VALENCIA, DECEMBER 2017

. Rewriting Logic

Techniques for
Program Analysis
and Optimization

AUTHOR
JULIA SAPINA SANCHIS

SUPERVISORS
MARIA ALPUENTE FRASNEDO
DEMIS BALLIS

1 P
Q}-P;' "(') 1/72‘5
2 g

UNIVERSITAT
POLITECNIC/\
DE VALENCIA

OR OF PHILOSOPHY IN COMPUTER SCIENCE

REWRITING LOGIC TECHNIQUES
FOR PROGRAM ANALYSIS

AND OPTIMIZATION

BY
JULIA SAPINA SANCHIS

SUPERVISORS

Maria Alpuente Frasnedo Universitat Politecnica de Valencia
Demis Ballis Universita degli Studi di Udine

EVALUATION COMMITTEE

Chair: Isidro Ramos Salavert Universitat Politécnica de Valéncia
Vocal: Alberto Lluch Lafuente Technical University Of Denmark
Secretary: Narciso Marti Oliet Universidad Complutense de Madrid

EXTERNAL REVIEWERS

Alberto Lluch Lafuente Technical University Of Denmark
Francesco Tiezzi Universita di Camerino
Alberto Verdejo Lopez Universidad Complutense de Madrid

This thesis has been partially supported by the FPI-UPV grant SP2013-0083
and UPV mobility grant VIIT-3946.

To my mother.

Abstract

This thesis proposes a dynamic analysis methodology for improving the
diagnosis of erroneous Maude programs. The key idea is to combine runtime
assertion checking and dynamic trace slicing for automatically catching errors
at runtime while reducing the size and complexity of the erroneous traces to be
analyzed (i.e., those leading to states that fail to satisfy the assertions). In the
event of an assertion violation, the slicing criterion is automatically inferred,
which facilitates the user to rapidly pinpoint the source of the error.

First, a technique is formalized that aims at automatically detecting anoma-
lous deviations of the intended program behavior (error symptoms) by using
assertions that are checked at runtime. This technique supports two types of
user-defined assertions: functional assertions (which constrain deterministic
function calls) and system assertions (which specify system state invariants).
The proposed dynamic checking is provably sound in the sense that all errors
flagged definitely signal a violation of the specifications. Then, upon eventual
assertion violations, accurate trace slices (i.e., simplified yet precise execution
traces) are generated automatically, which help identify the cause of the error.
Moreover, the technique also suggests a possible repair for the rules involved
in the generation of the erroneous states.

The proposed methodology is based on (i) a logical notation for speci-
fying assertions that are imposed on execution runs; (ii) a runtime checking
technique that dynamically tests the assertions; and (iii) a mechanism based
on (equational) least general generalization that automatically derives accurate
criteria for slicing from falsified assertions.

Finally, an implementation of the proposed technique is presented in the
assertion-based, dynamic analyzer ABETS, which shows how the forward and
backward tracking of asserted program properties leads to a thorough trace
analysis algorithm that can be used for program diagnosis and debugging.

Resumen

Esta tesis propone una metodologia de analisis dinamico que mejora el
diagnostico de programas erroneos escritos en el lenguaje Maude. La idea cla-
ve es combinar técnicas de verificacién de aserciones en tiempo de ejecucion
con la fragmentacion dinamica de trazas de ejecucién para detectar automati-
camente errores en tiempo de ejecucion, al tiempo que se reduce el tamafio y
la complejidad de las trazas a analizar. En el caso de violarse una asercion, se
infiere automaticamente el criterio de fragmentacién, lo que facilita al usuario
identificar rapidamente la fuente del error.

En primer lugar, la tesis formaliza una técnica destinada a detectar automa-
ticamente eventuales desviaciones del comportamiento deseado del programa
(sintomas de error). Esta técnica soporta dos tipos de aserciones definidas por
el usuario: aserciones funcionales (que restringen llamadas a funciones deter-
ministas) y aserciones de sistema (que especifican los invariantes de estado del
sistema). La técnica de verificacion dinamica propuesta es demostrablemente
correcta en el sentido de que todos los errores sefialados definitivamente dela-
tan la violacién de las aserciones. Tras eventuales violaciones de aserciones, se
generan automaticamente trazas fragmentadas (es decir, trazas simplificadas
pero igualmente precisas) que ayudan a identificar la causa del error. Ademas,
la técnica también sugiere una posible reparacion para las reglas implicadas
en la generacion de los estados erroneos.

La metodologia propuesta se basa en (i) una notacion loégica para especi-
ficar las aserciones que se imponen a la ejecucion; (ii) una técnica de verifica-
cion aplicable en tiempo de ejecucion que comprueba dinamicamente las aser-
ciones; y (iii) un mecanismo basado en la generalizacion (ecuacional) menos
general que automaticamente obtiene criterios precisos para fragmentar trazas
de ejecucién a partir de aserciones falsificadas.

Por ultimo, se presenta una implementacion de la técnica propuesta en la
herramienta de analisis dinamico basado en aserciones ABETS, que muestra
como es posible combinar el trazado de las propiedades asertadas del programa
para obtener un algoritmo preciso de analisis de trazas que resulta til para el
diagnéstico y la depuracion de programas.

Resum

Esta tesi proposa una metodologia d’analisi dinamica que millora el diag-
nostic de programes erronis escrits en el llenguatge Maude. La idea clau és
combinar técniques de verificacié d’assercions en temps d’execuci6 amb la
fragmentaci6 dinamica de traces d’execuci6 per a detectar automaticament
errors en temps d’execucio, alhora que es reduix la grandaria i la complexitat
de les traces a analitzar. En el cas de violar-se una asserci6, s’inferix automa-
ticament el criteri de fragmentacio, la qual cosa facilita a I’usuari identificar
rapidament la font de I’error.

En primer lloc, la tesi formalitza una tecnica destinada a detectar auto-
maticament eventuals desviacions del comportament desitjat del programa
(simptomes d’error). Esta técnica suporta dos tipus d’assercions definides per
I’usuari: assercions funcionals (que restringixen crides a funcions determinis-
tes) i assercions de sistema (que especifiquen els invariants d’estat del siste-
ma). La técnica de verificacié dinamica proposta és demostrablement correcta
en el sentit que tots els errors assenyalats definitivament delaten la violaci6 de
les assercions. Davant eventuals violacions d’assercions, es generen automa-
ticament traces fragmentades (és a dir, traces simplificades perd igualment
precises) que ajuden a identificar la causa de I’error. A més, la técnica també
suggerix una possible reparacio de les regles implicades en la generaci6 dels
estats erronis.

