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CORRELATED RESPONSE IN EARLY EMBRYONIC DEVELOPMENT IN RABBITS SELECTED 
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Abstract: A divergent selection experiment for litter size variability was carried out in rabbits. The litter size 
variability was estimated as the phenotypic variance of litter size within female. The aim of this study was 
to assess the effect of selecting for litter size variability on early embryonic development and survival after 
7 generations of divergent selection (high and low variability lines). A total of 30 non-lactating multiparous 
does per line were used. The ovulation rate and early embryonic development were analysed using Bayesian 
methodology. Ovulation rate was not affected by the selection process. At 28 h of gestation, embryonic 
development and survival were similar in both lines. At 48 h of gestation, the majority of embryos in the 
high line were in the early morulae stage. The high line had a higher proportion of early morulae (79.54 
vs. 53.43%; P=0.94) and a lower proportion of compacted morulae (20.46 vs. 46.57%; P=0.93%) than 
the low line. At 72 h of gestation, the high line had 1.59 fewer embryos than the more homogeneous line 
(P=0.85), due to reduced embryonic survival (0.60 vs. 0.74; P=0.93). The high line continued to show a higher 
proportion of early morulae (21.01 vs. 3.69%; P=0.93) and a lower proportion of compacted morulae and 
blastocysts (78.99 vs. 96.31%; P=0.94) than the low line at 72 h of gestation, indicative of reduced embryonic 
development. In conclusion, selection for homogeneity in litter size had a positive impact on embryonic traits.
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INTRODUCTION

The environmental sensitivity of animals has a considerable impact on their productivity (Rauw and Gomez-Raya, 
2015). Selection to reduce environmental variance improves the performance of animals in adverse environments 
(Mulder et al., 2013). A divergent selection experiment for litter size variability was successfully carried out in rabbits, 
where after seven generations of selection, the line selected to increase litter size variability showed greater variability 
(+1.37 kit2) and a more decreased litter size (–0.71 kits) than the low line (Blasco et al., 2017) due to the lower 
(–1.38 embryos) number of implanted embryos (Argente et al., 2014a). This line also showed less resilience, i.e., 
greater sensitivity to illness and stressful conditions (García et al., 2012; Argente et al., 2014b). Maternal stress 
increases the failure rate of blastocyst implantation (Liu et al., 2015; Burkuš et al., 2015) by changing the expression 
patterns of genes involved in embryo development (Marco-Jiménez et al., 2013; Silva et al., 2013). Asynchrony 
between embryonic development and oviduct function plays an important role in early embryonic loss (Geisert and 
Schmitt, 2002). Our hypothesis is that a lower implantation rate in the line selected for increased litter size variability 
is associated with retarded embryonic development related to oviduct function.

The aim of this study was to assess the effect of selection for litter size variability on early embryonic development 
and survival in rabbits.
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MATERIALS AND METHODS

All experimental procedures involving animals were approved by the Research Ethics Committee of Miguel Hernández 
University, Elche, on 21 June 2011 (reference 98 number DTA-MJA-001-11), in accordance with Council Directives 
98/58/EC and 2010/63/EU.

Animals

The animals were the 7th generation of a divergent selection experiment for litter size variability, measured as the 
phenotypic variance of litter size within does after correcting for the effects of year-season and parity-lactation status 
(first parity or lactating/non-lactating at mating for other parities). The high line was seleted to increase litter size 
variability or to decrease homogeniety in litter size, and the low line was selected to decrease litter size variability or to 
increase the homogeniety in litter size. Details of the experimental protocol were previously reported in Argente et al. 
(2014a). All animals were bred at the farm of the Miguel Hernández University in Elche, Spain. They were kept under a 
constant photoperiod consisting of 16 h continuous lighting and 8 h continuous darkness, with controlled ventilation. 

Traits

A total of 30 non-lactating multiparous does per line were used in this experiment. Does were euthanised at 28, 
48 or 72 h post-mating by intravenous administration of sodium thiopental at a dose of 50 mg/kg of body weight 
(Thiobarbital; B. Braun Medical S.A., Barcelona, Spain). The entire reproductive tract was removed immediately. The 
ovulation rate (OR) was estimated as the number of corpora haemorrhagica. The numbers of normal embryos (NE), 
abnormal embryos and oocytes were counted after collection by perfusion of each oviduct and uterine horn with 
10 mL of Dulbecco’s phosphate buffered saline containing 0.2% bovine serum albumin. Embryos were classified as 
normal if they presented homogeneous cellular mass and intact zona pellucida and mucin coating (Maurer, 1978), 
determined using a binocular stereoscopy microscope (Mz 9.5-600x; Leica, Wetzlar, Germany). At 28 h of gestation, 
normal embryos were classified as either 2-cell or 4-cell embryos. At 48 h of gestation, normal embryos were 
classified as early morulae (EM) or compacted morulae (CM). At 72 h of gestation, normal embryos were classified as 
EM, CM or blastocysts (B). In all cases, the number of 2-cell, 4-cell, EM, CM and B, were expressed as a percentage 
of normal embryos. The early embryonic survival (EES) was estimated as the number of normal embryos divided by 
the ovulation rate.

