation	steps,	 the	original	problem	could	be	solved	using	a	 reduced	amount	of	 the	 initial	
information.	

	

	

3.4.3. Alternatives	
	

Taking	 into	 account	 the	 described	 interpolation	 approaches,	which	 differed	 on	 either	 the	 place	 of	
interpolation	or	the	method,	a	total	of	4	different	alternatives	were	applied	onto	the	data	according	
to	 the	 methodology	 described	 so	 far.	 These	 were:	 Nearest	 Neighbour	 (NN)	 interpolation	 of	 the	
EGMs,	NN	interpolation	of	the	Covariance	Matrix,	Laplacian	interpolation	on	the	EGMs	and	Laplacian	
interpolation	 on	 Cx.	 However,	 an	 additional	 alternative	 method	 was	 also	 used,	 which	 will	 be	
described	in	this	section.	

As	described	in	previous	sections,	not	all	the	samples	from	the	signals	of	each	model	are	used	in	the	
reconstruction	of	epicardial	activity.	 It	has	been	explained	that,	 for	the	sinus	rhythm	model,	all	 the	
samples	 from	 the	model	 are	used	excluding	 the	 first	one	 (from	 the	2nd	 to	 the	2500th	 sample).	 The	
simple	and	complex	atrial	fibrillation	models	contain	a	total	of	5000	samples,	from	which	a	number	
of	initial	and	end	transients	are	removed.	The	SAF	model	uses	from	the	1002nd	sample	to	the	3500th	
and	the	CAF	model	uses	from	the	502nd	to	the	3000th.		

The	computation	of	the	covariance	matrix	which	is	used	in	Bayes	regularization	method	requires	a	1	
second	 window	 from	 the	 signal,	 which,	 at	 a	 sampling	 frequency	 of	 500Hz,	 translates	 into	 500	
samples.	However,	the	samples	used	must	be	different	from	the	ones	used	in	the	reconstruction	of	
the	 signal	 itself.	 The	 location	 of	 this	 time	window	 used	 to	 compute	 the	 covariance	 values	 for	 the	
matrix	differed	from	one	model	to	another.	For	the	sinus	rhythm	model,	since	all	the	samples	(except	
the	first)	are	originally	used	for	the	reconstruction	of	potentials,	a	given	number	of	samples	must	be	
left	 out	when	 proceeding	with	 Bayes	 regularization.	 Therefore,	 the	 last	 500	 samples	 are	 used	 for	
computing	the	covariance	matrix	and	the	rest	of	samples	are	used	for	the	inverse	problem.	For	the	
simple	and	complex	atrial	 fibrillation	models,	since	a	 large	number	of	samples	are	removed	for	the	
reconstruction	 of	 potentials,	 the	 1	 second	 window	 is	 chosen	 from	 a	 stable	 region	 among	 these	
removed	 samples.	 In	 this	 sense,	 for	 the	 simple	 atrial	 fibrillation	 model,	 the	 covariance	 matrix	 is	
calculated	with	samples	from	500	to	999.	Finally,	the	complex	atrial	fibrillation	model	uses	samples	
from	3500	to	4000.	This	is	summarized	in	table	3.6.		
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Table	3.6:	Samples	used	originally	from	all	the	models	for	the	first	interpolation	alternative:	computation	of	the	
covariance	matrix	used	in	Bayes	regularization	method	and	reconstruction	of	the	inverse	problem.	

	 Sinus	
rhythm	

Simple	atrial	
fibrillation	

Complex	atrial	
fibrillation	

Total	number	of	samples	 2500	 5000	 5000	

Removed	initial	transients	 1	 1:1001	 1:501	

Removed	end	transients	 2001:2500	 3501:5000	 3001:5000	

Samples	used	for	the	inverse	problem	 2:2000	 1002:3500	 502:3000	

Samples	used	for	computing	the	
covariance	matrix	

2001:2500	 500:999	 3500:4000	

	

From	 these	500	 sample	windows,	150	are	 randomly	 selected,	 and	 the	mean	 is	 computed	 for	each	
node	using	the	150	time	instants.	Finally,	the	covariance	matrix	is	calculated	with	equation	11.	

The	 time	windows	 described	 so	 far,	 both	 for	 the	matrix	 used	 in	 the	 reconstruction	 of	 the	 inverse	
problem	and	the	computation	of	the	covariance	matrix	constitute	the	first	alternative	among	the	two	
that	were	used	 in	 the	 four	different	 interpolation	approaches.	The	second	alternative	consisted	on	
using	 simultaneous	 time	 instants	 for	 a	 maximum	 of	 120	 nodes	 when	 calculating	 Cx.	 This	 was	
performed	in	order	to	mimic	a	more	realistic	clinical	situation,	where	no	more	than	120	points	in	the	
atria	can	be	measured	simultaneously.		

Taking	 into	account	 that	 the	original	 time	window	 for	 calculating	Cx	 contained	1	 second	of	 signals	
(500	 samples),	 of	 which,	 150	 samples	 were	 randomly	 selected,	 if	 a	maximum	 of	 120	 nodes	were	
going	 to	 be	 taken	 at	 simultaneous	 instants,	 then	 a	 larger	 time	window	 is	 needed	 to	 calculate	 the	
covariance	matrix.	However,	the	choice	of	such	additional	time	window	is	not	arbitrary,	and	it	cannot	
be	taken	from	the	samples	that	have	been	eliminated	from	the	original	models	due	to	the	presence	
of	unstable	transients.	Therefore,	taking	 into	account	that	the	valid	samples	of	each	model	are	the	
ones	described	in	table	3.6,	these	must	be	rearranged	to	create	a	larger	time	window	for	computing	
the	covariance	matrix.		

The	 solution	was	 achieved	 by	 reducing	 the	 number	 of	 samples	 used	 for	 the	 reconstruction	 of	 the	
inverse	problem,	and	using	such	samples	to	enlarge	the	time	window	used	for	the	covariance	matrix.	
This	 was	 performed	 by	 taking	 the	 last	 750	 samples	 of	 each	 model	 from	 the	 ones	 used	 for	 the	
reconstruction	process	and	using	them	together	with	the	ones	established	originally	to	compute	Cx.	
In	this	sense,	for	the	model	of	sinus	rhythm,	the	samples	from	2	to	1250	were	used	for	the	inverse	
problem	and	from	1251	to	2500	for	the	Covariance	Matrix.	The	simple	atrial	fibrillation	model	now	
used	samples	from	1002	to	2750	for	the	reconstruction	of	potentials	and	samples	from	500	to	999	
concatenated	 with	 the	 samples	 from	 2751	 to	 3500	 for	 calculating	 Cx.	 Finally,	 the	 complex	 atrial	
fibrillation	model	used	samples	from	502	to	2250	for	the	inverse	problem	and	samples	from	2251	to	
3000	concatenated	with	samples	from	3500	to	4000	for	the	covariance	matrix.	This	is	summarized	in	
table	3.7	where	concatenation	of	matrices	is	denoted	as	∪.	
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Table	3.7:	Samples	used	from	all	the	models	for	the	second	interpolation	alternative:	computation	of	the	covariance	
matrix	used	in	Bayes	regularization	method	and	reconstruction	of	the	inverse	problem.	

	 Sinus	
rhythm	

Simple	atrial	
fibrillation	

Complex	atrial	
fibrillation	

Total	number	of	samples	 2500	 5000	 5000	

Removed	initial	transients	 1	 1:1001	 1:501	

Removed	end	transients	 1251:2500	 3501:5000	 3001:5000	

Samples	used	for	the	inverse	problem	 2:1250	 1002:2750	 502:2250	

Samples	used	for	computing	the	
covariance	matrix	

1251:2500	 500:999	∪	2751:	
3500	

2251:3000	∪	
3500:4000	

	

The	time	windows	described	in	table	3.7	were	the	ones	used	in	the	second	interpolation	alternative.	
The	 1250	 samples	 used	 in	 this	 second	 variant	 to	 calculate	 the	 covariance	 matrix,	 were	 taken	 in	
groups	of	120	nodes	and	500	samples.	Then,	for	each	set,	150	were	randomly	selected,	the	mean	of	
such	150	 samples	was	 computed	and	 the	 covariance	matrix	was	 calculated	as	described	above.	 In	
this	sense,	the	covariance	matrix	was	computed	using	non-simultaneous	time	instants.	

In	conclusion,	8	different	approaches	were	applied	onto	the	data.	4	 for	computation	of	covariance	
matrix	 using	 simultaneous	 time	 instants:	 Nearest	 Neighbour	 interpolation	 on	 the	 EGMs,	 NN	
interpolation	on	Cx,	Laplacian	interpolation	on	the	EGMs	and	Laplacian	interpolation	on	Cx;	and	the	
same	4	approaches	were	applied	using	a	non-simultaneous	computation	of	Cx,	making	a	total	of	8.	
Finally,	the	number	of	nodes	from	the	models	was	reduced	to	an	8th,	7th,6th,	5th,	4th,	3rd,	2nd	and	1.5th	
fraction	of	 the	original	number,	 leading	to	results	 for	255,	291,	340,	408,	510,	680,	1020	and	1359	
nodes,	respectively.	Taking	into	account	that	3	different	models	of	atrial	activity	were	used,	this	lead	
to	set	of	192	different	results.		
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4. Results	
	

This	 section	 shows	 the	 results	 obtained	 after	 performing	 the	 inverse	 problem	 on	 the	 simulates	
surface	potentials	and	estimating	the	epicardial	activity.	Two	different	regularization	methods	were	
used:	Tikhonov	and	Bayes.	Tikhonov’s	regularization	method	was	used	to	solve	the	inverse	problem	
with	 the	 data	 containing	 all	 the	 spatial	 information	 available.	 The	 results	 obtained	 on	 the	 three	
mathematical	 models	 available	 were	 used	 as	 gold	 standards	 for	 comparison	 purposes.	 Bayes’	
regularization	 method	 was	 also	 used	 in	 the	 reconstruction	 of	 epicardial	 activity	 with	 no	 reduced	
spatial	 information.	 The	 purpose	 of	 doing	 so	 was	 to	 verify	 the	 hypothesis	 that	 this	 regularization	
showed	a	better	performance	than	Tikhonov	and	therefore	could	be	used	in	subsequent	steps	when	
the	 spatial	 information	 was	 reduced.	 Finally,	 Bayes	 regularization	 was	 used	 to	 solve	 the	 inverse	
problem	on	the	interpolated	data	with	reduced	spatial	information.		

	

	

4.1. Tikhonov	regularization	
	

Tikhonov	regularization	method	to	solve	the	inverse	problem	has	different	variants.	As	mentioned	in	
previous	sections,	the	method	can	be	zero	order,	first	order	or	second	order.	The	zero	order	variant	
uses	an	 identity	matrix	 for	 the	 spatial	 regularization	matrix,	 first	order	uses	 the	Gradient	operator	
and	 second	 order	 uses	 the	 Laplacian	 operator.	 Also,	 each	 order	 of	 the	 method	 can	 be	 executed	
either	 using	 a	 constant	 regularization	 parameter	 (λ)	 or	 an	 instantaneous	 λ.	 The	 former	 is	 used	
globally	to	reconstruct	all	time	instants	of	the	signal,	whereas	the	latter	varies	in	the	reconstruction	
of	each	time	instant.		

Taking	 this	 into	account,	 the	preliminary	 step	 in	defining	a	gold	 standard	 for	comparison	purposes	
was	to	evaluate	the	performance	of	the	each	of	the	variants	of	Tikhonov	regularization	in	each	of	the	
models	available.	 	This	performance	 is	summarized	 in	tables	4.1-3.	The	performance	metrics	 in	the	
reconstruction	 of	 epicardial	 potentials	 using	 all	 variants	 of	 Tikhonov’s	 regularization	 for	 the	 sinus	
rhythm,	simple	atrial	fibrillation	and	complex	atrial	fibrillation	models	are	shown	in	these	tables.		

For	 the	 sinus	 rhythm	 model,	 using	 a	 global	 λ	 the	 temporal	 performance	 of	 the	 regularization	
decreases	 for	 increasing	 orders	 of	 the	 method,	 whereas	 the	 spatial	 performance	 increases	 for	
increasing	orders,	 as	 shown	 in	 table	4.1.	 This	 is	 justified,	on	 the	one	hand,	by	 the	decrease	 in	 the	
temporal	correlation	coefficients	(CCt)	and	the	decrease	in	the	temporal	relative	difference	(RDMSt)	
for	 increasing	 orders.	 On	 the	 other	 hand,	 the	 spatial	 correlation	 coefficient	 (CCn)	 and	 relative	
difference	(RDMSn)	show	a	better	performance	for	 increasing	orders	of	the	method,	since	the	first	
measures	 slightly	 increases	 and	 the	 second	 slightly	 decreases.	 These	 differences	 in	 performance	
between	spatial	and	temporal	measures	do	not	occur	when	using	an	instantaneous	λ.	For	this	case,	
increasing	 the	 order	 of	 the	 method	 decreases	 the	 accuracy	 of	 the	 reconstruction	 both	 for	 the	
temporal	 and	 spatial	 correlation	 coefficient	 and	 relative	 difference,	 as	 shown	 in	 table	 4.1.	 To	 this	
respect,	both	CCt	and	CCn	decrease	for	 increasing	orders	and	both	RDMSt	and	RDMSn	increase	for	
increasing	 orders.	 Furthermore,	 it	 can	 be	 seen	 that	 in	 general	 terms,	 within	 the	 same	 order,	 the	
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method	 shows	 a	 better	 performance	 when	 using	 an	 instantaneousλinstead	 of	 a	 global	 one.	
Therefore,	it	can	be	concluded	that	among	all	variants	of	Tikhonov’s	regularization,	the	one	which	is	
able	to	reconstruct	epicardial	potentials	with	the	highest	accuracy	is	zero	order	with	instantaneous	λ.	

	

Table	4.1:	Performance	metrics	in	the	reconstruction	of	epicardial	potentials	for	the	model	of	sinus	rhythm	using	all	
variants	of	Tikhonov	regularization.	

Model:	Sinus	rhythm	

	 Tik-0	 Tik-1	 Tik-2	

	 Global	λ	

CCt	 0.655 ± 0.340	 0.530 ± 0.345	 0.517 ± 0.337	

CCn	 	0.403 ± 0.210	 0.520 ± 0.263	 0.539 ± 0.261	

RDMSt	 0.763 ± 0.328	 0.914 ± 0.325	 	0.929 ± 0.319	

RDMSn	 1.076 ± 0.194	 0.938 ± 0.284	 0.915 ± 0.290	

	 Instantaneousλ	

CCt	 0.698 ± 0.337	 0.698 ± 0.336	 0.592 ± 0.286	

CCn	 0.518 ± 0.148	 0.518 ± 0.148	 0.496 ± 0.151	

RDMSt	 0.704 ± 0.329	 0.705 ± 0.328	 0.868 ± 0.253	

RDMSn	 0.971 ± 0.147	 0.971 ± 0.147	 0.993 ± 0.149	

	

The	performance	metrics	computed	after	reconstructing	the	epicardial	potentials	from	the	model	of	
simple	atrial	fibrillation	using	all	of	the	variants	of	Tikhonov	regularization	are	shown	in	table	4.2.	For	
this	model,	the	performance	of	the	inverse	problem	decreases	for	 increasing	orders	of	the	method	
when	 using	 a	 global	 λ.	 Unlike	 the	 sinus	 rhythm	 model,	 this	 time	 both	 the	 temporal	 and	 spatial	
measures	show	a	loss	of	accuracy	in	the	reconstruction	for	increasing	orders	and	constant	λ.	This	is	
also	the	case	when	using	an	instantaneousλ,	where	it	can	be	seen	that	the	CCt	and	CCn	decrease	for	
increasing	orders	and	the	RDMSt	and	RDMSn	 increase	 for	 increasing	orders.	Finally,	 it	 can	be	seen	
that,	 within	 the	 same	 order,	 the	 value	 of	 the	metrics	 show	 a	 better	 performance	 when	 using	 an	
instantaneous	instead	of	a	global	λ.	Hence,	just	like	the	previous	case,	it	can	be	concluded	that	the	
variant	among	Tikhonov’s	algorithm	with	shows	the	best	performance	for	the	model	of	simple	atrial	
fibrillation	is	zero	order	with	instantaneousλ.		