La metodologia proposada es basa en (i) una notacio logica per a especi-
ficar les assercions que s’imposen a I’execucio; (ii) una técnica de verificacio
aplicable en temps d’execuci6 que comprova dinamicament les assercions; i
(iii) un mecanisme basat en la generalitzaci6 (ecuacional) menys general que
automaticament obté criteris precisos per a fragmentar traces d’execucio a par-
tir d’assercions falsificades.

Finalment, es presenta una implementacio de la técnica proposta en la fe-
rramenta d’analisi dinamica basat en assercions ABETS, que mostra com és
possible combinar el tracat cap avant i cap arrere de les propietats assertades
del programa per a obtindre un algoritme precis d’analisi de traces que resulta
util per al diagnostic i la depuracié de programes.

Acknowledgments

I would like to dedicate a few words to the people without whom this thesis
would never have been possible.

My first and deepest gratitude is to my supervisor, Maria Alpuente, for
giving me the opportunity to join the Extensions of Logic Programming (ELP)
research group. Maria not only has an impeccable work ethic, but also inspires
the people around her with her brilliant mind. Rarely found these days, Maria
combines her outstanding professional facet with an even more remarkable
personal one. Under her supervision, instructions, and advice, I have learned
how to be a researcher, and, more importantly, I have grown as a person and
hopefully become a better one. Over the past weeks I have been thinking
about how to write these lines without falling into clichés that weaken my
words. My conclusion is that the most genuine and sincere compliment I can
dedicate to her is that, because of all the good qualities and even small gestures
that she shares with her, Maria has always reminded me of my mother, whom
I deeply admire for her intelligence, courage, kindness, and ability to sacrifice
for others.

[want to extend this gratitude to my other supervisor, Demis Ballis, whose
enthusiasm and guidance have greatly helped me overcome the low moments
of this thesis; I really enjoy working with you, my friend. Also to my col-
league, Francisco Frechina, who co-supervised me during my Master’s degree;
I miss our inspiring discussions about our research and how we managed to
solve the problems that the other one said could not be solved just to be right.

Thanks also go to my senior colleagues of the ELP. To Santiago Escobar
for being so authentic; whenever I have to travel, I still remember how you
made us all laugh on the way to my first conference, especially on the way
back. To Alicia Villanueva and Raul Gutiérrez for many, many things, but
especially, for all those brief chats and technical discussions at the coffee ma-
chine after lunch that I very much enjoy every day. To Salvador Lucas for
terminating with such dedication all the theoretical doubts I had every time I
consulted you. And last but not least, thanks to the members of the Data Min-
ing, Machine Intelligence and Inductive Programming (DMIP) team, M? José
Ramirez, César Ferri, and Jose Hernandez-Orallo for their selfless support and

12 Acknowledgments

help with anything I needed.

Thanks to such a wonderful group of fellows with whom I have shared my
workspace these past years. To Fernando Martinez-Plumed, for his priceless
advice and conversations about nothing and everything and for being the only
constant in a lab full of variables. Thanks to Sonia Santiago, for having such
a good heart and will to always help others; we really miss you here. To
Lidia Contreras-Ochando, for bringing the joy back to the lab after so many
colleagues finished their theses and left. To Javier Espert, our former server
admin, for helping me install myself when I first arrived. To Javier Insa and
Marco Feliti for the brief, yet pleasant, moments we shared together. To Daniel
Pardo for being so quiet so that the rest of us could make so much noise. And
to David Nieves, our last addition, for the good things that are surely yet to
come.

Thanks to our brothers of the Multi-paradigm Software Technology (MiST)
research group, German Vidal, Marisa Llorens, Carlos Herrero, Javier Oliver,
Josep Silva, Salvador Tamarit, David Insa, Adrian Palacios, and Sergio Pérez
because, although we have not coincided much professionally, I always knew
I could count on you whenever I needed it.

Finally, I want to especially thank Moreno Falaschi and his family for
making my stay in Siena feel like home, Eva Onaindia for her hard work co-
ordinating the new doctoral program and for solving any doubts or problems
I had (sometimes even before knowing I had them), and Alberto Lluch La-
fuente, Francesco Tiezzi, and Alberto Verdejo for their valuable feedback as
reviewers of this thesis.

Tahle of Contents

Chapter 1: Introduction

1.1 MOtiVation........oooiiiiiiieee e
1.2 Contributions of the Thesiscccccooviiiiiiii
1.3 Plan of the Thesis............ccccco
1.4 Bibliographic Remarks.............ccccccooviiiiiiiiiiiiiiiieece

Chapter 2: Preliminaries

2.1 Basic Concepts of Rewriting LOGIC..........cccoceiviieniiiiiinnnn
2.2 Rewriting in Rewriting LOGIC........ccooiiiiiiis
2.3 Generalization modulo Equational Theories

Chapter 3: The Maude System and Language

3.1 Origins of Maudeccccooiiiiiiiiii e
3.2 Core MaUde.......n oo
3.3 FUull Maude.......onoeiee e e

Chapter 4: Inspection of Rewriting Logic Computations

4.1 The Running Examplesccccoocoviiiiiiniiiiiinci,
4.2 Instrumented COMPUtAtionsScc.ceeevvvvireeriiiieeeeiiieeeenee,
4.3 The Exploration Techniquecccoooeiiiiiiiiieiiiiee,
4.4 An Animated Debugging Sessionccccoceeviiiiiennnnn.

Chapter 5: Runtime Verification of Maude Programs

5.1 The Assertion Languagecccccceevvvvveeeiiiieeeeiiieeeeeeeen.
5.2 Satisfaction of ASSEItions............cccccvevieiiiinieiiieiie e
5.3 Uncovering Error SyMptoms...........cccvvviiiieieiniiiiiiiiieeeeeee
5.4 Dynamic Assertion-Checkingccccccooeviiiiviiiiieennne..

Chapter 6: Automated Debugging of Maude Programs

6.1 Slicing of Execution Traces and Programs...........................
6.2 Improving the Inference of the Slicing Criteria....................