Statistical analyses

All traits were analysed with a model including the fixed effects of line and season. The model for OR also included the 
pregnancy stage (28, 48 or 72 h post-mating) as a fixed effect. The traits were analysed using Bayesian methodology. 
Bounded flat priors were used for all unknowns. Residuals were independently normally distributed with mean 0 and 
variance Iσ2

e. The priors for the variances were also bounded uniform. Features of the marginal posterior distribution 
for all unknowns were estimated using Gibbs sampling. The Rabbit program developed by the Institute for Animal 
Science and Technology (http://www.dcam.upv.es/dcia/ablasco/Programas/THE PROGRAM Rabbit.pdf; Valencia, 
Spain) was used to analyse the differences between lines. After some exploratory analyses, we used a chain of 
60 000 samples with a burn-in period of 10 000 samples, with only 1 of every 10 samples saved for inferences. 
Convergence was tested using the Z criterion of Geweke (Sorensen and Gianola, 2002), and Monte Carlo sampling 
errors were computed using the time-series procedures described by Geyer (1992). The Monte Carlo standard errors 
were small in all Bayesian analyses, and a lack of convergence was not detected by the Geweke test. An advantage 
of the Bayesian approach using Markov chain Monte Carlo (MCMC) procedures is the ease of computing confidence 
intervals and probabilities (see reviews by Blasco, 2001 and 2005). Bayesian statistics provides a new approach for 
describing the uncertainty against classical statistics. For example, we can calculate the median for each line and the 
precision of our estimation, allowing us to determine the smallest interval with a 95% probability of containing the true 
value (the highest posterior density interval at 95%). This interval is not dependent on the estimate provided, and can 
be asymmetric about the median. Aside from this, we were also interested in estimating differences between the high 
and low lines selected for litter size variability (DH-L), as we could thus also calculate the probability of this difference 
being greater than zero [P(DH-L>0)].

http://www.dcam.upv.es/dcia/ablasco/Programas/THE%20PROGRAM%20Rabbit.pdf
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RESULTS AND DISCUSSION

Table 1 shows the features of the estimated marginal posterior distribution of the differences between the high and 
low lines (DH-L) for ovulation rate and early embryonic development. When |DH-L|>0, we consider there to be enough 
evidence of a difference between the high and low lines if the probability (P) of |DH-L| is greater than 0.80 (Table 1). 
The probability (P ) should not be confused with the P-value (Blasco 2001, 2005). Johnson (2013) showed that 
the evidence provided by P-values is lower than indicated, for example, a P-value of 0.05 only provides 67-75% 
of evidence, therefore approximately 25% of false positives appear with a P-value of 0.05. The P is the actual 
probability, so we chose 80% to represent sufficient evidence. According to the value of P, both lines were found to 
have a similar ovulation rate (P=0.70).

At 28 h of gestation, the high and low lines exhibited a similar number of recovered embryos (P=0.55) and embryonic 
survival rate (P=0.63). There was no difference in embryonic development between lines (P=0.75). We observed a 
similar proportion of embryos in the 2-cell and 4-cell stages (approximately 50% in each stage) in both lines. Previous 
studies in the literature have indicated that the majority of embryos are in the 2-cell stage at 25 h post-mating (Peiró 
et al., 2007) and in the 4-cell stage at 30 h post-mating (Peiró et al., 2015). Our results are in agreement with these 
studies, confirming that embryonic development at 28 h post-mating represents an intermediate stage between 
25 and 30 h post-mating.

At 48 h of gestation, no differences were found for the number of recovered embryos (P=0.58) and embryonic survival 
(P=0.72) between the high and low lines. The majority of embryos in the high line were classified as early morulae 
(79.54%). The high line had 26.81% (2.8 embryos) more early morulae (P=0.94) and 26.16% less compacted 
morulae than the low line (20.46 vs. 46.57%; P=0.93). Hence, increasing litter size variability had a negative effect 
on early embryonic development. 

At 72 h of gestation, the difference between the high and low lines for the number of normal embryos had increased, 
where the high line had 1.59 fewer embryos than the more homogeneous line (P=0.85). Embryonic survival was also 

Table 1: Features of the estimated marginal posterior distribution of the differences between the high and low lines 
selected for litter size variability.