The	 performance	 metrics	 for	 the	 model	 of	 complex	 atrial	 fibrillation	 are	 shown	 in	 table	 4.3.	 In	
general	terms,	this	model	shows	the	same	conclusions	as	the	case	of	simple	atrial	fibrillation.	When	
using	a	global	λ,	there	is	a	general	trend	of	loss	of	accuracy	in	the	performance	metrics	for	increasing	
orders	of	the	method.	This	 is	also	the	conclusion	for	the	 instantaneousλcase.	Just	 like	all	 the	other	
models,	 the	 performance	 for	 the	 model	 of	 complex	 atrial	 fibrillation	 is	 better	 for	 zero	 order	
Tikhonov’s	regularization	with	instantaneous	λ.		



56	
	

Table	4.2:	Performance	metrics	in	the	reconstruction	of	epicardial	potentials	for	the	model	of	simple	atrial	fibrillation	
using	all	variants	of	Tikhonov	regularization.	

Model:	Simple	atrial	fibrillation	

	 Tik-0	 Tik-1	 Tik-2	

	 Global	λ	

CCt	 0.542 ± 0.294	 0.485 ± 0.252	 0.380 ± 0.283	

CCn	 0.480	 ± 0.072	 0.448 ± 0.093	 0.376 ± 0.077	

RDMSt	 0.917 ± 0.277	 0.987 ± 0.253	 	1.083 ± 0.260	

RDMSn	 1.017	 ± 0.070	 1.047 ± 0.087	 1.115 ± 0.069	

	 Instantaneousλ	

CCt	 0.553 ± 0.287	 0.553 ± 0.287	 0.478 ± 0.242	

CCn	 0.498 ± 0.077	 0.498 ± 0.077	 0.441 ± 0.107	

RDMSt	 0.906 ± 0.271	 0.906 ± 0.280	 1.000 ± 0.207	

RDMSn	 1.000 ± 0.076	 1.000 ± 0.076	 1.052 ± 0.100	

Table	4.3:	Performance	metrics	in	the	reconstruction	of	epicardial	potentials	for	the	model	of	complex	atrial	fibrillation	
using	all	variants	of	Tikhonov	regularization.	

Model:	Complex	atrial	fibrillation	

	 Tik-0	 Tik-1	 Tik-2	

	 Global	λ	

CCt	 0.170 ± 0.364	 0.125 ± 0.359	 0.116 ± 0.356	

CCn	 0.235 ± 0.021	 0.152 ± 0.038	 0.153 ± 0.037	

RDMSt	 1.256 ± 0.289	 1.293 ± 0.280	 	1.301 ± 0.277	

RDMSn	 	1.237 ± 0.017	 1.302 ± 0.029	 1.301 ± 0.028	

	 Instantaneousλ	

CCt	 0.189 ± 0.358	 0.189 ± 0.358	 0.159 ± 0.306	

CCn	 0.250 ± 0.026	 0.250 ± 0.026	 0.207 ± 0.065	

RDMSt	 1.241 ± 	0.286	 1.241 ± 0.286	 1.275 ± 0.236	

RDMSn	 1.224 ± 0.021	 1.224 ± 0.021	 1.258 ± 0.051	
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4.1.1. Reconstruction	of	epicardial	activity	
	

Having	 shown	 that	 the	 best	 performance	 in	 Tikhonov	 regularization	 is	 achieved	 through	 the	 zero	
order	method	with	instantaneous	λ,	now	the	goal	is	to	use	this	method	to	reconstruct	not	only	the	
epicardial	potentials,	but	also	the	rest	of	target	parameters.	As	mentioned	in	previous	sections,	these	
target	parameters	include	the	instantaneous	phase	and	dominant	frequency	distribution	within	the	
atria,	 as	 well	 as	 the	 location	 of	 singularity	 points.	 Upon	 performing	 such	 reconstructions,	 the	
performance	metric	for	each	parameter	will	be	used	as	a	gold	standard	for	comparative	purposes	in	
the	following	sections.		

	

	

Figure	4.1:	Sinus	rhythm	reconstruction	through	zero	order	Tikhonov	regularization	with	instantaneousλ.	
Real	 (A)	 and	 reconstructed	 (B)	 epicardial	 potentials,	 real	 (C)	 and	 reconstructed	 (D)	 instantaneous	 phase	 at	 the	 1.652nd	
second	of	the	signal	from	the	model	of	sinus	rhythm	using	zero	order	Tikhonov	regularization	with	instantaneousλ.	

	

The	first	model	that	was	estimated	with	the	described	method	was	SR.	As	seen	in	the	Materials	and	
method	section,	 this	model	 lacks	dominant	 frequency	 regions	and	singularity	points.	This	 is	due	 to	
the	 fact	 that	 the	model	 represents	normal	cardiac	activity,	where	 the	 frequency	distribution	 is	 the	
same	 for	 all	 the	 atria	 as	 is	 equal	 to	 the	 frequency	 of	 activation.	 Also,	 the	model	 lacks	 any	 rotors.	
Therefore,	 the	 reconstruction	 aims	 at	 estimating	 the	 epicardial	 activity	 and	 then	 computing	 from	
these	 potentials,	 the	 associated	 instantaneous	 phase.In	 figure	 4.1A	 the	 real	 epicardial	 potentials	
from	 the	 SR	 model	 are	 shown	 and	 the	 estimated	 potentials	 are	 illustrated	 in	 figure	 4.1B.The	
estimation	 of	 these	 potentials	 is	 performed	 using	 zero-order	 Tikhonov	 regularization	 with	
instantaneous	λ,	and	both	of	them	are	illustrated	at	the	1.652nd	second	of	the	signal.	In	figure	4.1C,	
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the	 real	 instantaneous	 phase	 from	 the	 SR	model	 is	 represented	 for	 the	 same	 time	 instant	 as	 the	
potentials,	and	in	figure	4.1D	the	reconstructed	instantaneous	phase	is	shown.	

The	use	of	zero	order	Tikhonov	regularization	with	instantaneous	λ	in	the	estimation	of	SR	epicardial	
activity	allows	reconstructing	both	epicardial	potentials	and	instantaneous	phase.	As	shown	in	figure	
4.1,	the	technique	can	be	used	to	obtain	a	smooth	distribution	of	the	real	parameters.	Although	the	
results	obtained	are	not	extremely	precise,	they	are	useful	in	identifying	the	overall	atrial	activity.	

The	second	model	that	was	reconstructed	corresponded	to	the	one	of	simple	atrial	fibrillation.	In	this	
case,	 the	 presence	 of	 a	 fibrillation	 episode	 translates	 to	 the	 appearance	 of	 different	 dominant	
frequency	 regions	 within	 the	 atria.	 Also,	 as	 mentioned	 in	 previous	 sections,	 the	 condition	 is	
associated	to	the	presence	of	a	singularity	point	guiding	the	fibrillation	pattern.	This	can	be	observed	
in	 figures	 4.2	 and	 4.3,	 where	 not	 only	 the	 epicardial	 potentials	 have	 been	 depicted,	 but	 also	 the	
instantaneous	phase,	dominant	 frequencies	and	 singularity	points,	which	 could	be	 calculated	 from	
the	 potentials.	 In	 figure	 4.2A,	 the	 distribution	 of	 real	 epicardial	 potentials	 from	 the	 SAF	model	 is	
shown	 for	 the	3.446th	 second	of	 the	 signal,	 and	 the	 reconstructed	potentials	 can	be	 seen	 in	 figure	
4.2B,	 also	 at	 the	 same	 time	 instant.	 The	 real	 instantaneous	 phase	 from	 the	 SAF	model	 is	 seen	 in	
figure	4.2C,	whereas	the	reconstructed	instantaneous	phaseis	shown	in	figure	4.2D,	both	at	the	same	
time	instant	as	the	epicardial	potentials,	3.446	seconds.		

	

	

Figure	4.2:	Simple	atrial	fibrillation	reconstruction	through	zero	order	Tikhonov	regularization	with	instantaneousλ.	
Real	 (A)	 and	 reconstructed	 (B)	 epicardial	 potentials,	 real	 (C)	 and	 reconstructed	 (D)	 instantaneous	 phase	 at	 the	 3.446th	
second	 	 of	 the	 signal	 from	 the	 model	 of	 simple	 atrial	 fibrillation	 using	 zero	 order	 Tikhonov’s	 regularization	 with	
instantaneousλ.	
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The	 other	 two	 target	 parameters	 from	 the	 SAF	model	 are	 shown	 in	 figure	 4.3.	 The	 real	 dominant	
frequency	map	 from	 the	 SAF	model	 is	 shown	 in	 figure	4.3A,	while	 the	 reconstructed	parameter	 is	
illustrated	in	figure	4.3B.	Finally,	the	last	parameter	to	reconstruct	from	the	SAF	model	is	the	location	
of	singularity	points.	The	real	probabilities	of	rotor	location	(SMF)	are	shown	in	figure	4.3C,	whereas	
the	reconstructed	ones	are	represented	in	figure	4.3D.		

	

	

Figure	4.3:	Simple	atrial	fibrillation	reconstruction	through	zero	order	Tikhonov	regularization	with	instantaneousλ.	
Real	(A)	and	reconstructed	(B)	dominant	frequencies,	real	(C)	and	reconstructed	(D)	singularity	point	occurrences	in	the	atria	
from	the	model	of	simple	atrial	fibrillation	using	zero	order	Tikhonov	regularization	with	instantaneousλ.	

	

Tikhonov	regularization	method	is	a	useful	tool	for	identifying	not	only	epicardial	potentials,	but	also	
the	instantaneous	phase,	dominant	frequencies	and	the	presence	of	singularity	points	from	models	
of	SAF.	As	seen	in	the	figures,	the	accuracy	in	the	reconstruction	process	is	not	perfect,	but	it	is	good	
enough	to	identify	the	main	features	of	the	fibrillation	episode.	

Finally,	 the	 third	model	 to	 estimate	was	 the	 one	 of	 complex	 atrial	 fibrillation.	 Analogously	 to	 the	
previous	case,	this	type	of	model	requires	the	computation	of	dominant	frequencies	and	singularity	
points	 as	well	 as	epicardial	potentials	 and	 the	 instantaneous	phase.	 These	are	 shown	 in	 figure	4.4	
and	4.5.	It	can	be	seen	that	the	reconstruction	is	not	very	accurate	for	this	type	of	model.	This	is	due	
to	 the	complexity	of	 the	 fibrillation	activity,	which	 is	extremely	 chaotic,	 as	well	 as	 the	presence	of	
fibrosis,	which	makes	the	estimation	less	accurate.	The	distribution	of	real	epicardial	potentials	from	
the	 CAF	 model	 is	 shown	 in	 figure	 4.4A	 at	 the	 2.426thsecond	 of	 the	 signal.	 In	 figure	 4.4B,	 the	
reconstructed	 potentials	 using	 zero	 order	 Tikhonov	with	 instantaneous	λ	 are	 shown	 for	 the	 same	
time	instant.		
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Figure	4.4:	Complex	atrial	fibrillation	reconstruction	through	zero	order	Tikhonov	regularization	with	instantaneousλ.	
Real	 (A)	 and	 reconstructed	 (B)	 epicardial	 potentials,	 real	 (C)	 and	 reconstructed	 (D)	 instantaneous	 phase	 at	 the	 2.426th	
second	 of	 the	 signal	 from	 the	 model	 of	 complex	 atrial	 fibrillation	 using	 zero	 order	 Tikhonov	 regularization	 with	
instantaneousλ.	

	

Figure	4.5:	Complex	atrial	fibrillation	reconstruction	through	zero	order	Tikhonov	regularization	with	instantaneousλ.	
Real	(A)	and	reconstructed	(B)	dominant	frequencies,	real	(C)	and	reconstructed	(D)	singularity	point	occurrences	in	the	atria	
from	the	model	of	complex	atrial	fibrillation	using	zero	order	Tikhonov	regularization	with	instantaneous	λ.	
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The	 real	 and	 reconstructed	 instantaneous	 phase	 from	 the	model	 is	 shown,	 respectively,	 in	 figures	
4.4C	and	4.4D,	both	at	the	same	time	instant	as	the	epicardial	potentials.	Just	like	the	SAF	case,	there	
are	DF	regions	and	rotors	in	the	CAF	model,	as	shown	in	figure	4.5.	The	real	atria	DF	map	is	shown	in	
figure	 4.5A,	 whereas	 the	 reconstructed	 parameter	 is	 illustrated	 in	 figure	 4.5B.	 Finally,	 the	 real	
probabilities	of	finding	a	rotor	in	the	atria	for	the	CAF	model	are	represented	in	figure	4.5C,	whereas	
the	probabilities	of	rotor	location	for	the	reconstructed	model	are	shown	in	figure	4.5D.	

	

	

4.1.2. Performance	metrics	
	

This	 section	contains	 the	results	obtained	 for	 the	performance	metrics	of	 the	 target	parameters	 in	
the	 reconstruction	 of	 each	 of	 the	 models	 using	 zero	 order	 Tikhonov	 regularization	 with	
instantaneous	λ.	In	addition	to	the	tables	containing	the	mean	and	standard	deviation	values	for	the	
performance	 metric	 of	 each	 of	 the	 target	 parameters,	 the	 values	 of	 these	 measures	 in	 the	
geometrical	atrial	model	are	also	shown	in	figures.	

The	first	set	of	results	corresponds	to	the	performance	of	the	reconstruction	from	the	model	of	sinus	
rhythm.	 The	 temporal	 performance	 metrics	 for	 the	 estimated	 potentials	 and	 the	 instantaneous	
phase	 are	 shown	 in	 figure	 4.6.	 Despite	 the	 fact	 that	 the	 accuracy	 of	 the	 estimated	 epicardial	
potentials	 can	 be	 measured	 with	 both	 temporal	 and	 spatial	 performance	 metrics	 (temporal	 and	
spatial	correlation	coefficient	and	relative	difference),	only	the	temporal	ones	are	illustrated.	This	is	
explained	by	 the	 lack	of	 spatial	metrics	 to	measure	 the	performance	of	 the	 instantaneous	phase’s	
reconstruction.	 Hence,	 to	 be	 able	 to	 compare	 effectively	 the	 accuracy	 between	 the	 estimated	
potentials	and	 instantaneous	phase,	only	 the	 temporal	 versions	of	 the	correlation	coefficient	 (CCt)	
and	relative	difference	(RDMSt)	are	shown.		