19
20
21
22
24

27
27
30
32

35
35
36
52

59
59
65
68
69

75
75
79
83
87

14 Table of Contents

6.3 Integration of Assertion-Checking and Trace Slicing.................... 98
6.4 Automated Repair of Faulty Rules..............cccooiiiiiiniis 101
Chapter 7: The ABETS System 105
7.1 ABETS ina Nutshell............occoiiiii 105
7.2 ABETS @t WOTK.......ooiiiiiiiiiiiiic e 111
7.3 Implementation DetailScccccoooviiiiiiiiiiii e 115
7.4 Experimental Evaluation................ccccooiiiiiiiiiiiiii 119
Chapter 8: Mau-Dev: A Developer Extension of Maude 123
8.1 INOVel OPerationscceoiiuiiiieiiiiieeeiiiie e 123
8.2 Compatibilityccvvviiiiiiiiiiiiie e 134
8.3 Experimental Evaluation....................ccooeeviiiiiiiiiiiiiicceee 135
Chapter 9: Conclusion 139
9.1 Related WOTKoooiiiiiiiii 139
9.2 Discussion of ReSUlts............cccoiiiiiiiiiiiiiiiiicecee e 142
9.3 Future WOTKcccooiiiiiiii e 144
Bibliography 153
Appendix A: A Stock Exchange System 155

Appendix B: An Object-oriented Car Rental Store 159

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

List of Figures

Hierarchy of predefined modules in Maude. 41
Partial order of sorts declared in the prelude of Maude. 45
Positions of the car object of Example 2. 56
A fragment of the STOCK-EXCHANGE system module. 61
Class and subclass declarations of RENT-A-CAR. 63
Concurrent rules of the RENT-A-CAR object module. 64
Equations modeling customer suspension. 65
The one-step expand function. 68
The explore function. 69
InputPhase. 70
Computation tree after querying for negative credit. 71
Normalized 3-day-rentalrule. 72
Normalized suspend equation. 72
Compact View of the faulty trace. 73
System properties specified by the RENT-A-CAR-PRED module. 77

Summary of the assertion language. 80
The analyze function. 99
Computed trace slice after refuting the assertion of Example 9. 109

Computation graph generated from s, of Example 16. 110
Result of the trace query st(_, = ?). 111
Input Phasel. 112
InputPhaseII., 113
Description of the falsified assertion ®. 114
Computed Trace Slice after refuting the functional assertion ®. 115
Computed Program Slice. 116
ABETS architecture. 117
Total speedup of ABETS after optimizations. 119

7.1

8.1
8.2

List of Tables

Synchronous assertion-checking performance analysis 122

Execution results of the metaReducePath operation for fibo(n).136
Execution results of the metaGetVariant operation and its
metaGetVariantExt extension. 137

Chapter 1

Introduction

Assertion checking is one of the most useful available techniques for de-
tecting program faults. Although not universally used, assertions seem to have
widely infiltrated into common programming practice, primarily for finding
bugs in the later stages of development. In dynamic assertion checking, as-
sertions are program properties that are traditionally used to express condi-
tions that should hold at runtime. By finding inconsistencies between speci-
fied properties and the program code, dynamic assertion checking can prove
that the code is incorrect. Moreover, since an assertion failure usually reports
an error, the user can direct her attention to the location at which the logical
inconsistency is detected and trace it back to the sources that are responsible
for the erroneous behavior.

Program slicing [Weiser, 1981, Korel and Laski, 1988, Korel and Rilling,
1997] is another well-established technique in software engineering with in-
creasing recognition for error diagnosis and program comprehension, since it
allows developers to focus on the code fragment that is relevant to the piece
of information that she wants to observe. Program slicing is a program trans-
formation method that also finds applications in program optimization and
useless-code elimination. The basic idea of program slicing is to isolate a
subset of statements that either contribute to the values of a set of variables
at a given point, or that are influenced by the values of a given set of vari-
ables. The first approach corresponds to forms of backward slicing, whereas
the second one corresponds to forward slicing.

While both assertion-checking and program slicing are classically used in
program debugging and understanding, their benefits have been poorly ex-
ploited within the Maude community to date. This also applies to program
repair methods that help correct or simplify a program by eliminating either
useless, unimportant, or erroneous parts of the program or of the program state
space.

This chapter introduces the main motivation of the thesis in Section 1.1
and summarizes the thesis contribution in Section 1.2. An outline of the dis-

20 1. Introduction

sertation is presented in Section 1.3. Finally, Section 1.4 summarizes the list
of publications and software tools developed by the author as part of her thesis.

1.1 Motivation

Program debugging is crucial for reliable software development because
the size and complexity of modern software systems make (requirement and
design) specifications extremely difficult and error-prone. Unfortunately, de-
bugging is generally a burdensome process that involves a large portion of the
software development effort in order to locate the actual cause of observable
misbehaviors. In order to mitigate the costs of debugging, automated tools and
techniques are required to help identify the root cause of errors. This thesis
proposes a general approach for improving the debugging of Maude programs
that is based on systematically combining runtime assertion checking and trace
(and program) fragmentation.

Maude [Clavel et al., 2007] is a high-performance language and system
that provides a powerful variety of correctness tools and techniques includ-
ing rapid prototyping, state space exploration, and model checking of tem-
poral formulas. Maude programs correspond to specifications in rewriting
logic [Meseguer, 1992], which is an extension of membership equational logic
[Meseguer, 1998] that, besides supporting equations and allowing the ele-
ments of a type or sort to be characterized by means of membership axioms,
adds rewrite rules that can be non-deterministic and represent state transitions
in a concurrent system. Thanks to its reflective design and meta-level ca-
pabilities, the Maude system provides powerful and highly efficient meta-
programming facilities. This has further contributed to its success, giving
support to the development of sophisticated tools and techniques for the mod-
eling and analysis of Maude programs, such as LTLR model checking [Bae
and Meseguer, 2015], abstract certification [Alba-Castro et al., 2010], Web
verification [Alpuente et al., 2009a, Alpuente et al., 2010b], narrowing-based
code-carrying theory [Alpuente et al., 2010a], etc. (for a survey of the related
literature, see [Marti-Oliet et al., 2012]). The use of slicing for debugging
Maude programs is discussed in [Alpuente et al., 2014a], and it relies on a
rich and highly dynamic parameterized scheme for exploring rewriting logic
computations defined in [Alpuente et al., 2014b, Alpuente et al., 2015a] that
can significantly reduce the size and complexity of the runs under examina-
tion by automatically slicing both programs and computation traces. How-

1. Introduction 21

ever, Maude does not currently provide general support for asserting proper-
ties that are dynamically-checked. The main aim of this work is to fill this
gap by providing Maude with runtime assertion-checking capabilities. This
is done by first introducing a simple assertion language that suffices for the
purpose of improving error diagnosis and debugging in the context of rewrit-
ing logic. This thesis follows the approach of modern specification and ver-
ification systems such as Spec# [Barnett et al., 2004] or the Java Modeling
Language [Burdy et al., 2003], where the specification language is typically
an extension of the underlying programming language and specifications are
used as contracts that guarantee certain properties to hold at a number of ex-
ecution states (e.g., before or after a given function call [Leavens and Cheon,
2005]). This approach is of practical interest because it facilitates the job of
programmers.

This thesis presents a dynamic analysis framework that seamlessly com-
bines runtime assertion checking, trace slicing, and automated program repair
for improving the diagnosis of Maude programs.

1.2 Contributions of the Thesis

The main contributions of the thesis can be summarized as follows:

1. A simple yet powerful logic assertion language, which allows Maude
developers to easily express properties that system states and computa-
tions must obey.