High linea Low linea DH-L HPD95% P

ORb 12.43 (2.30) 12.08 (2.35) 0.35 –1.01 1.57 0.70
28 h post-matingc

NE 9.95 (2.86) 10.24 (2.37) –0.29 –3.44 3.06 0.55
2C (%) 42.64 (29.35) 52.86 (32.21) –10.18 –41.85 23.10 0.75
4C (%) 57.36 (33.54) 47.14 (31.34) 10.81 –21.43 40.45 0.75
EES 0.81 (0.10) 0.84 (0.12) –0.05 –0.25 0.18 0.63

48 h post-matingc

NE 9.92 (2.92) 10.20 (2.35) –0.27 –3.65 2.85 0.58
EM (%) 79.54 (38.68) 53.43 (37.52) 26.81 –6.06 62.12 0.94
CM (%) 20.46 (37.40) 46.57 (38.67) –26.16 –60.50 8.28 0.93
EES 0.79 (0.11) 0.85 (0.12) –0.06 –0.28 0.14 0.72

72 h post-matingc

NE 7.56 (2.12) 9.18 (3.01) –1.59 –4.76 –1.42 0.85
EM (%) 21.01 (25.71) 3.69 (20.19) 17.36 –6.42 39.86 0.93
CM (%) 27.38 (34.65) 33.63 (37.19) –7.17 –42.28 26.07 0.67
B (%) 51.61 (44.43) 62.68 (44.67) –11.27 –50.74 31.70 0.71
EES 0.60 (0.10) 0.74 (0.11) –0.14 –0.34 0.05 0.93

amean (standard deviation). b30 does per line. c10 does per line. DH-L: median of difference between the high and low lines.  
HPD95%: highest posterior density region at 95%. P: probability of the difference being >0 when DH-L >0 and probability of the 
difference being <0 when DH-L<0. OR: ovulation rate. NE: Number of normal embryos. 2C: 2-cell embryos. 4C: 4-cell embryos. 
EM:  early morulae. CM: compacted morulae. B: blastocysts. 2C, 4C, EM, CM and B were expressed as a percentage of normal 
embryos (NE). EES: early embryonic survival (NE/OR).
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lower in the high line compared to the low line (0.60 vs. 0.74; P=0.93). The line selected to increase litter size variability 
had a higher proportion of early morulae (21.01% in the high line vs. 3.69% in the low line; P=0.93) and a lower 
proportion of compacted morulae and blastocysts (78.99% in the high line vs. 96.31% in the low line; P=0.94). Therefore, 
the high line continued to show reduced embryonic development compared to the homogeneous line at 72 h of gestation. 
The embryonic development in this line was lower than that reported in other maternal lines (Mocé et al., 2004; Peiró 
et al., 2007; Argente et al., 2010), in which a lower percentage of early morulae (10-14%) and a higher percentage of 
compacted morulae and blastocysts (85-95%) were reported. Several studies have reported that embryos with a slower 
developmental rate have higher mortality than more developmentally advanced embryos during gestation (Torres 
et al., 1987) and at birth (Murakami and Imai, 1996). The high line had fewer implanted embryos than the low line 
after 7 generations of selection (10.18 embryos in the high line vs. 11.49 embryos in the low line; Argente et al., 2014a). 
This difference was maintained for litter size at birth (7.46 kits in the high line vs. 8.17 kits in the low line; Argente et al., 
2014a). These results are in agreement with lower embryonic development observed in the high line at 48 and 72 h of 
gestation, representing a negative effect on embryonic survival.

In previous studies, the line selected to increase litter size variability has been reported to have a higher subclinical 
immune response, related to higher sensitivity to microorganisms usually found on the farm and a higher cortisol level 
(García et al., 2012; Argente et al., 2014b). These results are consistent with the high line being more sensitive to stress, 
in addition to a greater risk of illness. We hypothesise that embryonic development is delayed in the high line due to 
stress and their higher susceptibility to illness. Embryonic development can be delayed under stress conditions by 
the disruption of proteins involved in embryonic growth (see review by Puscheck et al., 2015). For example, a lack 
of DICER1, MATER, ZAR1, PADI6 and SEBOX does not allow the embryo to develop beyond the 2-cell stage, and 
the embryo is unable to reach the 8-cell or morulae stage in the absence of either SMARCA4, DNMT1, DNMT3A, 
TET, KLF4, OCT4, NANOG or SOX2 (see review by Argente, 2016). Moreover, the survival of an embryo that reaches 
the oviduct environment in a less developed state than the oviduct will be compromised in the early stages of 
pregnancy due to asynchrony (see review by Geisert and Schmitt, 2002). It has been reported that, although less 
developed embryos can survive beyond implantation, they probably die soon afterwards due to foetal competition for 
uterine space and a poor blood supply (Mocé et al., 2004; Argente et al., 2008). Selection for litter size variability 
modifies early embryo development starting from 48 h of gestation, leading to decreased embryo development and 
fewer normal embryos in the line selected to increase litter size variability. These results demonstrate the negative 
relationships of litter size variability with embryonic development and survival in the early stages of gestation. 

CONCLUSIONS

Selection for litter size variability did not seem to affect ovulation rate. Nevertheless, there was a negative correlated 
response in early embryonic development and survival. 
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