The	distribution	of	the	values	of	the	correlation	coefficient	and	relative	differences	within	the	atria	
are	 shown	 in	 figure	 4.6,	 both	 for	 the	 reconstruction	 of	 epicardial	 potentials	 (4.6A	 and	 4.6B,	
respectively)	and	 instantaneous	phase	 (4.6C	and	4.6D).	The	distribution	of	CCt	values	of	potentials	
and	 instantaneous	 phase,	 shown	 infigures	 4.6A	 and	 4.6C,	 respectively,	 is	 slightly	 better	 for	 the	
reconstruction	 of	 potentials	 than	 for	 the	 instantaneous	 phase.	 This	 can	 be	 observed	 through	 the	
presence	 of	more	 blue	 regions	 in	 figure	 4.6C	 than	 in	 figure	 4.6A,	 representing	 smaller	 correlation	
values.	This	is	also	the	case	for	the	relative	difference	(RDMSt).	The	distribution	of	RDMSt	values	in	
the	atria	for	the	reconstruction	of	epicardial	potentials	and	instantaneous	phase	are	shown	in	figures	
4.6B	and	4.6D,	respectively.	The	mean	correlation	and	relative	difference	values	for	all	nodes	in	the	
atria	are	summarized	in	table	4.4,	as	well	as	their	standard	deviation.	The	values	of	this	metric	within	
the	 atrial	 geometrical	 model	 are	 also	 better	 (>10%)	 for	 the	 epicardial	 potentials	 than	 for	 the	
instantaneous	phase.	This	is	visualized	by	means	of	the	greater	appearance	of	yellow	zones	in	figure	
4.6D	than	figure	4.6B.	This	conclusion	makes	sense,	since	the	instantaneous	phase	is	computed	from	
the	reconstructed	potentials.	Hence,	 the	error	 introduced	 in	 the	solution	of	 the	 inverse	problem	 is	
not	only	maintained	in	the	reconstruction	of	the	instantaneous	phase,	but	may	be	actually	increased	
in	the	subsequent	computation	of	this	target	parameter.	These	mean	values	once	again	confirm	the	
better	performance	of	the	method	in	the	reconstruction	of	epicardial	potentials	than	instantaneous	
phase.		
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Figure	 4.6:	 Performance	 metrics	 in	 sinus	 rhythm’s	 reconstruction	 through	 zero	 order	 Tikhonov	 regularization	 with	
instantaneousλ.	
Performance	metrics	in	the	reconstruction	of	sinus	rhythm’s	epicardial	potentials	and	instantaneous	phase	within	the	atria	
using	 zero	 order	 Tikhonov	 regularization	 with	 instantaneousλ.	 Epicardial	 potentials’	 (A)	 temporal	 correlation	 coefficient	
(CCt)	and	(B)	temporal	relative	difference	measurement	star	(RDMSt).	Instantaneous	phase’s	(C)	CCt	and	(D)	RDMSt.	

	

In	general	terms,	the	correlation	values	for	the	SR	model	are	close	to	1,	and	the	relative	difference	
values	are	close	to	0	for	most	of	the	atrial	tissue.	However,	as	seen	 in	figure	4.6,	the	CCt	values	of	
both	 the	 reconstructed	 potentials	 (figure	 4.6A)	 and	 instantaneous	 phase	 (figure	 4.6C)	 decrease	
notably	 for	 the	 atrial	 model’s	 spatial	 discontinuities.	 The	 opposite	 takes	 place	 for	 the	 relative	
difference	values,	which	decrease	near	 the	model’s	orifices	and	concavities	 (figure	4.6B	and	 figure	
4.6D).	 For	 this	 case	 in	 particular,	 the	 anatomical	 regions	with	 the	 lowest	 CCt	 (and	highest	RDMSt)	
values	is	the	right	atrial	appendage,	as	well	as	the	atrial	holes.	

	

Table	4.4:	Temporal	performance	metrics	in	the	reconstruction	of	epicardial	potentials	and	instantaneous	phase	for	the	
model	of	sinus	rhythm	using	zero	order	Tikhonov	regularization	with	instantaneous	λ.	

Model:	Sinus	rhythm	

	 Epicardial	potentials	 Instantaneous	phase	

CCt	 0.698 ± 0.337	 0.584 ± 0.322	

RDMSt	 0.704 ± 0.329	 0.852 ± 0.327	
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The	second	set	of	results	corresponds	to	the	performance	metrics	in	the	reconstruction	of	the	simple	
atrial	fibrillation	model,	once	again	using	zero	order	Tikhonov	regularization	with	instantaneous	λ.	All	
the	values	obtained	are	summarized	in	table	4.5.	Analogously	to	the	previous	case,	only	the	temporal	
metrics	 are	 shown	 for	 the	 reconstruction	of	 epicardial	 potentials,	 as	well	 as	 for	 the	 instantaneous	
phase.	 The	mean	 and	 standard	 deviation	 for	 the	 CCt	 and	 RDMSt	 is	 shown	 in	 the	 table	 for	 all	 the	
values	obtained	from	the	whole	atrial	geometrical	model.		

	

Table	4.5:	Performance	metrics	in	the	reconstruction	of	epicardial	potentials	and	instantaneous	phase	for	the	model	of	
simple	atrial	fibrillation	using	zero	order	Tikhonov	regularization	with	instantaneous	λ.	

	 Model:	Simple	atrial	fibrillation	

	 Epicardial	potentials	 Instantaneous	phase	

CCt	 0.553 ± 0.287	 0.561 ± 0.299	

RDMSt	 0.906 ± 0.271	 0.892 ± 	0.289	

	

Regarding	 table	 4.5,	 the	mean	 values	 obtained	 for	 the	metrics	 in	 the	 reconstruction	 of	 epicardial	
potentials	and	instantaneous	phase	show	that,	the	performance	in	the	estimation	of	potentials	and	
instantaneous	phase	is	almost	the	same.	However,	compared	to	the	model	of	sinus	rhythm,	it	can	be	
seen	 that	 the	 reconstruction	method	 is	 less	 precise	 when	 the	 atrial	 activity	 is	 different	 from	 the	
normal	one	and	slightly	more	complex	due	to	a	fibrillation	event.		

The	performance	in	the	reconstruction	of	the	simple	atrial	fibrillation	model	 is	also	shown	in	figure	
4.7.	However,	the	distribution,	and	not	only	the	mean	values,	within	the	atrial	model	for	each	of	the	
metrics	 are	 shown	 in	 each	 figure.	 Regarding	 the	 temporal	 correlation	 coefficient	 (CCt),	 the	
distribution	 for	 the	 reconstructed	 potentials	 (figure	 4.7A)	 and	 instantaneous	 phase	 (figure	 4.7C)is	
very	similar,	as	seen	previously	 in	the	mean	values	shown	in	table	4.5.	This	 is	also	the	case	for	the	
distribution	 of	 the	 temporal	 relative	 difference	 (RDMSt)	 of	 potentials	 and	 instantaneous	 phase,	
shown	 in	 figures	4.7B	and	4.7D.Hence,	 the	potentials	 and	 instantaneous	phasewithin	 the	atria	 are	
reconstructed	 with	 almost	 the	 same	 precision,	 and	 differ	 only	 1%.	With	 respect	 to	 the	 dominant	
frequency’s	metric,	it	can	be	seen	that	in	general	terms,	the	value	of	the	relative	dominant	frequency	
error	 is	 low.	 This	 can	 be	 observed	 in	 the	 predominant	 dark	 blue-painted	 portions	 in	 figure	 4.7E,	
which	correspond	to	a	low	value	for	the	RDFE.	However,	there	are	a	small	number	of	regions	which	
have	a	very	high	value	of	this	metric,	which	are	painted	in	light	blue,	green	and	yellow	in	the	figure.		

Analogously	 to	 the	 SR	model,	 the	 CCt	 shows	 high	 values	 (and	 RDMSt	 low	 values)	 for	most	 of	 the	
atrial	 tissue,	 both	 for	 the	 reconstruction	 of	 epicardial	 potentials	 and	 instantaneous	 phase.	
Nevertheless,	these	metrics	tend	to	show	lower	accuracy	near	the	atrial	model’s	holes	and	cavities.	
For	SAF	model	in	particular,	the	anatomical	region	which	is	reconstructed	with	the	least	precision	is	
the	septum.		
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Figure	4.7:	Performance	metrics	 in	simple	atrial	 fibrillation’s	reconstruction	through	zero	order	Tikhonov	regularization	
with	instantaneous	λ.	
Performance	 metrics	 in	 the	 reconstruction	 of	 simple	 atrial	 fibrillation	 epicardial	 potentials,	 instantaneous	 phase	 and	
dominant	frequencies	within	the	atria	using	zero	order	Tikhonov	regularization	with	instantaneousλ.	Epicardial	potentials’	
(A)	 temporal	 correlation	 coefficient	 and	 (B)	 temporal	 relative	 difference	 measurement	 star.	 Instantaneous	 phase’s	 (C)	
temporal	correlation	coefficient	and	(D)	temporal	relative	difference	measurement	star.	Dominant	 frequencies	 (E)	relative	
error.	

	

The	third	set	of	results	corresponds	to	the	performance	metrics	in	the	reconstruction	of	the	complex	
atrial	fibrillation	model	through	zero	order	Tikhonov	regularization	with	instantaneous	λ.	The	mean	
and	 standard	 deviation	 values	 obtained	 for	 the	 temporal	 correlation	 coefficient	 and	 relative	
difference	 for	 the	 potentials	 and	 instantaneous	 phase	 are	 shown	 in	 table	 4.6.Analogously	 to	 the	
simple	 atrial	 fibrillation,	 the	 complex	 atrial	 fibrillation	 model	 shows	 similar	 mean	 values	 of	
performance	metrics	 for	potentials	and	 instantaneous	phase,	as	 represented	 in	 table	4.6.	Also,	 the	
distribution	 within	 the	 atrial	 model	 for	 each	 of	 the	metrics	 is	 very	 similar	 both	 for	 the	 epicardial	
potentials	 and	 instantaneous	 phase,	 as	 shown	 in	 figure	 4.8	 from	A	 to	D.	 The	 temporal	 CC	 for	 the	
reconstructed	potentials	 is	 illustrated	 in	 figure	4.8A,	which	 is	very	similar	 to	the	CCt	distribution	of	
the	 reconstructed	 instantaneous	 phase,	 shown	 in	 figure	 4.8C.	 Analogously,	 the	 temporal	 relative	
difference	 in	 the	 reconstructed	 potentials	 is	 represented	 in	 figure	 4.8B,	which	 once	 again,	 is	 very	
similar	to	the	RDMSt	distribution	of	the	reconstructed	instantaneous	phase,	as	shown	in	figure	4.8D.		
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Table	4.6:	Performance	metrics	in	the	reconstruction	of	epicardial	potential	and	instantaneous	phase	for	the	model	of	
complex	atrial	fibrillation	using	zero	order	Tikhonov	regularization	with	instantaneous	λ.	

Model:	Complex	atrial	fibrillation	

	 Epicardial	potentials	 Instantaneous	phase	

CCt	 0.189 ± 0.358	 0.187 ± 0.364	

RDMSt	 1.241 ± 	0.286	 1.239 ± 0.304	

	

	
Figure	4.8:	Performance	metrics	in	complex	atrial	fibrillation’s	reconstruction	through	zero	order	Tikhonov	regularization	
with	instantaneous	λ.	
Performance	metrics	 in	 the	 reconstruction	 of	 complex	 atrial	 fibrillation’s	 epicardial	 potentials,	 instantaneous	 phase	 and	
dominant	frequencies	within	the	atria	using	zero	order	Tikhonov	regularization	with	instantaneousλ.	Epicardial	potentials’	
(A)temporal	 correlation	 coefficient	 and	 (B)	 temporal	 relative	 difference	 measurement	 star.	 Instantaneous	 phase’s	 (C)	
temporal	correlation	coefficient	and	(D)	temporal	relative	difference	measurement	star.	Dominant	 frequencies	 (E)	relative	
error.	

	

Regarding	the	performance	metric	 for	the	reconstruction	of	dominant	frequencies,	 there	are	many	
regions	with	a	small	RDFE	value,	which	means	a	good	performance.	However,	there	are	many	regions	
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in	 the	atria	which	have	a	high	 value	 for	 the	 relative	dominant	 frequency	error,	 as	 shown	 in	 figure	
4.8E.	Contrary	to	the	previous	models,	where	the	error	in	the	reconstruction	of	epicardial	potentials	
and	 instantaneous	 phase	 was	 localized	 in	 certain	 anatomical	 regions,	 CAF	 shows	 no	 specific	 area	
where	the	errors	are	concentrated.	Hence,	the	values	of	the	performance	metrics	for	all	the	target	
parameters	vary	in	all	atrial	regions,	as	seen	in	figures	from	4.8A	to	4.8E.	
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4.2. Bayes	regularization	
	

Bayesian	Maximum	a	 Posteriori	 Estimation	 (Bayes)	 is	 a	 regularization	method	 to	 solve	 the	 inverse	
problem	of	electrocardiography	which	uses	a	priori	information.	As	mentioned	in	previous	sections,	
this	a	priori	information	used	is	the	epicardial	potentials’	covariance	matrix,	whose	computation	has	
been	already	discussed.		

This	regularization	method	was	the	one	used	not	for	comparison	purposes	like	Tikhonov,	but	actually	
as	 the	 reconstruction	 technique	 with	 the	 reduced	 spatial	 information	 models.	 Among	 the	
interpolation	approaches	used,	one	of	them	focused	on	the	 interpolation	of	the	covariance	matrix.	
Hence	it	is	necessary	to	perform	an	analysis	and	interpretation	of	this	matrix	in	order	to	interpolate	
in	 an	 appropriate	manner	 in	 subsequent	 steps.	 Therefore,	 this	 section	 presents	 an	 analysis	 of	 the	
epicardial	potential’s	covariance	matrix	used	in	Bayes	regularization	method,	as	well	as	the	results	of	
this	 reconstruction	 technique	 with	 the	 originally	 provided	 models	 (without	 reducing	 spatial	
information).		

	

	

4.2.1. Analysis	of	the	epicardial	potential’s	Covariance	Matrix	
	

The	epicardial	potentials’	covariance	matrix	is	a	squared	matrix	with	dimensions	of	the	total	number	
of	nodes	in	the	model	which	are	used	in	the	calculation.	It	represents	the	covariance	values	for	the	
potentials	 at	 each	 node	 and	 the	 rest	 of	 nodes.	 By	 selecting	 a	 random	 node	 and	 plotting	 the	
covariance	values	on	a	coloured	scale	on	top	of	the	atrial	geometrical	model,	it	can	be	seen	that	the	
actual	 distribution	 of	 covariance	 values	 is	 similar	 to	 the	 distribution	 of	 potentials	within	 the	 atria.	
This	can	be	seen	in	figure	4.9.	The	covariance	values	for	the	three	models	of	epicardial	activity	at	the	
500th	node	in	the	atria	with	respect	to	the	rest	of	nodes	are	shown	in	this	figure.	The	models	of	sinus	
rhythm,	 simple	 atrial	 fibrillation	 and	 complex	 atrial	 fibrillation	 are	 represented,	 respectively,	 in	
figures	4.9A,	4.9B	and	4.9C.	Despite	having	different	values	to	the	potentials,	as	well	as	the	different	
colour	 scale	 which	 is	 used	 to	 represent	 them,	 the	 distribution	 is	 very	 similar	 to	 the	 potentials	
themselves.	Hence,	the	interpolation	of	this	covariance	matrix	in	further	steps	is	similar,	in	terms	of	
distribution	within	the	atria,	to	interpolation	of	the	electrogram	itself.	
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Figure	4.9:	Covariance	values	between	a	random	node	(Node	500)	and	the	rest	of	nodes	within	the	atria.	
(A)	Sinus	rhythm	model.	(B)	Simple	atrial	fibrillation	model.	(C)	Complex	atrial	fibrillation	model.	

	

As	 mentioned	 in	 previous	 sections,	 the	 location	 of	 the	 time	 window	 to	 calculate	 the	 covariance	
matrix	differed	from	one	model	to	the	other.	Therefore,	another	feature	of	this	matrix	to	take	into	
account	was	the	variation	of	covariance	values	depending	on	the	location	of	this	time	window	within	
the	electrogram.	To	analyse	this,	a	500	sample	window	was	moved	along	the	electrogram	of	each	of	
the	models,	in	intervals	of	250	samples,	and	different	covariance	matrices	were	computed.	