2. A logic semantics for the assertion language, which formalizes the no-
tion of satisfaction of an assertional specification that contains system
assertions (which specify system state invariants) and functional asser-
tions (which constrain the result of deterministic function calls).

3. A runtime verification technique that automatically checks Maude pro-
grams against assertional specifications, which can be trivially adapted
to perform offline verification i.e., verification of previously deployed
execution traces.

4. A formal technique for automatically computing accurate error symp-
toms, i.e., the pieces of information that are directly responsible for the
violation of an assertion, together with an improvement of the technique

22

1. Introduction

that produces more refined error symptoms by identifying (and thus ig-
noring) the subformulas of the assertion that play no role in its violation.

. A methodology that combines both runtime verification and trace slic-

ing by automatically inferring accurate slicing criteria from previously
detected faulty execution traces.

. A novel automated technique that suggests suitable repairs for the rules

that are involved in the generation of erroneous system states (i.e., those
states that cause the violation of a system assertion).

. An implementation of all the above techniques in the ABETS system,

which helps analyze Maude as well as Full Maude [Clavel et al., 2007]
programs, together with an experimental evaluation of all implemented
techniques.

1.3 Plan of the Thesis

The remainder of the thesis is structured as follows:

= Chapter 2: Preliminaries. This chapter briefly introduces some basic

knowledge on term rewriting and rewriting logic that is fundamental for
this dissertation. The chapter also introduces the specific notation that
will be used throughout the manuscript.

Chapter 3: The Maude System and Language. This chapter provides
a summary of the most relevant features of the high-performance declar-
ative language and system Maude. Non-experienced readers who are
not familiarized with Maude may find it very useful to understand the
examples developed in the thesis.

Chapter 4: Inspection of Rewriting Logic Computations. This chap-
ter summarizes the rewriting-based, trace instrumentation and compu-
tation exploration techniques of [Alpuente et al., 2013b, Alpuente et al.,
2015a], which are at the core of the analysis and inspection techniques
proposed in the thesis. The chapter also introduces the two running ex-
amples (i.e., amodel of a Stock Exchange system written in Core Maude
and an object-oriented, distributed online car-rental store written in Full
Maude) that are used to better illustrate the proposed techniques and
methodologies.

1. Introduction 23

= Chapter 5: Runtime Verification of Maude Programs. This chap-
ter first introduces a simple assertion language for Maude programs
that allows developers to express properties that are both executable
in user-defined programs and quite versatile. The assertion language
distinguishes two types of assertions: (i) functional assertions, for spec-
ifying properties of functions defined by an equational theory; and (ii)
system assertions, which allow properties concerning the system’s exe-
cution to be expressed. Assertions are provided with a semantics based
on a notion of logic satisfaction that formally establishes what means
for an equational simplification trace (resp. a system state) to satisfy
functional (resp. system) assertions. The concept of error symptoms
(i.e., the pieces of information that are directly related to an assertion
violation) is then formalized. The chapter finishes by formulating a
verification technique that dinamically checks assertions at runtime.

= Chapter 6: Automated Debugging of Maude Programs. This chap-
ter presents an assertion-based trace slicing and verification technique
for debugging rewriting logic computations, which combines both trace
slicing and the dynamic verification technique of Chapter 5. This tech-
nique exploits the information that is dynamically computed when an
assertion fails (i.e., the error symptoms) to help correlate the simple ex-
ternal evidence of the error with the complexity of searching possible
program locations for the faults that caused the error. A refinement
of the basic technique for automatically inferring the slicing criteria is
also formalized. Finally, the chapter formulates a new program repair
technique that automatically suggests program corrections to fix those
program faults that are signaled by the violation of a system assertion.

= Chapter 7: The ABETS System. This chapter describes an imple-
mentation of the proposed techniques in the assertion-based, dynamic
trace analyzer ABETS. The chapter explains the functionality and main
features of ABETS and demonstrates its bug-catching capabilities by re-
producing a detailed debugging session. Moreover, an in-depth exper-
imental evaluation of the system is also provided, which assesses the
practicality of the tool.

= Chapter 8: Mau-Dev: A Developer Extension of Maude. This chap-
ter explains those novel implementation details and optimizations that
have boosted the performance of the ABETS system. This has been
achieved by reimplementing the functions that are most frequently used

24

1. Introduction

in ABETS as new, highly efficient (Mau-Dev) built-in metalevel opera-
tions. Atthe end of this chapter an experimental evaluation is performed
that highlights the performance and effectiveness of this system exten-
sion.

Chapter 9: Conclusion. This final chapter provides an overview of
the related literature and concludes by discussing further investigations
that are planned as future work.

1.4 Bibliographic Remarks

Let us conclude this introduction with some bibliographic remarks:

The exploration technique discussed in Chapter 4 was originally pre-
sented in [Alpuente et al., 2013b, Alpuente et al., 2014b, Alpuente et al.,
2015a] and included in [Frechina, 2014]. Chapter 4 briefly summarizes
it in order to provide the reader wih the necessary background knowl-
edge that is required to fully understand this dissertation.

The runtime assertion-based slicing and debugging methodologies that

are formalized in Chapters 5 and 6 were originally presented in [Alpuente
etal., 2015b] and [Alpuente et al., 2016a, Alpuente et al., 2016b] respec-

tively.

The ABETS tool, which is described in Chapter 7, was originally pub-
lished in [Alpuente et al., 2016b] together with detailed benchmark ex-
periments.

Progressive additions to the Mau-Dev system, which is developed in
Chapter 8, were presented in [Alpuente et al., 2015a], [Alpuente et al.,
2016b], and [Alpuente et al., 2017].

Finally, the ANIMA and ABETS tools described in Chapters 4 and 7
inherited some key features originally developed in the M.Sc. thesis
[Sapifia, 2013] for the predecessor tool iJulienne [Alpuente et al., 2013a].
The tools were then significantly improved by developing important op-
timizations that were subsequently ported back to iJulienne.

The following subsections summarize the full list of publications and tools.

1. Introduction 25

1.4.1 List of Publications

The work that has led to the development of this Ph.D. thesis has been
published in the following journals and conference proceedings.

[Alpuente et al., 2013a] M. Alpuente, D. Ballis, F. Frechina, and J. Sapifia.
Slicing-Based Trace Analysis of Rewriting Logic Specifications with
iJulienne. In Proceedings of the 22nd European Symposium on Pro-
gramming, volume 7792 of Lecture Notes in Computer Science, pages
121-124. Springer, 2013.

[Alpuente et al., 2013b] M. Alpuente, D. Ballis, F. Frechina, and J. Sapifia.
Parametric Exploration of Rewriting Logic Computations. In Pro-
ceedings of the 5th International Symposium on Symbolic Computation
in Software Science, volume 15 of EasyChair Proceedings in Comput-
ing, pages 4-18. EasyChair, 2013.

[Alpuente et al., 2014b] M. Alpuente, D. Ballis, F. Frechina, and J. Sapifia.
Inspecting Rewriting Logic Computations (in a Parametric and Step-
wise Way). In Proceedings of Specification, Algebra, and Software: A
Festschrift Symposium in Honor of Kokichi Futatsugi, volume 8373 of
Lecture Notes in Computer Science, pages 229-255. Springer, 2014.

[Alpuente et al., 2015b] M. Alpuente, D. Ballis, F. Frechina, and J. Sapifia.
Combining Runtime Checking and Slicing to Improve Maude Er-
ror Diagnosis. In Proceedings of Logic, Rewriting, and Concurrency:
Essays Dedicated to José Meseguer on the Occasion of his 65th Birth-
day (LRC 2015), volume 9200 of Lecture Notes in Computer Science,
pages 72-96. Springer, 2015.

[Alpuente et al., 2015a] M. Alpuente, D. Ballis, F. Frechina, and J. Sapifia.
Exploring Conditional Rewriting Logic Computations. In Journal
of Symbolic Computation, volume 69, pages 3-39. Elsevier, 2015.

[Alpuente et al., 2016a] M. Alpuente, D. Ballis, F. Frechina, and J. Sapifia.
Debugging Maude Programs via Runtime Assertion Checking and
Trace Slicing. In Journal of Logical and Algebraic Methods in Pro-
gramming, volume 85, issue 5, pages 707-736. Elsevier, 2016.

[Alpuente et al., 2016b] M. Alpuente, D. Ballis, F. Frechina, and J. Sapifia.
Assertion-based Analysis via Slicing with ABETS. In Theory and

26 1. Introduction

Practice of Logic Programming, volume 16, issue 5-6, pages 515-532.
Cambridge University Press, 2016.

[Alpuente et al., 2017] M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J.
Sapifia. Inspecting Maude Variants with GLINTS. In Theory and
Practice of Logic Programming, volume 17, issue 5-6, pages 689-707.
Cambridge University Press, 2017.

1.4.2 List of Tools

During the development of the thesis the following software systems have
been implemented.

1. ANIMA, an interactive program analyzer for Maude available at
http://safe-tools.dsic.upv.es/anima.

2. ABETS, an assertion-based trace slicer and checker available at
http://safe-tools.dsic.upv.es/abets.

3. Mau-Dev, a developer extension of Maude available at
http://safe-tools.dsic.upv.es/maudev.

http://safe-tools.dsic.upv.es/anima
http://safe-tools.dsic.upv.es/abets
http://safe-tools.dsic.upv.es/maudev

Chapter 2

Preliminaries

Rewriting logic [Meseguer, 1992] is a powerful yet simple computational
logic that can express both concurrent computation (by means of rewrite rules)
and logical deduction (by means of equations) that is particularly suitable for
dealing with highly non-deterministic concurrent systems and computations.
Rewriting logic is also a sound and complete semantic framework in which
many different models of concurrency, distributed algorithms, programming
languages, and software and hardware modeling languages can be naturally
represented, executed, and analyzed as rewrite theories [Meseguer, 2012].

This chapter recalls some important notions about rewriting logic that are
relevant to this thesis. We assume some basic knowledge of term rewrit-
ing [TeReSe, 2003] and rewriting logic [Meseguer, 1992]. For deeper details,
we refer to [Klop, 1992, Baader and Nipkow, 1998, Ohlebusch, 2002, TeReSe,
2003, Meseguer, 1992]. The chapter is structured as follows. Section 2.1 in-
troduces the building blocks of rewriting logic. Section 2.2 details the so-
phisticated rewriting mechanism of rewriting logic. Finally, Section 2.3 ex-
plains generalization modulo equational theories, which is the dual operation
of equational unification and is a key component of the diagnosis and repair
methodologies that are proposed in this dissertation.

2.1 Basic Concepts of Rewriting Logic

This section introduces some basic concepts of the rewriting logic frame-
work that are fundamental for the thesis.

2.1.1 The Term Language of Rewriting Logic

Let X be an order-sorted signature with a finite poset of sorts (S, <) that
models the usual subsort relation [Clavel et al., 2016]. The connected com-
ponents of (S, <) are the equivalence classes [s] corresponding to the least

28 2. Preliminaries

equivalence relation =_ containing <. A signature X allows operators to be
specified together with their type structure by means of suitable sets of sorts,
subsorts, and kinds. The kinds allow equivalent sorts' to be grouped together
and, intuitively, can be considered as an error supersort. Therefore, terms
(built over X) that have a kind but not a sort are understood to be undefined
or error terms. 7 (X, V), and 7 (X); are the sets of terms and ground terms of
sort s, respectively. Given a term t, by Var(t), we denote the set of variables
that occur in t. Givenatermt € 7(X,))andasorts € X, thenby t: s we
denote that t is of sort s. We write 7 (X, V) and 7 (X) for the corresponding
term algebras.

A position w in a term t is represented by a sequence of natural numbers
that addresses a subterm of t (/A denotes the empty sequence, i.e., the root
position). By notation wy.w;, we denote the concatenation of positions (se-
quences) w; and w,. Given a term t, we let Pos(t) denote the set of positions
of t. Given a position w of a term t, Pos,,(t) = {w.w’ | ww’ € Pos(t)}. By
VPos(t), we denote the set of variable positions of a term t. Positions are or-
dered by the prefix ordering, that is, given the positions w; and w,, w; < w,
if there exists a position u such that w;.u = w;. Given two positions w; and
w,, we say that w; and w, are not comparable iff w; £ w, and w; £ wy.
By tl,, we denote the subterm of t at position w, and by t[s],,, we denote the
result of replacing the subterm t|,, by the term s in t.

Given a binary relation ~~, we define the usual transitive (resp., transitive
and reflexive) closure of ~~ by ~~* (resp., ~>*).

A substitution o = {X;/t1,X3/t2,..., X /tn} is a mapping from the set
of variables V to the set of terms 7 (X, V'), which is equal to the identity except
for a finite set of variables {Xj, ..., X,,}. The domain of o is the set Dom(c) =
{X € V| Xo # X}. By{}, we denote the identity substitution. The application
of a substitution o to a term t, denoted to, is defined by induction on the
structure of terms:

Xo ift=X,XeV
f(tioy...,tho) ift="f(ty,...,t),m >0

to =

Given two terms s and t, a substitution o is a matcher of tin s, if so = t.
The term t is an instance of the term s, iff there exists a matcher o of tin s. We
also say that s is more general than t (and that t is an instance of s) iff there

!Two sorts are in the same equivalence class if and only if they belong to the same con-
nected component. Sorts are user-defined and explicitly declared in X, while kinds are im-
plicitly associated with equivalence classes of sorts.