The	 variation,	 for	 each	of	 the	models,	 of	 the	 different	 covariance	 values	 between	 a	 random	node	
(node	500)	and	the	rest	of	nodes	depending	on	the	location	of	the	time	window	is	shown	in	figure	
4.10.The	results	for	the	sinus	rhythm	model	are	shown	in	figure	4.10A.	As	shown	in	this	figure,	the	
location	of	the	time	window	to	compute	the	covariance	values	is	irrelevant	for	this	model,	since	the	
covariance	values	for	node	500	and	each	of	the	other	nodes	are	almost	constant	when	moving	the	
time	window	through	the	EGM.	The	results	for	the	simple	atrial	fibrillation	model	are	shown	in	figure	
4.10B,	where	 it	 can	 be	 seen	 that	 for	 this	model,	 the	 variation	 among	 covariance	 values	 is	 slightly	
greater	depending	on	the	location	of	the	time	window.	Still,	these	variations	are	small,	and	it	can	be	
concluded	that	the	covariance	values	are	not	affected	by	moving	the	time	window	along	the	EGM.	
Finally,	the	results	for	complex	atrial	fibrillation	are	shown	in	figure	4.10C.	For	this	case,	the	variation	
of	covariance	values	is	affected	by	the	location	of	the	time	window,	as	shown	in	the	plot,	especially	if	
it	 is	 placed	 between	 in	 the	 second	 half	 of	 the	 signal	 (between	 the	 middle	 and	 end	 transients).	
However,	these	particular	middle	and	end	transients	from	the	CAF	model	are	not	used,	neither	for	
the	computation	of	the	covariance	matrix	nor	for	the	reconstruction	of	the	inverse	problem	in	any	of	
the	interpolation	approaches.		
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Figure	 4.10:Variation	 of	 covariance	 values	 for	 a	 random	 node	 (Node	 500)	 and	 the	 rest	 of	 nodes	 within	 the	 atria	
depending	on	the	location	of	the	time	window	used	to	compute	the	Covariance	Matrix.	
(A)	Sinus	rhythm	model.	(B)	Simple	atrial	fibrillation	model.	(C)	Complex	atrial	fibrillation	model.	

	

In	 conclusion,	 the	distribution	of	 covariance	values	 for	 a	 random	node	 in	 the	atria	 and	 the	 rest	of	
nodes	is	very	similar	to	the	distribution	of	epicardial	potentials	for	a	given	time	instant,as	shown	in	
these	figures.	Therefore,	 interpolating	the	covariance	matrix	has	a	similar	meaning	to	 interpolating	
the	electrogram,	in	terms	of	distribution	of	values.	Also,	 it	has	been	shown	that	the	location	of	the	
time	window	to	compute	the	matrix	affects	the	values	of	the	matrix	in	the	CAF	model,	but	not	in	the	
SR	or	SAF	models.	However,	the	two	different	alternatives	of	time	windows	that	have	been	used	in	
the	interpolation	steps	for	computing	Cxare	not	located	within	the	samples	in	which	the	covariance	
values	vary.		

	

	

4.2.2. Reconstruction	of	epicardial	activity	
	

This	section	shows	the	results	corresponding	to	the	reconstruction	of	epicardial	activity	for	the	three	
models	 available	 using	 Bayes’	 regularization	 method.	 The	 models	 used	 for	 this	 set	 of	 results	
contained	all	the	spatial	information	that	was	originally	provided.	Also,	the	time	windows	used	both	
for	the	estimation	of	potentials	and	for	the	computation	of	the	covariance	matrix	correspond	to	the	
ones	used	originally,	described	previously	in	materials	and	methods.	

The	 reconstruction	 of	 epicardial	 activity	 for	 the	 sinus	 rhythm	model	 is	 shown	 in	 figure	 4.11.	 The	
distribution	in	the	atrial	model	of	the	real	epicardial	potentials	from	the	SR	model	is	shown	in	figure	
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4.11A	 for	 second	1.652	of	 the	 signal.	 The	 reconstructed	potentials	 in	 the	atrial	model	using	Bayes	
regularization	 method	 are	 shown	 in	 figure	 4.11B,	 again	 for	 the	 same	 time	 instant	 as	 the	 real	
potentials.	 The	 real	 and	 reconstructed	 instantaneous	 phase	 from	 the	 SR	 model	 are	 illustrated,	
respectively,	in	figures	4.11C,	and	4.11D,	both	for	the	same	time	interval	as	the	epicardial	potentials.	
The	 normal	 electrical	 propagation	 in	 the	 atria	 which	 is	 represented	 in	 this	 model	 explains	 the	
absence	 in	 dominant	 frequency	 regions	 as	 well	 as	 singularity	 points.	 In	 fact,	 the	 frequency	
distribution	 is	 the	 same	 for	 the	 whole	 atrial	 geometry,	 and	 is	 equal	 to	 1.2	 Hz,	 as	 mentioned	 in	
previous	sections.	

	

	

Figure	4.11:	Sinus	rhythm	reconstruction	through	Bayes	regularization	method.	
Real	 (A)	 and	 reconstructed	 (B)	 epicardial	 potentials	 at	 second	 1.652	 of	 the	 signal,	 real	 (C)	 and	 reconstructed	 (D)	
instantaneous	phase	at	second	1.652	of	the	signal	from	SR	model	using	Bayes	regularization.		

	

Regarding	the	reconstruction	of	target	parameters	from	SR	model	through	Bayes	regularization,	it	is	
more	 accurate	 than	 Tikhonov.	 In	 fact,	 the	 differences	 between	 the	 real	 and	 estimated	 epicardial	
activity	is	negligible,	as	shown	in	figure	4.11,	especially	for	the	epicardial	potentials.	Overall,	the	SR	
model	is	reconstructed	in	detail	with	Bayes	regularization.	

The	estimated	epicardial	activity	for	the	model	of	simple	atrial	fibrillation	can	be	seen	in	figures	4.12	
and	4.13.	The	distribution	of	real	epicardial	potentials	from	the	SAF	model	is	shown	in	figure	4.12A,	
during	second	3.446	of	the	signal.	The	reconstructed	potentials	for	the	same	model	and	time	instant	
using	Bayes’	 regularization	method	are	shown	 in	 figure	4.12B.	The	real	 instantaneous	phase	of	 the	
SAF	model	 is	 represented	 in	 figure	4.12C,	whereas	 the	 reconstructed	oneis	 shown	 in	 figure	4.12D,	
both	for	the	same	time	instant	as	the	epicardial	potentials.	The	presence	of	fibrillation	activity	means	
that	there	are	also	dominant	frequency	regions	which	can	be	computed	from	the	potentials,	as	well	
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as	probabilities	of	 finding	 rotors,	which	are	 illustrated	 in	 figure	4.13.	 The	 real	dominant	 frequency	
map	 for	 the	 SAF	model	 is	 shown	 in	 figure	4.13A,	 and	 the	 reconstructed	DFs	 can	be	 seen	 in	 figure	
4.13B.	Finally,	the	probabilities	of	finding	a	singularity	point	at	each	node	in	the	atria	for	the	real	SAF	
model	is	shown	in	figure	4.13C,	and	this	same	probability	for	the	reconstructed	model	can	be	seen	in	
figure	4.13D.	

	

	

Figure	4.12:	Simple	atrial	fibrillation	reconstruction	through	Bayes	regularization	method.	
Real	 (A)	 and	 reconstructed	 (B)	 epicardial	 potentials	 at	 second	 3.446	 of	 the	 signal,	 real	 (C)	 and	 reconstructed	 (D)	
instantaneous	phase	at	second	3.446	of	the	signal	from	SAF	model	using	Bayes	regularization.		

	

Bayes	regularization	is	also	useful	for	estimating	SAF	epicardial	activity,	as	shown	in	figures	4.12	and	
4.13.	 Analogously	 to	 the	 previous	 model,	 more	 detailed	 and	 less	 smoothed	 results	 are	 obtained,	
compared	to	Tikhonov	regularization.	This	accuracy	in	the	reconstruction	of	parameters	translates	in	
an	easier	identification	of	wavefronts	and	rotors,	as	shown	in	the	figures.			

The	last	set	of	results	corresponds	to	the	complex	atrial	fibrillation	model,	and	is	illustrated	in	figures	
4.14	 and	 4.15.	 Analogously	 to	 the	 previous	 model,	 the	 estimated	 epicardial	 potentials	 from	 this	
model	can	also	be	used	to	create	instantaneous	phase	and	dominant	frequency	maps,	as	well	as	for	
the	detection	of	singularity	points.	The	distribution	of	real	epicardial	potentials	in	the	atria	at	second	
2.426	from	the	CAF	model	 is	shown	 in	 figure	4.14A,	and	the	reconstructed	potentials	 for	the	same	
time	 instant	 using	 Bayes	 regularization	 method	 are	 illustrated	 in	 figure	 4.14B.	 The	 real	 and	
reconstructed	 instantaneous	phase	 can	be	 seen,	 respectively,	 in	 figures	 4.14C	and	4.14D,	both	 for	
the	same	time	instant	as	the	epicardial	potentials.		
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Figure	4.13:	Simple	atrial	fibrillation	reconstruction	through	Bayes	regularization	method.	
Real	 (A)	and	 reconstructed	 (B)	dominant	 frequency	maps,	 real	 (C)	 and	 reconstructed	 (D)	probabilities	of	 singularity	point	
location	in	the	atria	from	SAF	model	using	Bayes	regularization.		

	

	

Figure	4.14:	Complex	atrial	fibrillation	reconstruction	through	Bayes	regularization	method.	
Real	 (A)	 and	 reconstructed	 (B)	 epicardial	 potentials	 at	 second	 2.426	 of	 the	 signal,	 real	 (C)	 and	 reconstructed	 (D)	
instantaneous	phase	at	second	2.426	of	the	signal	from	CAF	model	using	Bayes	regularization.		
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The	other	target	parameters	which	can	be	computed	in	the	CAF	model	are	illustrated	in	figure	4.15.	
The	 real	 dominant	 frequency	map	 is	 shown	 in	 figure	 4.15A,	 and	 the	 reconstructed	 DF	map	 using	
Bayes’	 regularization	 method	 is	 represented	 in	 figure	 4.15B.	 Finally,	 the	 probability	 of	 finding	 a	
singularity	point	at	each	node	 in	the	atria	for	the	real	CAF	model	 is	shown	in	figure	4.15C,	and	the	
same	probability	for	the	estimated	model	can	be	seen	in	figure	4.15D.	

	

	

Figure	4.15:	Complex	atrial	fibrillation	reconstruction	through	Bayes	regularization	method.	
Real	 (A)	and	 reconstructed	 (B)	dominant	 frequency	maps,	 real	 (C)	 and	 reconstructed	 (D)	probabilities	of	 singularity	point	
location	in	the	atria	from	CAF	model	using	Bayes	regularization.		

	

Analogously	to	the	previous	models,	CAF	epicardial	activity	is	reconstructed	in	detail	through	Bayes	
regularization,	 as	 shown	 in	 figures	 4.14	 and	 4.15.	 Despite	 the	 complexity	 of	 the	 model,	 the	
reconstructed	 target	 parameters	 are	 more	 accurate	 than	 the	 ones	 obtained	 through	 Tikhonov’s	
approach.	

	

	

4.2.3. Performance	metrics	
	

This	 section	 shows	 the	 results	 obtained	 for	 the	 performance	 metrics	 in	 the	 reconstruction	 of	
epicardial	 activity	 for	 each	 of	 the	 models	 using	 Bayes	 regularization	 method.	 Analogously	 to	 the	
results	presented	 in	Tikhonov’s	 section,	 the	values	 for	each	node	 in	 the	atrial	model	are	 shown	 in	
figures,	and	the	mean	and	standard	deviation	values	for	the	entire	atria	are	shown	in	tables.			
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The	performance	metrics	 in	the	estimation	of	potentials	and	 instantaneous	phase	for	the	model	of	
sinus	 rhythm	are	 shown	 in	 figure	4.16.	Only	 the	 temporal	 correlation	coefficient	 (CCt)	and	 relative	
difference	 (RDMSt)	 are	 shown	 for	 the	 reconstructed	 potentials,	 and	 not	 the	 spatial	 versions.	 As	
explained	in	previous	sections,	this	is	due	to	the	lack	of	these	spatial	versions	for	the	reconstructed	
instantaneous	phase.	Therefore,	in	order	to	compare	both	parameters,	only	the	temporal	metrics	are	
included.			

	

	

Figure	4.16:	Performance	metrics	in	the	reconstruction	of	the	sinus	rhythm	model	through	Bayes	regularization	method.	
Performance	metrics	 in	 the	 reconstruction	 of	 epicardial	 potentials	 and	 instantaneous	 phase	within	 the	 atria	 using	 Bayes	
regularization.	 Epicardial	 potentials	 (A)temporal	 correlation	 coefficient	 (CCt)	 and	 (B)	 temporal	 relative	 difference	
measurement	star	(RDMSt).	Instantaneous	phase	(C)	CCt	and	(D)	RDMSt.	

	

Table	4.7:	Values	of	the	performance	metrics	obtained	in	the	reconstruction	of	the	sinus	rhythm	model.	

Model:	Sinus	rhythm	

	 Epicardial	potentials	 Instantaneous	phase	

CCt	 0.982 ± 0.006	 0.842 ± 0.161	

RDMSt	 0.188 ± 0.032	 0.505 ± 0.250	

	

The	distribution	of	temporal	correlation	coefficients	for	the	estimated	potentials	and	instantaneous	
phase,	 are	 represented	 in	 figure	 4.16A	 and	 4.16C,	 respectively.	 The	 performance	 is	 better	 for	 the	
reconstruction	of	epicardial	potentials	than	for	the	instantaneous	phase,	as	shown	in	these	figures.	
This	can	be	seen	in	the	completely	yellow-painted	atria	in	figure	4.16A,	representing	high	correlation	
values	for	all	nodes,	whereas	the	presence	of	certain	areas	which	are	green	or	blue	coloured	in	figure	
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4.16C	demonstrates	lower	correlation	values	for	those	nodes.	This	fact	can	also	be	observed	in	table	
4.8.	 In	 this	 table,	 the	mean	and	standard	deviation	 for	 the	performance	metrics’	 values	within	 the	
atria	is	shown.	Regarding	the	mean	CCt	values	for	the	epicardial	potentials	and	instantaneous	phase,	
the	reconstruction	is	better	(>10%)	for	the	potentials	than	for	the	instantaneous	phase.	In	the	same	
manner,	 the	relative	differences	 in	 the	atria	 for	 the	estimated	potentials	and	 instantaneous	phase,	
which	can	be	seen,	respectively,	in	figures	4.16B	and	4.16D,	are	lower	for	the	potentials	than	for	the	
instantaneous	phase.	Again,	this	can	be	seen	in	the	almost	completely	dark	blue	coloured	atria	with	
low	relative	difference	values	in	figure	4.16B,	whereas	a	lighter	blue	colour	as	well	as	areas	tending	
towards	yellow,	representing	higher	RDMSt	values,	is	shown	in	figure	4.16D.	This	is	clarified	in	table	
4.8	 with	 the	 mean	 and	 standard	 deviation	 values	 for	 this	 metric,	 where	 it	 can	 be	 seen	 than	 the	
epicardial	potentials’	and	instantaneous	phase’s	RDMSt	differ	more	than	30%.	

Comparing	Bayes	and	Tikhonov	performance	for	SR	model,	it	can	be	seen	than	Bayes	regularization	is	
superior	 to	 Tikhonov.	 In	 fact,	 reconstructing	 SR	 epicardial	 activity	 through	 Bayes	 regularization	
method	does	not	lead	to	the	appearance	of	atrial	regions	where	the	errors	are	concentrated.	Unlike	
Tikhonov’s	approach,	the	presence	of	holes	and	cavities	in	the	atrial	model	does	not	imply	a	poorer	
performance	 when	 using	 Bayes	 regularization.	 Furthermore,	 the	 correlation	 coefficient	 for	 the	
estimated	 potentials	 is	 nearly	 30%	 greater	 for	 Bayes	 regularization	 compared	 to	 Tikhonov	
(0.982±0.006	vs	0.698±0.337).		

The	results	obtained	for	the	performance	metrics	in	the	reconstruction	of	the	simple	atrial	fibrillation	
model	are	illustrated	in	figure	4.17	and	table	4.9.	The	distribution	of	CCt	values	within	the	atria	in	the	
estimated	 potentials	 and	 instantaneous	 phase	 are	 shown,	 respectively,	 in	 figure	 4.17A	 and	 4.17C.	
The	accuracy	in	the	reconstruction	process	is	very	similar	for	the	potentials	and	for	the	instantaneous	
phase,	as	shown	in	table	4.9.	The	complexity	of	this	cardiac	activity	with	respect	to	the	previous	one	
introduces	more	 errors	 in	 the	 estimation	 process,	meaning	 an	 overall	 loss	 of	 precision	 in	 the	 SAF	
model	compared	to	the	SR	model,	as	seen	in	table	4.9.	This	fact	is	also	seen	through	observation	of	
the	 values	 of	 RDMSt	 in	 figures	 4.17B	 and	 4.17D,	 which	 correspond	 to	 the	 potentials	 and	
instantaneous	phase,	 respectively.	Again,	 the	distribution	 is	very	similar	 for	both	of	 them,	 in	 figure	
4.17B	and	figure	4.17D.	Also,	the	mean	RDMSt	values	of	table	4.9	reaffirm	this	hypothesis.		

	

Table	4.8:	Values	of	the	performance	metrics	obtained	in	the	reconstruction	of	the	simple	atrial	fibrillation	model.	

Model:	Simple	atrial	fibrillation	

	 Epicardial	potentials	 Instantaneous	phase	

CCt	 0.851 ± 0.093	 0.838 ± 0.076	

RDMSt	 0.517 ± 0.174	 0.555 ± 	0.123	
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Figure	4.17:	Performance	metrics	 in	 the	 reconstruction	of	 simple	atrial	 fibrillation	model	 through	Bayes	 regularization	
method.	
Performance	metrics	in	the	reconstruction	of	epicardial	potentials,instantaneous	phase	and	dominant	frequencies	within	the	
atria	using	Bayes	regularization.	Epicardial	potentials	 (A)CCt	and	(B)	RDMSt.	 Instantaneous	phase	 (C)	CCt	and	(D)	RDMSt.	
Dominant	frequencies	(E)	relative	dominant	frequency	error	(RDFE).		

	

The	 dominant	 frequency	 regions	 are	 detected	 with	 great	 accuracy,	 especially	 compared	 to	 the	
results	 seen	 previously	 with	 Tikhonov’s	 approach.	 The	 distribution	 of	 the	 values	 obtained	 for	 the	
dominant	frequency’s	performance	metric,	the	relative	dominant	frequency	error	(RDFE),	is	shown	in	
figure	 4.17E.	 In	 general	 terms,	 the	 error	 committed	 in	 the	 reconstruction	 process	 is	 almost	 zero,	
except	a	number	of	small	regions	in	the	atria,	as	shown	in	this	figure.		

Analogously	to	the	previous	model,	Bayes	regularization	has	a	better	performance	than	Tikhonov	in	
the	reconstruction	of	SAF	model.	Once	again,	there	are	no	localized	regions	where	the	values	of	the	
performance	metrics	are	worse	than	the	rest	of	the	atrial	tissue.	The	results	obtained	through	Bayes	
regularization	 for	 SAF	 are	more	 detailed	 than	 Tikhonov,	 in	 fact,	 the	 correlation	 coefficient	 for	 the	
reconstructed	 epicardial	 potentials	 is	 once	 again	 nearly	 30%	 higher	 for	 Bayes	 (0.851±0.093	 vs	
0.553±0.287).		
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Figure	 4.18:	 Performance	 Metrics	 in	 the	 reconstruction	 of	 the	 complex	 atrial	 fibrillation	 model	 through	 Bayes	
regularization	method.	
Performance	metrics	 in	 the	 reconstruction	of	epicardial	potentials,	 instantaneous	phase	and	dominant	 frequencies	within	
the	 atria	 using	 Bayes	 regularization.	 Epicardial	 potentials	 (A)CCt	 and	 (B)	 RDMSt.	 Instantaneous	 phase	 (C)	 CCt	 and	 (D)	
RDMSt.	Dominant	frequencies	(E)	RDFE.		

	

The	last	set	of	results	for	this	section	corresponds	to	the	performance	metrics	in	the	reconstruction	
of	 the	 complex	 atrial	 fibrillation	model,	which	 are	 shown	 in	 figure	 4.18	 and	 table	 4.10.	 In	 general	
terms,	there	is	an	overall	loss	of	precision	in	the	reconstruction	of	all	target	parameters	compared	to	
the	previous	models.	This	makes	sense,	since	the	fibrillation	event	 is	more	complex	and	the	model	
considers	 the	 presence	 of	 fibrotic	 tissue.	 The	 distribution	 of	 CCt	 values	 within	 the	 atria	 for	 the	
estimated	 potentials	 and	 instantaneous	 phase,	 are	 shown,	 respectively,	 in	 figure	 4.18A	 and	 figure	
4.18C.	 Again,	 the	 RDMSt	 for	 potentials	 and	 instantaneous	 phase	 can	 be	 seen	 in	 figure	 4.18B	 and	
figure	4.18D.	The	distribution	of	RDFE	in	the	reconstruction	of	dominant	frequencies	is	represented	
in	figure	4.18E.	As	it	can	be	seen,	the	accuracy	in	the	detection	of	this	parameter	is	worse	than	for	
the	model	of	simple	atrial	fibrillation.		
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Table	4.9:	Values	of	the	performance	metrics	obtained	in	the	reconstruction	of	the	complex	atrial	fibrillation	model.	

Model:	Complex	atrial	fibrillation	

	 Epicardial	potentials	 Instantaneous	phases	

CCt	 0.707 ± 0.111	 0.750 ± 0.117	

RDMSt	 0.751 ± 	0.146	 0.691 ± 0.152	

	

Once	again,	a	superior	performance	is	achieved	when	using	Bayes	regularization	instead	of	Tikhonov	
for	 reconstructing	 CAF	 epicardial	 activity.	 The	 location	 of	 atrial	 regions	 with	 errors	 is	 randomly	
distributed,	 just	 like	 Tikhonov’s	 case.	However,	 this	 time	 the	 values	 of	 the	performance	metrics	 is	
notably	better.	 In	fact,	the	correlation	coefficient	for	the	reconstructed	epicardial	potentials	 is	over	
50%	better	for	Bayes	regularization	(0.707±0.111	vs	0.189±0.358).		

In	 conclusion,	 the	 results	 shown	 in	 this	 section	 demonstrate	 the	 superior	 performance	 of	 Bayes	
regularization	 in	 comparison	 to	 Tikhonov	 for	 solving	 the	 inverse	 problem	 of	 electrocardiography.	
Hence	 it	 is	adequate	to	use	this	method	while	reducing	the	models’	spatial	 information	and	at	 the	
same	 time	 aiming	 to	 achieve	 a	 performance	 equal	 or	 greater	 than	 the	 one	 obtained	 through	
Tikhonov	regularization.	
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4.3. Interpolation	
	

This	 section	 shows	 the	 results	 obtained	 for	 the	 performance	 metrics	 on	 the	 interpolated	 and	
reconstructed	models.	 As	 described	 in	 previous	 sections,	 the	 goal	 of	 this	work	was	 to	 reduce	 the	
spatial	information	from	the	different	models	of	epicardial	activity	and	perform	the	inverse	problem	
using	Bayes	regularization	method.	The	overall	objective	was	to	achieve	a	performance	superior	that	
Tikhonov’s	approach,	provided	a	 reduced	number	of	 intracavitary	 signals.	 In	 this	 sense,	 figures	are	
included	in	this	section	both	for	Tikhonov	and	Bayes	performance	on	the	raw	data,	as	well	as	Bayes	
results	obtained	with	the	subsequent	elimination	of	spatial	information	from	the	models.	

For	each	of	the	figures	shown,	Tikhonov	and	Bayes	performance	on	the	models	with	all	 the	spatial	
information	 (2039	 nodes)	 are	 represented,	 respectively,	 with	 black	 and	 red	 dashed	 lines	 on	 the	
graphs.	 Interpolation	 of	 the	 covariance	 matrix	 is	 represented	 by	 diamonds	 joined	 by	 lines,	 and	
electrogram	 interpolation	 is	 represented	 by	 joined	 circles.	 The	 different	 colours	 represent	 the	
different	interpolation	methods:	dark	blue	for	nearest	neighbour	and	cyan	for	laplacian.	Finally,	the	
second	 alternative	 in	which	 the	 covariance	matrix	was	 calculated	with	 different	 time	windows	 for	
sets	 containing	 of	 a	 maximum	 of	 120	 nodes	 is	 also	 represented	 with	 different	 colours.	 For	 this	
alternative,	nearest	neighbour	interpolation	is	shown	in	green	and	laplacian’s	method	is	magenta.		

The	 first	 set	of	 results	 corresponds	 to	 the	 sinus	 rhythm’s	model,	which	are	 shown	on	 figures	 from	
4.19	 to	 4.22.	 In	 figure	 4.19,	 the	 temporal	 correlation	 coefficient	 between	 the	 reconstructed	
epicardial	 potentials	 and	 the	 real	 ones	 for	 different	 interpolation	 approaches	 is	 shown.	 The	
performance	of	Cx	interpolation	versus	EGM	interpolation	using	Nearest	Neighbour	method	and	the	
same	time	window	for	all	nodes	can	be	seen	in	figure	4.19A.	As	seen	in	this	figure,	EGM	interpolation	
has	a	superior	performance	than	 interpolating	the	covariance	matrix.	 In	figure	4.19B,	EGM	Nearest	
Neighbour	interpolation	versus	Laplacian	is	shown,	and	the	same	two	interpolation	methods	over	Cx	
are	seen	 in	 figure	4.19C,	both	of	 them	using	the	same	time	window	for	all	nodes	when	calculating	
the	 covariance	 matrix.	 For	 SR	 model,	 Laplacian	 interpolation	 works	 better	 than	 NN,	 as	 shown	 in	
these	 figures.	 Finally,	 EGM	 Laplacian	 interpolation	 using	 all	 nodes	 simultaneously	 versus	 non-
simultaneously,	 and	 Cx	 Laplacian	 interpolation	 with	 the	 same	 time	 window	 for	 all	 nodes	 versus	
different	 time	 windows	 for	 sets	 of	 120	 nodes,	 are	 represented,	 respectively	 in	 figure	 4.19D	 and	
4.19E.	 The	 performance	 for	 both	 alternatives	 is	 very	 similar,	 especially	 for	 the	 EGM	 interpolation	
case	 shown	 in	 4.19D.	 However,	 for	 SR	 model,	 using	 all	 nodes	 simultaneously	 has	 a	 better	
performance	than	using	them	in	sets	of	120	nodes.	In	conclusion,	the	best	performance	obtained	for	
the	temporal	correlation	coefficient	 in	the	reconstructed	epicardial	potentials	from	the	SR	model	 is	
achieved	through	EGM	Laplacian	interpolation	using	all	nodes	simultaneously.	Finally,	for	this	metric	
in	 particular,	 it	 can	 be	 seen	 that	 it	 is	 possible	 to	 reduce	 the	 initially	 provided	 spatial	 information	
down	to	(more	or	less)	500	nodes,	while	maintaining	or	surpassing	Tikhonov’s	performance.	

The	interpolated	and	estimated	epicardial	potentials	are	also	shown	in	figure	4.20,	but	this	time	the	
performance	metric	 that	 is	 shown	 is	 the	 temporal	 relative	difference	measurement	star.	The	same	
conclusions	as	the	previous	metric	with	respect	to	the	best	method	of	interpolation	can	be	observed	
in	 this	 figure.	 Analogously	 to	 the	 previous	 case,	 interpolating	 of	 the	 electrogram	 gives	 better	 and	
more	coherent	results	 than	 interpolating	on	the	covariance	matrix,	as	shown	 in	 figure	4.20A.	Once	
again,	Laplacian’s	method	is	more	precise	than	nearest	neighbour,	both	for	EGM	and	Cx	approaches,	
as	shown	in	figure	4.20B	and	4.20C,	respectively.		
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Figure	4.19:	Temporal	correlation	coefficient	 in	the	reconstructed	epicardial	potentials	 from	the	model	of	sinus	rhythm	
using	different	 interpolation	approaches,	and	comparison	with	 zero	order	Tikhonov	and	Bayes	 regularizations	without	
interpolating.	
Temporal	correlation	coefficient	in	the	reconstruction	of	epicardial	potentials	after	applying	different	interpolation	methods:	
(A)	EGM	vs.	Cx	NN	interpolation	using	all	nodes	simultaneously,	(B)	EGM	NN	vs.	Laplacian	using	the	same	time	window	for	
all	nodes,	(C)	Cx	NN	vs.	Laplacian	using	the	same	time	window,	(D)	EGM	Laplacian	using	the	same	time	window	vs.	using	
different	 time	windows	 for	 sets	 of	 120	nodes,	 and	 (E)	 Cx	 Laplacian	using	 the	 same	 time	window	vs.	 using	different	 time	
windows	for	sets	of	120	nodes.		

	

Regarding	 the	 two	alternatives	 in	 time	windows	used	 to	calculate	 the	covariance	matrix,	 the	same	
conclusions	as	those	obtained	for	CCt	results	apply	to	RDMSt.	Both	alternatives	have	a	very	similar	
behaviour	in	terms	of	performance,	but	the	one	using	the	same	time	window	for	all	the	set	of	nodes	
in	 the	model	 is	 slightly	better,	 as	 shown	 in	 figures	4.20D	and	4.20E.	Hence,	 the	conclusion	 for	 the	
SR’s	 RDMSt	 between	 real	 and	 reconstructed	 epicardial	 potentials	 is	 the	 same	 as	 the	 CCt:	 the	
interpolation	method	which	achieved	the	best	performance	is	EGM	Laplacian	interpolation	using	all	
nodes	simultaneously.	Finally,	for	this	metric	in	particular,	it	can	be	seen	that	it	is	possible	to	reduce	
the	 initially	 provided	 spatial	 information	 down	 to	 (more	 or	 less)	 500	 nodes,	 while	maintaining	 or	
surpassing	Tikhonov’s	performance.	
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Figure	4.20:	Temporal	relative	difference	in	the	reconstructed	epicardial	potentials	from	the	model	of	sinus	rhythm	using	
different	 interpolation	 approaches,	 and	 comparison	 with	 zero	 order	 Tikhonov	 and	 Bayes	 regularizations	 without	
interpolating.	
Temporal	relative	difference	in	the	reconstruction	of	epicardial	potentials	after	applying	different	interpolation	methods:	(A)	
EGM	vs.	Cx	NN	interpolation	using	all	nodes	simultaneously,	(B)	EGM	NN	vs.	Laplacian	using	the	same	time	window	for	all	
nodes,	 (C)	 Cx	 NN	 vs.	 Laplacian	 using	 the	 same	 time	window,	 (D)	 EGM	 Laplacian	 using	 the	 same	 time	window	 vs.	 using	
different	 time	windows	 for	 sets	 of	 120	nodes,	 and	 (E)	 Cx	 Laplacian	using	 the	 same	 time	window	vs.	 using	different	 time	
windows	for	sets	of	120	nodes.		