2. Preliminaries 29

exists a matcher o such that so = t. Substitutions can also be represented as
sets of equations. More formally, given a substitution o = {X; /t1, ..., Xn/tn},
its equational representation is 0 = {X; = tq, ..., Xy = ty}.

Given two substitutions o and 6, their composition is written 00. Note
that applying 00 to a term t is equivalent to first compute to and then apply
0 to the result.

Given two substitutions o and 0, their parallel composition (or reconcil-
iation) [Palamidessi, 1990], is written o 1} 0 and amounts to compute the
most general unifier (mgu, see [Martelli and Montanari, 1982]) of the set re-
sulting from the union of the equational representations of both o and 0 (i.e.,
o 0 =mgu(oUo)).

2.1.2 (onditional Equations, Rewrite Rules, and Membership Axioms

A conditional equation is an expression of the form [l]: A = p if C, where
Ap € T(EV), Var(p) € Var(A), C is a condition that must be fulfilled,
and L is a label, i.e., a name that identifies the equation. A condition C is an
expression of the form ¢; /A ... /\ ¢,, with n > 0, where each ¢; is either
an equation (which requires the equality of two terms), a membership, or a
rewrite expression (which requires the existence of a rewriting chain between
the terms).

A conditional rewrite rule is an expression of the form [l] : A = p if C,
where A, p € T(L,V), Var(p) C Var(A), C is a condition that must be ful-
filled, and 1 is a label.

A conditional membership axiom is an expression of the form [U]: A : s if C,
where A is a term, s is a sort, C is a condition that must be fulfilled, and 1 is a
label. Membership axioms assert that terms that match A modulo equational
axioms such as associativity, commutativity, and unity, have a specific sort s.

When no confusion can arise, rule, equation, and membership axioms la-
bels are often omitted. Also, for the unconditional case where the condition is
empty, equations (resp. rules, resp. memberships) adopt the simplified nota-
tion A = p (resp. A = p, resp. A : s). The term A (resp., p) is called left-hand
side (resp. right-hand side) of the rule A = p (resp. equation A = p).

2.1.3 (onditional Rewrite Theories

A membership equational theory is a pair (X, E), where X is an order-
sorted signature, E = A U B, with A a collection of conditional (oriented)

30 2. Preliminaries

equations and membership axioms), and B a collection of equational axioms
(i.e., algebraic laws such as associativity, commutativity, and unity) that can
be associated with any binary operator of X. The equational theory (X, E)
induces a congruence relation on the term algebra 7 (X, V), which is denoted
by =—E.

The static state structure as well as the dynamic behavior of a concur-
rent system can be formalized as a rewriting logic specification that encodes
a conditional rewrite theory. More specifically, a conditional rewrite theory
(or simply rewrite theory) is a triple R = (X, E, R), where:

(i) (X, E) is a membership equational theory that contains the system data
types to be defined via equations, equational axioms, and membership
axioms.

(ii) R is a set of conditional rewrite rules.

Intuitively, (X, E) allows system states to be formalized as terms, while
rules in R specify general patterns that are used to model state transitions and
allow the dynamics of the system to be specified. More specifically, the sys-
tem evolves by applying the rules of the rewrite theory R to the system states
by means of rewriting modulo E. An in-depth explanation of the operational
semantics underlying rewriting logic is summarized in the following section.

2.2 Rewriting in Rewriting Logic

Let us consider a conditional rewrite theory (X, E,R), with E = A U B,
where A is a set of conditional equations and membership axioms, and B is
a set of equational axioms associated with some binary operators in £. The
conditional rewriting modulo E relation (in symbols, —g/e) can be defined
by lifting the usual conditional rewrite relation on terms [Klop, 1992] to the
E-congruence classes [t]g on the term algebra 7 (X,)’) that are induced by
—=¢ [Bruni and Meseguer, 2006]. In other words, [t]¢ is the class of all terms
that are equal to t modulo E. Unfortunately, —x/¢ is, in general, undecidable
since a rewrite step t —g/¢ t’ involves searching through the possibly infinite
equivalence classes [t]g and [t']¢.

For a conditional rewrite theory to be executable, its equations A should be
Church-Rosser [Church and Rosser, 1936, Meseguer, 1992] and terminating
[Turing, 1937, Dershowitz, 1987] modulo the given axioms B, and their rules
R should be (ground) coherent [Viry, 2002, Duran and Meseguer, 2012] with

2. Preliminaries 31

A modulo B. This allows developers to implement conditional rewriting —g /¢
with R modulo E by means of two much simpler relations, namely — g and
—r,8, Which allow rules, equations and memberships to be intermixed in the
rewriting process by simply using an algorithm of matching modulo B.

The relation —gya g is defined as —rp U — . Roughly speaking, the
relation — A g uses the equations of A (oriented from left to right) as simpli-
fication rules. Thus, by repeatedly applying the equations as simplification
rules from a given term t, we eventually reach a term t |5 g to which no fur-
ther equations can be applied. The term t| A p is called a canonical (or normal)
form of t with respect to A modulo B. An equational simplification of a term t
in A modulo B is a rewrite sequence of the form t —ap t lag. Informally, the
relation —g g implements rewriting with the rules of R, which might be non-
terminating and non-confluent, whereas A is required to be Church-Rosser and
terminating modulo B in order to guarantee the existence and unicity (modulo
B) of a canonical form with respect to A for any term [Clavel et al., 2016].

Terms are rewritten into canonical forms according to their sort structure,
which is induced by the signature X and the membership axioms specified in
A. In particular, through conditional membership axioms of the form A : s if C,
we can assert that any term B-matching A has a specific sort s whenever a
condition C holds. Equational simplification of terms is naturally lifted to
substitutions as follows: given o = {x1/t1,x2/t2,...,Xn/tn}, we define the
normalized substitution o | g= {xi/(ti [a)}

Formally, —rp and —,p are defined as follows. Given a conditional
rewrite rule of the form [l] : A = p if C € R (resp., an equation [1] : A = pif C
€ A), a substitution o, a term t, and a position w of t, t r&;/\]iqyg t’ (resp.,
t GQWA,B t") iff \o = tl|,, t' = tlpol,, and Co evaluates to true. When
no confusion arises, we simply write t —gp t’ (resp. t—apt’) instead of
t "ep t’ (resp. t “F'ap t’). Roughly speaking, a conditional rewrite step
on the term t applies a rewrite rule/equation to t by replacing a reducible (sub-
Jexpression of t (namely t|,,), called the redex, by its contracted version po,
called the contractum, whenever the condition Co is fulfilled. Note that the
evaluation of a condition C is typically a recursive process since it may involve

further (conditional) rewrites in order to normalize C to true.