	

The	interpolated	and	reconstructed	instantaneous	phase	from	the	Sinus	Rhythm’s	model,	are	seen	in	
figures	 4.21	 and	 4.22.	 The	 temporal	 correlation	 coefficient	 is	 shown	 in	 figure	 4.21,	 whereas	 the	
temporal	 relative	 difference	 between	 the	 real	 and	 estimated	 instantaneous	 phase	 can	 be	 seen	 in	
figure	4.22.	Analogously	 to	 the	epicardial	potentials’	performance	metrics,	 this	 target	parameter	 is	
reconstructed	 with	more	 accuracy	 after	 interpolating	 the	 EGM	 and	 not	 the	 covariance	matrix,	 as	
shown	 in	 figures	 4.21A	 and	 4.22A.	 Also,	 EGM	 and	 Cx	 Laplacian	 interpolation	 have	 a	 better	
performance	 than	 nearest	 neighbour,	 as	 illustrated	 in	 figures	 4.21B	 and	 figure	 4.21C.	 The	 same	
applies	 to	 the	 RDMSt,	 shown	 in	 figures	 4.22B	 with	 EGM	 interpolation	 and	 4.22C	 with	 Cx	
interpolation.	For	the	reconstruction	of	instantaneous	phase,	there	is	an	increase	in	the	differences	
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between	 the	 results	 obtained	when	 using	 the	 same	 time	window	 or	 a	 different	 time	window	 for	
different	sets	of	nodes	for	calculating	the	covariance	matrix.	Still,	the	results	are	better	when	using	
all	nodes	simultaneously,	as	seen	in	figures	4.21D,	4.21E,	4.22D	and	4.22E.		

	
Figure	4.21:	Temporal	correlation	coefficient	 in	the	reconstructed	instantaneous	phase	from	the	model	of	sinus	rhythm	
using	 different	 interpolation	 approaches,	 and	 comparison	with	 zero	 order	 Tikhonov	 and	 Bayes	 regularization	without	
interpolating.	
Temporal	 correlation	 coefficient	 in	 the	 reconstruction	 of	 instantaneous	 phase	 after	 applying	 different	 interpolation	
methods:	 (A)	EGM	vs.	Cx	NN	 interpolation	using	all	nodes	simultaneously,	 (B)	EGM	NN	vs.	Laplacian	using	the	same	time	
window	for	all	nodes,	(C)	Cx	NN	vs.	Laplacian	using	the	same	time	window,	(D)	EGM	Laplacian	using	the	same	time	window	
vs.	using	different	time	windows	for	sets	of	120	nodes,	and	(E)	Cx	Laplacian	using	the	same	time	window	vs.	using	different	
time	windows	for	sets	of	120	nodes.		

	

Hence,	the	performance	metrics	obtained	for	the	SR	instantaneous	phase	show	that	the	best	method	
of	 interpolation	 is	 the	 same	 as	 the	 one	 for	 the	 epicardial	 potentials:	 EGM	 Laplacian	 interpolation	
using	 the	 same	 time	 window	 for	 all	 nodes.	 These	 conclusions	 apply	 both	 to	 the	 instantaneous	
phase’s	CCt	and	RDMSt	(Figures	4.21	and	4.22).	Finally,	it	is	possible	to	reduce	the	number	of	nodes	
to	340	for	the	instantaneous	phase’s	CCt,	as	seen	in	4.21D,	and	down	to	300	nodes	for	the	RDMSt,	as	
shown	in	figure	4.22D,	whilst	maintaining	Tikhonov’s	performance.	
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Figure	4.22:	Temporal	relative	difference	in	the	reconstructed	instantaneous	phase	from	the	model	of	sinus	rhythm	using	
different	 interpolation	 approaches,	 and	 comparison	 with	 zero	 order	 Tikhonov	 and	 Bayes	 regularization	 without	
interpolating.	
Temporal	relative	difference	in	the	reconstruction	of	instantaneous	phase	after	applying	different	interpolation	methods:	(A)	
EGM	vs.	Cx	NN	interpolation	using	all	nodes	simultaneously,	(B)	EGM	NN	vs.	Laplacian	using	the	same	time	window	for	all	
nodes,	 (C)	 Cx	 NN	 vs.	 Laplacian	 using	 the	 same	 time	window,	 (D)	 EGM	 Laplacian	 using	 the	 same	 time	window	 vs.	 using	
different	 time	windows	 for	 sets	 of	 120	nodes,	 and	 (E)	 Cx	 Laplacian	using	 the	 same	 time	window	vs.	 using	different	 time	
windows	for	sets	of	120	nodes.		

	

The	 second	 set	 of	 results	 corresponds	 to	 the	 performance	 metrics	 obtained	 for	 the	 simple	 atrial	
fibrillation	model,	and	are	represented	in	figures	from	4.23	to	4.27.	The	performance	metrics	for	the	
estimated	epicardial	 potentials	 after	 interpolating	 the	 SAF	model	with	 reduced	 spatial	 information	
are	 illustrated	 in	 figure	 4.23	 and	 figure	 4.24.	 The	 temporal	 correlation	 coefficient	 is	 shown	 in	 the	
former,	 whereas	 the	 temporal	 relative	 difference	 can	 be	 seen	 in	 the	 latter.	 Just	 like	 the	 previous	
model	 of	 epicardial	 activity,	 there	 is	 superior	performance	when	 interpolating	 the	EGM	 instead	of	
the	 covariance	 matrix,	 as	 shown	 in	 these	 two	 figures.	 This	 can	 be	 seen	 when	 comparing	 the	
epicardial	potentials’	CCt	obtained	with	Cx	NN	 interpolation	versus	EGM	NN	 interpolation	 in	 figure	
4.23A,	both	using	all	nodes	 simultaneously.As	well	as	 the	RDMSt	values	obtained	with	 these	 same	
approaches,	seen	in	figure	4.24A.		
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Figure	4.23:	Temporal	 correlation	coefficient	 in	 the	 reconstructed	epicardial	potentials	 from	the	model	of	 simple	atrial	
fibrillation	using	different	interpolation	approaches,	and	comparison	with	zero	order	Tikhonov	and	Bayes	regularization	
without	interpolating.	
Temporal	correlation	coefficient	in	the	reconstruction	of	epicardial	potentials	after	applying	different	interpolation	methods:	
(A)	EGM	vs.	Cx	NN	interpolation	using	all	nodes	simultaneously,	(B)	EGM	NN	vs.	Laplacian	using	the	same	time	window	for	
all	nodes,	(C)	Cx	NN	vs.	Laplacian	using	the	same	time	window,	(D)	EGM	Laplacian	using	the	same	time	window	vs.	using	
different	 time	windows	 for	 sets	 of	 120	nodes,	 and	 (E)	 Cx	 Laplacian	using	 the	 same	 time	window	vs.	 using	different	 time	
windows	for	sets	of	120	nodes.		

	

Once	 again,	 the	 method	 with	 the	 best	 results	 is	 Laplacian	 interpolation	 for	 both	 performance	
metrics.	 This	 can	 be	 visualized	 in	 figures	 4.23B	 and	 4.23C.The	 epicardial	 potentials’	 CCt	 when	
performing	EGM	NN	versus	EGM	Laplacian	is	shown	in	the	former,	and	the	obtained	CCt	with	Cx	NN	
versus	Cx	Laplacian	 is	 illustrated	 in	the	 latter,	all	of	them	using	all	nodes	simultaneously.	The	same	
conclusion	is	observed	in	the	results	for	the	RDMSt,	which	can	be	seen	in	figures	4.24B	and	4.24C,	in	
which	the	same	methods	that	have	just	been	described	are	represented.	
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Figure	 4.24:	 Temporal	 relative	 difference	 in	 the	 reconstructed	 epicardial	 potentials	 from	 the	 model	 of	 simple	 atrial	
fibrillation	using	different	interpolation	approaches,	and	comparison	with	zero	order	Tikhonov	and	Bayes	regularization	
without	interpolating.	
Temporal	relative	difference	in	the	reconstruction	of	epicardial	potentials	after	applying	different	interpolation	methods:	(A)	
EGM	vs.	Cx	NN	interpolation	using	all	nodes	simultaneously,	(B)	EGM	NN	vs.	Laplacian	using	the	same	time	window	for	all	
nodes,	 (C)	 Cx	 NN	 vs.	 Laplacian	 using	 the	 same	 time	window,	 (D)	 EGM	 Laplacian	 using	 the	 same	 time	window	 vs.	 using	
different	 time	windows	 for	 sets	 of	 120	nodes,	 and	 (E)	 Cx	 Laplacian	using	 the	 same	 time	window	vs.	 using	different	 time	
windows	for	sets	of	120	nodes.		
	

However,	this	time	a	superior	performance	is	achieved	when	using	a	different	time	window	for	every	
set	 of	 120	 nodes	 when	 calculating	 the	 covariance	 matrix	 on	 the	 EGM	 interpolation	 approach,	 as	
shown	in	the	figures.	This	holds	true	for	both	measures,	and	can	be	seen	in	figures	4.23D	and	4.24D.	
The	opposite	takes	places	when	the	interpolation	is	performed	on	the	covariance	matrix	and	not	the	
electrogram.	 This	 can	 be	 observed	 in	 figures	 4.23E	 and	 4.24E,	 where	 a	 superior	 performance	 is	
obtained	for	both	metrics	when	using	all	nodes	simultaneously	instead	of	sets	of	120	nodes.	Finally,	
the	best	performance	 for	 the	 reconstruction	of	 SAF	epicardial	 potentials	 is	 achieved	 through	EGM	
Laplacian	interpolation	using	different	time	windows	for	sets	of	120	nodes.	The	number	of	nodes	can	
be	reduced	down	to	700	for	the	epicardial	potentials’	CCt,	as	seen	in	figure	4.23D,	and	it	is	possible	
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to	 go	 down	 to	 480	 nodes	 for	 the	 RDMSt	 metric	 and	 maintain	 the	 same	 accuracy	 as	 Tikhonov’s	
approach,	as	shown	in	4.24D.		

The	 performance	 metrics	 for	 the	 reconstruction	 of	 instantaneous	 phase	 in	 the	 simple	 atrial	
fibrillation	model	are	shown	in	figures	4.25	and	4.26.	The	temporal	correlation	coefficient	is	shown	in	
the	 first	 one	 and	 the	 temporal	 relative	 difference	 in	 the	 second.	 Analogously	 to	 the	 epicardial	
potentials’	case,	the	best	results	are	obtained	with	EGM	interpolation	instead	of	Cx.	This	is	illustrated	
in	 figure	 4.25A.	 In	 this	 figure,	 the	 instantaneous	 phase’s	 CCt	 when	 using	 EGM	 versus	 Cx	 Nearest	
Neighbour	 interpolation	 is	 represented,	 both	 methods	 using	 the	 same	 time	 window.	 The	
instantaneous	phase’s	RDMSt	analogous	representation	is	shown	in	figure	4.26A.		

	

Figure	4.25:	Temporal	correlation	coefficient	 in	 the	reconstructed	 instantaneous	phase	 from	the	model	of	simple	atrial	
fibrillation	using	different	interpolation	approaches,	and	comparison	with	zero	order	Tikhonov	and	Bayes	regularization	
without	interpolating.	
Temporal	 correlation	 coefficient	 in	 the	 reconstruction	 of	 instantaneous	 phase	 after	 applying	 different	 interpolation	
methods:	 (A)	EGM	vs.	Cx	NN	 interpolation	using	all	nodes	simultaneously,	 (B)	EGM	NN	vs.	Laplacian	using	the	same	time	
window	for	all	nodes,	(C)	Cx	NN	vs.	Laplacian	using	the	same	time	window,	(D)	EGM	Laplacian	using	the	same	time	window	
vs.	using	different	time	windows	for	sets	of	120	nodes,	and	(E)	Cx	Laplacian	using	the	same	time	window	vs.	using	different	
time	windows	for	sets	of	120	nodes.		
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Once	again,	Laplacian	interpolation	gives	a	better	performance	and	allows	a	greater	decrease	in	the	
number	of	 initial	 spatial	 information	while	maintaining	or	 surpassing	Tikhonov’s	performance.	This	
can	 be	 seen	 in	 figures	 4.25B	 and	 4.25C,	 which	 hold	 that	 no	 matter	 where	 the	 interpolation	 is	
performed,	 better	 CCt	 values	 for	 the	 instantaneous	 phase	 are	 obtained	 when	 the	 method	 is	
Laplacian	and	not	Nearest	Neighbour.	 The	 same	holds	 for	 the	values	of	 the	 instantaneous	phase’s	
RDMSt,	illustrated	in	figures	4.26B	and	4.26C.	Regarding	the	two	alternatives	between	time	windows	
for	 calculating	 the	 covariance	 matrix,	 this	 time	 the	 results	 for	 both	 alternatives	 are	 almost	
completely	overlapped	 for	 the	EGM	case,	both	 for	 the	 instantaneous	phase’s	CCt	and	RDMSt.	This	
can	 be	 seen	 in	 figure	 4.25D	 and	 4.26D.	 However,	 there	 is	 a	 slightly	 superior	 performance	 when	
implementing	a	different	time	window	for	sets	of	120	nodes.		

	

Figure	 4.26:	 Temporal	 relative	 difference	 in	 the	 reconstructed	 instantaneous	 phase	 from	 the	 model	 of	 simple	 atrial	
fibrillation	using	different	interpolation	approaches,	and	comparison	with	zero	order	Tikhonov	and	Bayes	regularization	
without	interpolating.	
Temporal	relative	difference	in	the	reconstruction	of	instantaneous	phase	after	applying	different	interpolation	methods:	(A)	
EGM	vs.	Cx	NN	interpolation	using	all	nodes	simultaneously,	(B)	EGM	NN	vs.	Laplacian	using	the	same	time	window	for	all	
nodes,	 (C)	 Cx	 NN	 vs.	 Laplacian	 using	 the	 same	 time	window,	 (D)	 EGM	 Laplacian	 using	 the	 same	 time	window	 vs.	 using	
different	 time	windows	 for	 sets	 of	 120	nodes,	 and	 (E)	 Cx	 Laplacian	using	 the	 same	 time	window	vs.	 using	different	 time	
windows	for	sets	of	120	nodes.		
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However,	 that	 this	 does	 not	 hold	 true	 when	 the	 interpolation	 is	 performed	 over	 the	 covariance	
matrix	 instead	 of	 the	 EGM,	 as	 shown	 in	 figures	 4.25E	 and	 4.26E.	 In	 these	 figures,	 a	 superior	
performance	 is	 shown	when	 using	 all	 nodes	 simultaneously	 for	 Cx	 interpolation.	Overall,	 the	 best	
approach	in	the	reconstruction	of	instantaneous	phase	for	the	SAF	model	is	the	same	as	the	one	for	
the	epicardials’	potentials:	EGM	Laplacian	interpolation	using	a	different	time	window	to	calculate	Cx	
for	 sets	 of	 120	 nodes.	 For	 the	 correlation	 coefficient	 case,	 it	 is	 possible	 to	 reduce	 the	 number	 of	
intracavitary	 information	 down	 to	 460	 nodes,	which	 is	 represented	 in	 figure	 4.25D.	 Regarding	 the	
relative	difference,	 the	results	 for	 this	metric	show	that	the	spatial	 information	can	be	reduced	to,	
more	or	less,	420	nodes,	as	shown	in	figure	4.26D.			