Under appropriate coherence conditions [Duran and Meseguer, 2012] on
the rewrite theory, a rewrite step s —g/f t modulo E on a term s can be
implemented without loss of completeness by applying a rewrite strategy that
involves the repeated application of the two following basic steps [Duran and
Meseguer, 2012]:

32 2. Preliminaries

1. Equational simplification of s in A modulo B, that is, reduce s using
— s until the canonical form with respect to A modulo B (s [a) is
reached;

2. Rewrite (s |4) in R modulo B to t’ using —x 5, where t’ € [t].

Note that, for the one-step rewrite relation — /¢ to be well-defined, in the
remainder of this thesis we assume that the evaluation of all conditions for all
conditional rules in R terminates.

An execution trace (or computation) C for s, in the conditional rewrite theory
(X, A U B, R) is then deployed as the (possibly infinite) rewrite sequence

* *
S0 —AB Solag —RB S1 —AB $1laAB—RB ---

that interleaves — g rewrite steps and —g g rewrite steps following the strat-
egy mentioned above. After each conditional rewrite step using — g, in gen-
eral, the resulting term s;, i = 1,...,n, is not in canonical form. Therefore,
it is normalized before the subsequent rewrite step with —y g is performed.
Also, in the precise strategy adopted by Maude, the last term of a finite com-
putation is finally normalized before the result is delivered. By ¢, we denote
the empty computation. Therefore, any computation can be interpreted as a
sequence of juxtaposed —gp and —, transitions, with an additional equa-
tional simplification —7 (if needed) at the beginning of the computation as
depicted below.

- * * *
So —a Solap —RB S1 —ap Silap —RB S2 —ap S2lap---

g

By coercion, any term in canonical form that cannot be further rewritten via
—g,B is also considered to be a computation.

We define a Maude step from a given term s as any of the sequences s —,
slag—rp t —>*A’B tla g that head the non-deterministic Maude computations
for s. Note that, for a canonical form s, a Maude step for s boils down to
s —rp t —ap tlap. We define mS(s) as the set of all possible Maude steps
stemming from s in R. Finally, by length(C) we define the number of Maude
steps that are contained in the computation C.

2.3 Generalization modulo Equational Theories

A key component of the semantic techniques proposed in this thesis is
based on generalization (also known as anti-unification) [Plotkin, 1970]. A

2. Preliminaries 33

generalization of a pair of terms ty, t; is a triple (g, 01, 0;) such that g6; = t;
and g0, = t,. The triple (g, ¢1, d2) is the least general generalization (Igg)>
of the pair of terms t;, t,, written Igg(t, t,), if it is the least general expression
t such that both t; and t; are instances of t under appropriate substitutions. In
other words, (i) (g, 1, d2) is a generalization of t;, t; and (ii) for every other
generalization (g’,{,15) of t;,t,, g’ is more general than g. For the free
theory, the lgg of a pair of terms is unique up to variable renaming [Lassez
et al., 1988].

The notion of least general generalization can be extended to work mod-
ulo order-sorted equational theories, where function symbols can obey any
combination of associativity, commutativity, and identity axioms (including
the empty set of such axioms) [Alpuente et al., 2009b, Alpuente et al., 2008,
Alpuente et al., 2014d]. Unlike the untyped case, for a pair of terms t;, t,
there is generally no single 1gg, due to order-sortedness or to the equational
axioms. Instead, there is a finite, minimal, and complete set of 1ggs (denoted
by Igge (t1, t2)) so that any other equational generalization has at least one of
them as an instance. Given any element g of the set Igg; (1, t2), we define
the function 7t from VPos(g) to Pos(t;) that provides an injective correspon-
dence between (the position of) any variable in g and (the position of) the
corresponding term in t;; we need this because computing modulo equational
axioms may cause the term structure of g to be different from both t; and t,.

By l/gZ;E(thtz), we denote the pair (G, 7t) where G = (g, ¢4, d3) is ar-
bitrarily chosen among those Iggs in the set Igg (t1, t;) that have fewer vari-
ables, and 7t is the corresponding position mapping from positions of g’s vari-
ables to the relative subterms of t;.

Example 1. Let f be an associative and commutative symbol. Let t; and t,
be terms such that t; = f(b, c,a) and let t; = f(d, a,b). Then, a possible Igg
modulo the associativity and commutativity of f is (f(a, b, X),{X/c},{X/d}) €
lgge (t1,2), where X is a variable. Note that both t; and t, are syntactically
different from f(a, b, X), and the value 7t(3) = 2 indicates the subterm c of t;
that is responsible for the mismatch with t,.

2 Also known as most specific generalizer (msg) or least common anti-instance (Icai).

Chapter 3

The Maude
System and Language

Maude is a high-performance declarative language and system that natu-
rally implements rewriting logic, which is a logic of change that supplements
an extension of the membership equational logic by adding rewrite rules that
are used to describe non-deterministic transitions between states.

This chapter summarizes the most relevant features of Maude. The chapter
is organized as follows. Section 3.1 briefly summarizes the origins of Maude.
Section 3.2 addresses some relevant syntactic, semantic, and operational tech-
nicalities of the current release of Maude, and Section 3.3 extends the dis-
cussion to Full Maude, which is the (augmented) implementation of Maude
written in Maude itself.

3.1 Origins of Maude

According to [Clavel et al., 2015], Maude’s birth dates back to the early
’90s at the Logic and Specification Group inside SRI International in Menlo
Park, California. After years researching on order-sorted equational logic
[Goguen and Meseguer, 1992], José Meseguer proposed a new (sound and
complete) logic called rewriting logic [Meseguer, 1992]. This new logic is
an extension of the former order-sorted equational logic with the addition of
new rules that model non-determinism, hence providing a general framework
for unifying a wide variety of models of concurrency as well as pure declara-
tive support for concurrent object-oriented programming [Clavel et al., 2015].
Following the path of order-sorted equational logic, which was implemented
by defining a new programming language called OBJ3 [Goguen et al., 1988],
rewriting logic led to the creation of its own language: Maude.

36 3. The Maude System and Language

Although [Meseguer, 1992] already provided the syntax and operational
and denotational semantics of Maude from the very begining, its first imple-
mentation would be delayed for a few years, just until the arrival of Steven
Eker and Manuel Clavel to SRI International. In 1996, a preliminary version
of Maude was presented at the International Workshop on Rewriting Logic
and its Applications (WRLA) [Clavel et al., 1996], but only in 1999 the first
version of Maude (i.e., Maude 1) was publicly released after being presented
at the International Conference on Rewriting Techniques and Applications
(RTA) [Clavel et al., 1999].

Full Maude [Duran, 1999, Clavel et al., 2007] is an extension of Maude
written in Maude itself. The success of Full Maude as a test field for extending
Maude itself led to the distinction between the two levels of Maude to avoid
any possible ambiguity. Ever since there has been a distinction between Core
Maude, which is the official Maude release implemented in C++, and Full
Maude, which refers to the (also official) Maude implemented in Maude.