	

Figure	4.27:	Relative	error	 in	 the	 reconstructed	dominant	 frequencies	 from	the	model	of	 simple	atrial	 fibrillation	using	
different	 interpolation	 approaches,	 and	 comparison	 with	 zero	 order	 Tikhonov	 and	 Bayes	 regularization	 without	
interpolating.	
Relative	 dominant	 frequency	 error	 in	 the	 reconstruction	 of	 dominant	 frequencies	 after	 applying	 different	 interpolation	
methods:	 (A)	EGM	vs.	Cx	NN	 interpolation	using	all	nodes	simultaneously,	 (B)	EGM	NN	vs.	Laplacian	using	the	same	time	
window	for	all	nodes,	 (C)	Cx	NN	vs.	Laplacian	using	the	same	time	window,	(D)	EGM	NN	using	the	same	time	window	vs.	
using	 different	 time	windows	 for	 sets	 of	 120	nodes,	 and	 (E)	 Cx	NN	using	 the	 same	 time	window	vs.	 using	 different	 time	
windows	for	sets	of	120	nodes.		
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Finally,	the	relative	dominant	frequency	error	between	the	real	and	estimated	dominant	frequencies	
for	 the	 SAF	model	 is	 shown	 in	 figure	 4.27.	 The	 results	 for	 this	metric	 are	unstable	 and	oscillating.	
However,	the	method	that	seems	to	achieve	the	best	performance	is	once	again	interpolation	of	the	
EGM,	as	 illustrated	 in	 figure	4.27A.	This	 time	however,	Nearest	Neighbour	 interpolation	 instead	of	
Laplacian	is	the	one	that	performs	the	best,	as	illustrated	in	figures	4.27B	and	4.27C.	Also,	contrary	to	
the	previous	two	parameters	of	this	model,	using	the	same	time	window	for	all	nodes	shows	better	
results	than	using	the	non-simultaneous	approach,	which	is	shown	in	figures	4.27D	and	4.27E.	Hence,	
the	 best	 method	 for	 this	 performance	 metric	 in	 particular	 from	 the	 SAF	 model	 is	 EGM	 Nearest	
Neighbour	interpolation	using	all	nodes	simultaneously.	Through	this	method,	it	is	possible	to	reduce	
the	 number	 of	 intracavitary	 information	 down	 to	 710	 nodes	 while	 maintaining	 Tikhonov’s	
performance.			

	

Figure	4.28:	Temporal	correlation	coefficient	in	the	reconstructed	epicardial	potentials	from	the	model	of	complex	atrial	
fibrillation	using	different	interpolation	approaches,	and	comparison	with	zero	order	Tikhonov	and	Bayes	regularization	
without	interpolating.	
Temporal	correlation	coefficient	in	the	reconstruction	of	epicardial	potentials	after	applying	different	interpolation	methods:	
(A)	EGM	vs.	Cx	NN	interpolation	using	all	nodes	simultaneously,	(B)	EGM	NN	vs.	Laplacian	using	the	same	time	window	for	
all	nodes,	(C)	Cx	NN	vs.	Laplacian	using	the	same	time	window,	(D)	EGM	NN	using	the	same	time	window	vs.	using	different	
time	windows	for	sets	of	120	nodes,	and	(E)	Cx	NN	using	the	same	time	window	vs.	using	different	time	windows	for	sets	of	
120	nodes.		
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The	third	and	last	set	of	results	represent	the	performance	metrics	for	the	estimation	of	the	complex	
atrial	fibrillation	model,	and	are	illustrated	in	figures	from	4.28	to	4.32.	The	performance	metrics	in	
the	reconstruction	of	epicardial	potentials	are	shown	in	the	first	two	figures,	4.28	and	4.29.	In	these	
figures,	 the	 temporal	 correlation	 coefficient	 and	 relative	 difference	 can	 be	 seen.	 Once	 again,	 a	
superior	performance	is	achieved	by	means	of	interpolating	the	EGM	and	not	the	covariance	matrix.	
This	can	be	seen	in	figures	4.28A	and	4.29A.	This	time	however,	the	results	from	Cx	interpolation	are	
not	as	separated	from	those	obtained	by	EGM	as	the	previous	models.	Also,	it	is	important	to	notice	
that	 for	 this	 model,	 the	 best	 results	 are	 obtained	 for	 both	 metrics	 with	 Nearest	 Neighbour	
interpolation	instead	of	Laplacian,	as	illustrated	in	figures	4.28B,	4.28C,	4.29B	and	4.29C.		

	
Figure	 4.29:	 Temporal	 relative	 difference	 in	 the	 reconstructed	 epicardial	 potentials	 from	 the	model	 of	 complex	 atrial	
fibrillation	using	different	interpolation	approaches,	and	comparison	with	zero	order	Tikhonov	and	Bayes	regularization	
without	interpolating.	
Temporal	relative	difference	in	the	reconstruction	of	epicardial	potentials	after	applying	different	interpolation	methods:	(A)	
EGM	vs.	Cx	NN	interpolation	using	all	nodes	simultaneously,	(B)	EGM	NN	vs.	Laplacian	using	the	same	time	window	for	all	
nodes,	 (C)	Cx	NN	vs.	Laplacian	using	the	same	time	window,	(D)	EGM	NN	using	the	same	time	window	vs.	using	different	
time	windows	for	sets	of	120	nodes,	and	(E)	Cx	NN	using	the	same	time	window	vs.	using	different	time	windows	for	sets	of	
120	nodes.		
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Finally,	 both	metrics	 show	 a	 better	 performance	when	 using	 a	 non-simultaneous	 time	window	 to	
calculate	the	covariance	matrix.	This	can	be	seen	in	figures	4.28D,	4.28E,	4.29D	and	4.29E.	Hence,	the	
best	 results	 in	 the	reconstruction	of	epicardial	potentials	 from	CAF	are	obtained	by	means	of	EGM	
Nearest	 Neighbour	 interpolation	 using	 different	 time	 windows	 for	 sets	 of	 120	 nodes.	 With	 this	
approach	 it	 is	 possible	 to	 reduce	 the	 number	 of	 intracavitary	 signals	 to	 410	 for	 the	 CCt	 case,	 as	
shown	in	figure	4.28D,	and	400	nodes	for	the	RDMSt	case,	illustrated	in	figure	4.29D.	

The	 performance	 metrics	 for	 the	 reconstructed	 instantaneous	 phase	 from	 the	 CAF	 model	 is	
represented	in	figures	4.30	and	4.31.	The	temporal	correlation	coefficient	is	shown	in	the	former	and	
the	temporal	relative	difference	measurement	star	can	be	seen	in	the	latter.	The	same	conclusions	as	
the	epicardial	potentials’	parameter	can	be	seen	in	these	figures.	EGM	interpolation	is	superior	to	Cx,	
as	shown	in	figures	4.30A	and	4.31A.		

	

Figure	4.30:	Temporal	correlation	coefficient	in	the	reconstructed	instantaneous	phase	from	the	model	of	complex	atrial	
fibrillation	using	different	interpolation	approaches,	and	comparison	with	zero	order	Tikhonov	and	Bayes	regularization	
without	interpolating.	
Temporal	 correlation	 coefficient	 in	 the	 reconstruction	 of	 instantaneous	 phase	 after	 applying	 different	 interpolation	
methods:	 (A)	EGM	vs.	Cx	NN	 interpolation	using	all	nodes	simultaneously,	 (B)	EGM	NN	vs.	Laplacian	using	the	same	time	
window	for	all	nodes,	 (C)	Cx	NN	vs.	Laplacian	using	the	same	time	window,	(D)	EGM	NN	using	the	same	time	window	vs.	
using	 different	 time	windows	 for	 sets	 of	 120	nodes,	 and	 (E)	 Cx	NN	using	 the	 same	 time	window	vs.	 using	 different	 time	
windows	for	sets	of	120	nodes.		
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Once	 again,	 interpolation	method	with	 the	 best	 results	 is	 Nearest	Neighbour,	whether	 performed	
over	 the	 EGM	 or	 the	 covariance	 matrix,	 as	 shown	 in	 figures	 4.30B,	 4.30C,	 4.31B	 and	 4.31C.	
Analogously	 to	 the	previous	 target	parameter,	 the	computation	of	Cx	with	different	 time	windows	
for	 sets	 of	 120	 nodes	 gives	 a	 better	 performance	 than	 a	 simultaneous	 window	 for	 all	 nodes,	 as	
shown	in	figures	4.30D,	4.30E,	4.31D	and	4.31E.	Therefore,	the	best	approach	for	the	interpolation	of	
instantaneous	phase	from	CAF	is	the	same	as	epicardial	potentials:	EGM	Nearest	Neighbour	using	a	
different	time	window	for	sets	of	120	nodes.	Using	this	technique,	the	results	in	the	reconstruction	
are	better	than	Tikhonov’s	down	to	400	nodes	for	the	 instantaneous	phase’s	CCt,	as	seen	 in	 figure	
4.30D;	and	it	is	possible	to	decrease	the	intracavitary	information	down	to	380	nodes	approximately	
for	the	instantaneous	phase’s	RDMSt,	shown	in	figure	4.31D.	

	

Figure	 4.31:	 Temporal	 relative	 difference	 in	 the	 reconstructed	 instantaneous	 phase	 from	 the	model	 of	 complex	 atrial	
fibrillation	using	different	interpolation	approaches,	and	comparison	with	zero	order	Tikhonov	and	Bayes	regularization	
without	interpolating.	
Temporal	relative	difference	in	the	reconstruction	of	instantaneous	phase	after	applying	different	interpolation	methods:	(A)	
EGM	vs.	Cx	NN	interpolation	using	all	nodes	simultaneously,	(B)	EGM	NN	vs.	Laplacian	using	the	same	time	window	for	all	
nodes,	 (C)	Cx	NN	vs.	Laplacian	using	the	same	time	window,	(D)	EGM	NN	using	the	same	time	window	vs.	using	different	
time	windows	for	sets	of	120	nodes,	and	(E)	Cx	NN	using	the	same	time	window	vs.	using	different	time	windows	for	sets	of	
120	nodes.		
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Finally,	 the	 relative	 dominant	 frequency	 error	 between	 the	 real	 and	 reconstructed	 dominant	
frequencies	for	the	CAF	model	is	shown	in	figure	4.32.	Just	like	the	SAF	model,	the	results	obtained	
for	the	performance	metric	of	this	target	parameter	are	unstable	and	oscillating.	However,	it	can	be	
clearly	 seen	 in	 figure	 4.32A	 that	 the	 values	 obtained	 for	 the	 EGM	 interpolation	 is	 superior	 to	 Cx	
interpolation.	Again,	NN	method	performs	better	than	Laplacian	for	the	CAF	model,	as	illustrated	in	
figures	 4.32B	 and	 4.32C.	 Finally,	 using	 a	 non-simultaneous	 approach,	 better	 results	 are	 obtained	
compared	to	using	all	nodes	simultaneously,	as	seen	in	figures	4.32D	and	4.32E.	Therefore,	the	best	
approach	is	EGM	NN	interpolation	using	different	time	windows	for	sets	of	120	nodes.		This	method	
in	 particular	 performs	 better	 than	 Tikhonov’s	 approach	 on	 the	 raw	 data,	 even	 with	 the	 smallest	
number	or	nodes	tried,	which	was	255,	as	seen	in	figure	4.32D.		

	

Figure	4.32:	Relative	dominant	 frequency	error	 in	 the	 reconstructed	dominant	 frequencies	 from	 the	model	of	 complex	
atrial	 fibrillation	 using	 different	 interpolation	 approaches,	 and	 comparison	 with	 zero	 order	 Tikhonov	 and	 Bayes	
regularization	without	interpolating.	
Relative	 dominant	 frequency	 error	 in	 the	 reconstruction	 of	 dominant	 frequencies	 after	 applying	 different	 interpolation	
methods:	 (A)	EGM	vs.	Cx	NN	 interpolation	using	all	nodes	simultaneously,	 (B)	EGM	NN	vs.	Laplacian	using	the	same	time	
window	for	all	nodes,	 (C)	Cx	NN	vs.	Laplacian	using	the	same	time	window,	(D)	EGM	NN	using	the	same	time	window	vs.	
using	 different	 time	windows	 for	 sets	 of	 120	nodes,	 and	 (E)	 Cx	NN	using	 the	 same	 time	window	 vs.	 using	 different	 time	
windows	for	sets	of	120	nodes	
.	

These	 interpolation	 results	 are	 summarized	 in	 tables	 4.10,	 4.11	 and	 4.12.	 The	 best	 interpolation	
method	for	each	of	the	models	available	and	target	parameters	is	shown	in	these	tables,	as	well	as	
the	minimum	number	of	nodes	needed	in	each	one	of	them	to	outperform	Tikhonov’s	regularization.	
The	 results	of	 sinus	 rhythm’s	 interpolation	and	 reconstruction	 through	Bayes	 regularization	can	be	
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seen	 in	 table	 4.10.	 The	 best	 interpolation	 approach	 for	 estimating	 effectively	 all	 the	 target	
parameters	was	always	EGM	interpolation	through	Laplacian	method,	as	shown	in	the	table.	Also,	for	
this	particular	case,	using	the	same	window	for	all	nodes	when	computing	the	covariance	matrix	was	
the	alternative	that	worked	best.	The	minimum	number	of	nodes	needed	to	achieve	a	performance	
equal	 to	or	 superior	 than	Tikhonov	depended	on	 the	 target	parameter	as	well	as	 the	performance	
metric.	In	average,	it	can	be	concluded	that	for	the	model	of	sinus	rhythm,	it	is	possible	to	reduce	the	
number	of	initial	intracavitary	signals	down	to	440	nodes.		

	

Table	4.10:	Summary	of	interpolation	results	for	the	model	of	sinus	rhythm.	

Model:	Sinus	rhythm	

	 	 Best	interpolation	approach	 Minimum	number	of		
nodes	to	outperform	Tikhonov	

Epicardial	potentials	 CCt	 EGM	Laplacian	 620	

RDMSt	 EGM	Laplacian	 500	

Instantaneous	phase	 CCt	 EGM	Laplacian	 340	

RDMSt	 EGM	Laplacian	 300	

	

The	 results	 for	 the	 interpolation	 and	 reconstruction	 of	 the	 simple	 atrial	 fibrillation	 model	 are	
summarized	 in	 table	 4.11.	 The	 best	 method	 of	 interpolation	 for	 the	 epicardial	 potentials	 and	
instantaneous	 phase	 was	 EGM	 interpolation	 using	 the	 Laplacian	 approach,	 just	 like	 the	 model	 of	
sinus	rhythm.	However,	for	this	case	in	particular,	changing	the	time	window	for	the	calculus	of	the	
covariance	matrix	every	120th	node	gave	the	best	results.	The	only	target	parameter	which	achieved	
a	 better	 performance	 through	 a	 different	 approach	 was	 the	 dominant	 frequency.	 As	 shown	
previously,	 the	 interpolation	 and	 reconstruction	 results	 for	 this	 parameter	 were	 oscillating	 and	
unstable,	and	 the	best	performance	was	achieved	 through	Nearest	neighbour	 interpolation	on	 the	
EGM.	 Just	 like	 the	 simple	 atrial	 fibrillation	 case,	 the	 minimum	 number	 of	 nodes	 needed	 to	
outperform	Tikhonov	varied	depending	on	the	target	parameter	as	well	as	the	performance	metric.	
In	average,	a	minimum	of	560	nodes	would	be	needed	for	the	simple	atrial	fibrillation	model	to	be	
able	to	reconstruct	the	epicardial	activity	better	than	Tikhonov’s	regularization	on	the	raw	data.	

The	 results	 for	 the	 interpolation	 and	 reconstruction	 of	 the	 complex	 atrial	 fibrillation	model	 using	
Bayes’	regularization	are	summarized	in	table	4.12.	For	this	model,	the	best	 interpolation	approach	
was	the	same	for	all	the	target	parameters.	Once	again,	interpolation	on	the	EGM	showed	the	best	
results,	however,	this	time	the	best	method	was	Nearest	Neighbour	instead	of	Laplacian.	Just	like	the	
case	 of	 simple	 atrial	 fibrillation,	 the	 alternative	 which	 used	 a	 varying	 time	 window	 in	 the	
computation	of	the	covariance	matrix	for	sets	of	120	nodes	worked	best	than	the	default	approach.	
Despite	the	complexity	of	the	activity	represented	by	this	model,	it	is	the	model	that	admits	the	least	
number	of	intracavitary	signals	while	outperforming	Tikhonov	regularization,	allowing	to	reduce	the	
number	of	nodes	to	an	average	of	370	nodes.	In	fact,	the	target	parameter	which	can	be	estimated	
with	 the	 least	 number	 of	 nodes	 is	 the	 dominant	 frequency,	 since	 the	 RDFE	 is	 lower	 than	 the	 one	
obtained	through	Tikhonov	regularization	for	the	smallest	number	of	nodes	that	was	tried,	255.		
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Table	4.11:	Summary	of	interpolation	results	for	the	model	of	simple	atrial	fibrillation.	

Model:	Simple	atrial	fibrillation	

	 	 Best	interpolation	approach	 Minimum	number	of	
nodes	to	outperform	
Tikhonov	

Epicardial	
potentials	

CCt	 EGM	Laplacian	(non-simultaneous	
window)	

700	

RDMSt	 EGM	Laplacian	(non-simultaneous	
window)	

480	

Instantaneous	
phase	

CCt	 EGM	Laplacian	(non-simultaneous	
window)	

460	

RDMSt	 EGM	Laplacian	(non-simultaneous	
window)	

420	

Dominant	
frequency	

RDFE	
(%)	

EGM	Nearest	Neighbour	 710	

	

Table	4.12:	Summary	of	interpolation	results	for	the	model	of	complex	atrial	fibrillation.	

Model:	Complex	atrial	fibrillation		

	 	 Best	interpolation	approach	 Minimum	number	of	
nodes	to	outperform	
Tikhonov	

Epicardial	
potentials	

CCt	 EGM	Nearest	Neighbour	(non-
simultaneous	window)	

410	

RDMSt	 EGM	Nearest	Neighbour	(non-
simultaneous	window)	

400	

Instantaneous	
phase	

CCt	 EGM	Nearest	Neighbour	(non-
simultaneous	window)	

400	

RDMSt	 EGM	Nearest	Neighbour	(non-
simultaneous	window)	

380	

Dominant	
frequency	

RDFE	
(%)	

EGM	Nearest	Neighbour	(non-
simultaneous	window)	

255	
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5. Conclusions	
	

In	 this	 work,	 geometrical	 models	 of	 human	 atria	 and	 torso	 have	 been	 used	 together	 with	
mathematical	models	of	epicardial	activity	and	regularization	methods,	showing	that	it	is	possible	to	
reduce	the	number	of	intracavitary	signals	available	and	reconstruct	them	effectively	by	solving	the	
inverse	 problem	 of	 electrocardiography.	 It	 has	 been	 demonstrated	 that	 Bayes	 regularization	 is	 an	
accurate	 method	 for	 the	 reconstruction,	 allowing	 to	 detect	 atrial	 fibrillation	 events	 from	
mathematical	 models	 with	 reduced	 spatial	 information.	 Furthermore,	 it	 has	 been	 found	 that	
depending	 on	 the	 number	 of	 initial	 spatial	 information,	 the	 performance	 is	 the	 estimation	 can	 be	
better	 than	 the	 gold	 standard	 reconstruction	 method:	 zero	 order	 Tikhonov	 with	 instantaneous	
regularization	parameter.	

Regarding	the	interpolation	approaches,	it	has	been	found	that	interpolation	of	the	EGM	is	superior	
to	 interpolation	 of	 the	 covariance	matrix	which	 is	 used	 in	 Bayes’	 regularization.	 	 Also,	 it	 has	 been	
shown	that	the	use	of	nearest	neighbour	or	Laplacian	interpolation	methods	depends	on	the	type	of	
epicardial	 activity	 from	 the	 mathematical	 model	 which	 is	 being	 estimated.	 For	 the	 SR	 and	 SAF	
models,	 Laplacian	 interpolation	 has	 a	 better	 performance	 than	 NN.	 However,	 the	 more	 complex	
epicardial	 activity	 from	 the	 CAF	 model	 is	 interpolated	 with	 better	 accuracy	 through	 NN	 method.	
Finally,	 it	has	been	demonstrated	that	the	use	of	non-simultaneous	windows	for	sets	of	120	nodes	
has	a	similar	performance	to	using	all	nodes	simultaneously.		

It	 has	 been	 possible	 to	 effectively	 reduce	 the	 amount	 of	 spatial	 information	 from	 all	 models.	
However,	the	minimum	number	of	intracavitary	signals	needed	in	all	the	models	to	outperform	the	
gold	standard	was	always	higher	than	the	maximum	number	of	electrodes	that	are	currently	being	
used	 in	 catheters	 to	 record	atrial	 activity.	Nevertheless,	 the	 fact	 that	 the	performance	obtained	 in	
the	non-simultaneous	approach	 is	similar	to	the	simultaneous	one,	means	that	 it	 is	possible	to	use	
this	technique	effectively	for	reconstructing	a	reduced	number	of	spatial	signals.	In	this	sense,	using	
120	 electrode	 catheters	 and	 recording	 atrial	 activity	 a	 reduced	 number	 of	 times	 in	 different	 atrial	
positions	for	each	different	measurement,	together	with	signals	provided	from	torso	recordings,	the	
signals	 could	 be	 effectively	 interpolated	 and	 reconstructed.	 All	 in	 all,	 the	 activity	 from	 the	 whole	
atrial	tissue	could	be	predicted	from	a	reduced	number	of	spatial	information,	being	able	to	estimate	
not	only	the	 intracardiac	potentials,	but	also	the	 instantaneous	phase,	dominant	frequency	regions	
as	well	as	singularity	points.	The	possibility	of	predicting	these	target	parameters	 is	essential	 in	the	
characterization	of	arrhythmias	such	as	atrial	 fibrillation,	and	could	help	 in	the	detailed	planning	of	
the	therapies	that	are	currently	being	used	for	the	condition,	such	as	catheter	ablation.	

Among	the	many	treatments	for	AF,	catheter	ablation	has	recently	shown	promising	results	[Atienza	
2014].	However,	the	success	of	such	therapy	strongly	depends	on	the	identification	of	atrial	regions	
responsible	 for	 the	 fibrillation	 event.	 To	 this	 respect,	 it	 has	 been	 found	 that	 these	 areas	 are	
characterized	 by	 the	 presence	 of	 high	 dominant	 frequency	 [Atienza	 2009]	 as	well	 as	 electrical	 re-
entries,	also	known	as	rotors	 [Narayan	2012,	Haïssaguerre	2014].	On	the	one	hand,	 the	parameter	
rough	 location	of	the	highest	DF	site	can	be	 identified	by	means	of	BSPM	[Guillem	2013],	however	
the	technique	has	limitations	in	detecting	the	precise	localization	of	the	fibrillatory	source	within	the	
atrial	 tissue.	 On	 the	 other	 hand,	 it	 has	 been	 possible	 to	 detect	 rotors	 both	 invasively	 and	 non-
invasively,	through	panoramic	intracardiac	mapping	[Narayan	2013]	and	solving	the	inverse	problem	
of	electrocardiography	[Haïssaguerre	2014],	respectively.		
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The	inverse	problem	of	electrocardiography	aims	at	estimating	the	epicardial	activity	provided	torso	
measurements.	However,	 the	 loss	of	 information	 in	 the	 recorded	surface	potentials,	 together	with	
the	presence	of	noise	or	geometrical	errors,	reduces	the	accuracy	of	the	reconstruction	process.	This	
has	 lead	 to	 the	 appearance	 of	 different	 regularization	 methods	 which	 aim	 to	 increase	 the	
performance	of	the	estimation.	Among	the	reported	techniques,	it	has	been	shown	that	the	use	of	a	
priori	 information	 in	 Bayes	 regularization	 outperforms	 all	 the	 other	 methods	 described	 so	 far	
[Figuera	 2016].	 The	 results	 obtained	 in	 this	 work	 demonstrate	 that	 this	 superior	 performance	 of	
Bayes’	 regularization	 is	 maintained	 when	 reducing	 the	 number	 of	 intracavitary	 signals	 from	 the	
different	mathematical	models	of	 atrial	 fibrillation.	 The	 reconstruction	has	been	effective	not	only	
for	 the	 estimation	 of	 epicardial	 potentials,	 but	 also	 for	 the	 instantaneous	 phase	 and	 dominant	
frequency	maps.	The	 identification	of	 this	 last	parameter	by	 solving	 the	 inverse	problem	has	been	
shown	 to	 be	 more	 accurate	 than	 the	 reconstruction	 of	 epicardial	 potentials	 for	 atrial	 fibrillation	
events	[Pedrón-Torrecilla	2016].	Taking	this	into	account,	this	work	has	shown	that	DF	estimation	can	
also	be	performed	with	reduced	spatial	information.		

In	 conclusion,	 the	most	 relevant	 parameters	 from	 atrial	 fibrillation	mathematical	models	 could	 be	
reconstructed	 solving	 the	 inverse	 problem	 of	 electrocardiography	 through	 Bayes	 regularization.	
Regarding	 the	estimation	process,	 the	spatial	 information	 that	was	used	 from	the	models	was	 less	
than	one	fifth	of	the	original	intracavitary	signals,	and	still,	the	performance	was	superior	to	the	gold	
standard	regularization	method	using	all	the	spatial	information.	Therefore,	this	work	has	shown	that	
the	activity	from	the	whole	atrial	tissue	can	be	reconstructed	with	a	reduced	number	of	signals	using	
a	 priori	 information	 through	 Bayes	 regularization,	 being	 able	 to	 detect	 drivers	 of	 atrial	 fibrillation	
episodes.		
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6. Future	works	
	

This	work	has	used	different	mathematical	models	of	epicardial	activity	to	create	an	algorithm	which	
is	able	to	reconstruct	the	models	with	a	reduced	number	of	intracavitary	signals.	At	the	same	time,	
the	 performance	 in	 the	 interpolation	 and	 reconstruction	 process	 is	 equal	 to	 or	 better	 than	
Tikhonov’s	performance	with	the	full	spatial	information.	The	number	of	nodes	has	been	effectively	
reduced	 from	 2039	 down	 to	 440,	 560	 and	 370	 for	 the	 SR,	 SAF	 and	 CAF	 models,	 respectively.	
Regarding	 the	different	approaches	used,	each	model	 requires	a	different	 interpolation	method	 to	
achieve	the	best	performance.		

Therefore,	the	future	works	related	to	this	project	would	be,	on	the	one	hand,	to	be	able	to	reduce	
the	number	of	intracavitary	signals	to	a	number	below	120	in	order	to	achieve	a	clinical	application.	
To	this	respect,	the	maximum	number	of	electrodes	which,	so	far,	can	be	introduced	into	the	human	
atria	to	measure	the	endocardial	activity	is	120.	Hence,	by	achieving	interpolation	and	reconstruction	
results	superior	than	those	provided	by	Tikhonov	while	reducing	the	spatial	 information	below	120	
signals,	real	endocardial	measurements	could	be	used	instead	of	mathematical	models	of	epicardial	
activity.	

On	the	other	hand,	 future	works	will	have	 to	 find	a	unique	 interpolation	approach	able	 to	achieve	
the	best	performance	for	all	the	models	of	epicardial	activity.	This	could	be	achieved	either	by	trying	
other	interpolation	or	regularization	methods	to	the	ones	proposed	in	this	work.		
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1. Objective	
	

This	 part	 of	 the	 work	 describes	 the	 costs	 of	 the	 master’s	 project.	 To	 do	 develop	 the	 budget	
personnel,	hardware	and	software	costs	have	been	considered,	which	are	explained	in	detail.	Finally,	
an	overview	of	the	budget	is	also	included.	

	

2. Detailed	budget	
2.1. Personnel	costs	

	

To	 develop	 the	 present	 work	 personnel	 costs	 were	 needed	 for	 the	 bibliographic	 review,	
development	and	 implementation	of	 the	algorithms,	and	 finally	 results	evaluation.	Particularly,	 the	
work	has	been	developed	by	a	biomedical	engineer.	To	develop	the	budget	appropriately,	unit	costs	
have	 been	 calculated	 as	 well	 as	 chargeable	 costs	 without	 the	 employer’s	 contribution	 and	 finally	
chargeable	 costs	 with	 employer’s	 contribution.	 Numerical	 data	 on	 unit	 costs	 and	 employer’s	
contribution	 have	 been	 extracted	 from	 Comunidad	 Valenciana’s	 official	 college	 of	 industrial	
engineers	 (COIICV).	 These	 detailed	 personnel	 costs	 are	 summarized	 in	 table	 2.1	 and	 sum	 up	 to	
nineteen	thousand	two	hundred	and	forty-three	Euros	(19243€).	

	

Table	2.1:	Personnel	costs	needed	for	the	development	of	the	project.	

Personnel	costs	

Profile	 Tasks	 Working	
hours	

Unit	
costs	

Chargeable	
costs	

(without	
employer’s	
contribution)	

Employer’s	
contribution	

(37.45%)	

Total	
chargeable	
costs	

Biomedical	
engineer	

Bibliographic	
review,	
development,	
implementation	
and	evaluation	

350	
hours	

40€	/	
hour	

14000€	 5243€	 19243€	

Subtotal	(including	employer’s	contribution)	 19243€	
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2.2. Hardware	costs	
	

The	hardware	needed	in	the	development	of	the	project	has	been	the	worker’s	personal	computer.	
The	detailed	hardware	costs	are	summarized	in	table	2.2	and	sum	up	to	two	thousand	two	hundred	
Euros	(2200€).		

	

Table	2.2:	Hardware	costs	needed	for	the	development	of	the	project.	

Hardware	costs	 	

Description	 Total	
equipment	
cost	
(without	
VAT)	

Units	 Amortisation	
period	

Period	
of	use	

Chargeable	
costs	

(without	
VAT)	

VAT	

(21%)	

Total	
chargeable	
costs	

Intel®	 Core™		
i5-2.9GHz,	 8	
GB	 RAM	
2133MHz	
LPDDR3,	
Intel®	 Iris™	
Graphics	 550	
1536MB	

1818.20€	 1	 4	years	 6	
months	

1818.20€	 381.80€	 2200€	

Subtotal	(including	VAT)	 2200€	

	

2.3. Software	costs	
	

Several	software	licenses	have	been	needed	in	the	development,	implementation	and	evaluation	of	
the	 present	 work.	 The	 detailed	 software	 costs	 are	 summarized	 in	 table	 2.3	 and	 sum	 up	 to	 two	
thousand	one	hundred	and	forty-nine	Euros	(2149€).		
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Table	2.3:	Software	costs	needed	for	the	development	of	the	project.	

Software	costs	 	

Description	 Total	
license	
cost	
(without	
VAT)	

Number	
of	
licenses	

Duration	
of	 the	
license	

Period	
of	use	

Chargeable	
costs	

(without	
VAT)	

VAT	

(21%)	

Total	
chargeable	
costs	

MATLAB	
R2016b	

1652.90€	 1	 Indefinite	 6	
months	

1652.90€	 347.10€	 2000€	

Operating	
system	
macOS	 Sierra	
10.12.2	
(16C67)	

0€	 1	 Indefinite	 6	
months	

0€	 0€	 0€	

Microsoft	
Office	 home	
and	 students	
version	2016	

123.14€	 1	 Indefinite	 6	
months	

123.14€	 25.86€	 149€	

Subtotal	(including	VAT)	 2149€	

	

3. Budget	overview	
	

The	personnel,	hardware	and	software	costs	are	summarized	in	table	3.1,	as	well	as	the	total	cost	of	
the	whole	 project,	 which	 sums	 up	 to	 twenty-three	 thousand	 five	 hundred	 and	 ninety-two	 Euros	
(23592€).	

	

Table	3.1:	Budget	overview	and	total	costs	needed	for	the	development	of	the	project	

Budget	overview	(including	employer’s	contribution	and	VAT)	

Personnel	costs	 19243€	

Hardware	costs	 2200€	

Software	costs	 2149€	

Total	costs		 23592€	
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