The last version of Maude is Maude 2.7.1, which includes as major novel-
ties the efficient built-in implementation of variant-based unification and nar-
rowing [Duran et al., 2016], and support for the external satisfiability modulo
theories (SMT) solver CVC4 [Barrett et al., 2011].

3.2 (ore Maude

This section provides a basic overview of Core Maude, which is the stan-
dard release of Maude implemented in C++, from its syntax to some interest-
ing technicalities that are relevant to this thesis. For a more comprehensive
overview, please refer to Part I of [Clavel et al., 2016].

3.2.1 Effective Parsing of Inputs

One of the many virtues of Maude is its flexiblity. Specifically, Maude
allows users to define their own syntaxes, which can include mixfix opera-
tor declarations. This feature grants users the ability to specify a problem in
countless different ways ranging from a more sober, traditional way to artis-
tic notations that verge on the esoteric programming. Still, parsing in Core
Maude is very effective thanks to a combination of different technologies that
are used in stages. Roughly speaking, the internal mechanism that allows
Maude to parse inputs comprises, in this order, the following procedures:

3. The Maude System and Language 37

1. First of all, a flex/bison-based syntactic parser is executed, which inter-
prets the input according to the basic syntax of Maude.

2. Then, a grammar generator creates a context-free grammar based on the
user’s signature and mixfix operators defined.

3. Finally, parser generator MSCP! [Quesada, 1997] produces a specific
parser for that context-free grammar, which can be used to finish inter-
preting the input.

Though allowing mixfix declarations empowers the language capabilities,
it also encourages the appearance of ambiguities. Nevertheless, Maude deals
with them by using a mechanism based of precedence values and gathering
patterns, which are explicitly assigned to an operator by means of the prec and
gather attributes (see Section 3.2.8 of this document) or assigned with default
values following the rules described in Sections 3.9.1 and 3.9.2 of [Clavel
et al., 2016].

3.2.2 Basic Syntax

Modules, sorts, and operators in Maude are named by using identifiers,
which are formed as a finite sequence of ASCII characters with the following
restrictions:

» Characters ‘{’, ‘}’, “C,)7, ‘[’, ‘1°, *,’, and the blank space are spe-
cial in the sense that they break the sequence of characters into several
identifiers.

= The backquote character ‘*’ is the escape character, which indicates
that the next character does not break the sequence. Hence, it can only
appear before any of the special characters mentioned above.

Moreover, when dealing with identifiers several limitations can arise, which
are not discussed in this document (e.g., the use of the underscore character _’
when declaring operators). They are, however, in-depth explained in [Clavel
et al., 2016].

IMSCP is named after the Maude Syntactic Constraint Propagation algorithm.

38 3. The Maude System and Language

3.2.3 Modules

Modules in Maude are the top-level entities of specification and program-
ming. They group all the necessary information to describe a system (by
means of syntax declarations) and its properties (by means of statements).
Core Maude distinguishes between two kinds of modules: functional mod-
ules and system modules. Roughly speaking, functional modules define data
types and operations by means of equational theories while system modules
specify rewrite theories.

Functional Modules

Functional modules define data types and operations on them by means of
membership equational theories, which are assumed to be Church-Rosser and
terminating, which ensures that the process of reducing a term by applying
all possible equations to it eventually stops and its result is always the same
for the same input term and program, regardless of the order of application
of membership axioms and/or equations. Functional modules are declared by
using the following scheme:

fmod Moduleld is
ImportList SortSet SubsortDeclSet OpDeclSet
MembAxSet EquationSet

endfm

where Moduleld is either the identifier of the (non-parameterized) module or
the identifier of the (parameterized) module together with a list of parameter
declarations, ImportList is a list of module importations?, SortSet is a set of
sorts declarations, SubsortDeclSet is a set of subsorts declarations, OpDeclSet
is a set of operator declarations, MembAxSet is a set of (conditional) member-
ship statements, and finally EquationSet is a set of (conditional) equational
statements.

System Modules

System modules are rewrite theories where transitions between states are
modeled by means of rules. Syntactically, system modules are but functional

2Since functional modules correspond to equational theories, they do not contain rules.
Hence, functional modules can only import other functional modules or functional theories,
but not system modules or system theories.

3. The Maude System and Language 39

modules with the addition of rule statement declarations. Therefore, dec-
laration of system modules is performed by using the following analogous
scheme:

mod Moduleld is
ImportList SortSet SubsortDeclSet OpDeclSet
MembAxSet EquationSet RuleSet

endm

where Moduleld, ImportList, SortSet, SubsortDeclSet, OpDeclSet, MembAxSet,
and EquationSet have the same meaning as in functional modules declarations,
and RuleSet is a set of (conditional) rule statements.

Module Importation

Maude allows users to define module hierarchies®, which facilitate the
reusability of components and the understanding and debugging of programs
by keeping modules in a relatively small size. Module hierarchies are accom-
plished by importing modules into other modules as submodules, being the
submodule relation transitive.

In Maude, modules can import other modules in three different ways by
using the protecting, extending, and including keywords (or their respec-
tively abbreviations pr, ex, and inc) followed by a module expression:

pr ModuleExpression .
ex ModuleExpression .
inc ModuleExpression .

where ModuleExpression can be the identifier of a module or the result of a
module operation such as renaming of a module, instantiation of a parameter-
ized module, summation of modules, etc.

The main differences between all three importation modalities can be sum-
marized as follows.

= The protecting mode indicates that if a module A imports a module
B, for any sort s of B, A should not add any new ground terms of sort
s in canonical form. Moreover, A should not have any declaration that
makes two distinguishable terms of B indistinguishable in A.

3 A module hierarchy is an acyclic graph of module importations.

40 3. The Maude System and Language

= The extending mode has weaker constraints than the previous mode,
since only the second constraint (i.e., the distinction of two previously
indistinguishable terms) is assumed to hold.

= Finally, the including mode poses no restrictions regarding these as-
pects.

Still, it is important to note that Maude does not check the satisfaction of
module importation constraints per se and it is up to the user to ensure that
they are indeed satisfied.

Predefined Modules

Maude has a standard library of predefined modules (see Figure 3.1) that
define commonly used data types (e.g., boolean, string, natural, integer, etc.)
and typical operations over them. Furthermore, some common parameterized
collections and associations of data types such as lists, sets, arrays, and map-
pings are also defined.

Maude’s predefined modules are declared at the prelude, which is auto-
matically loaded into the system at the beginning of each session so that users
can import them into their modules. By default, the predefined module BOOL
is included as a submodule in any user-defined module, while the inclusion of
the rest of predefined modules has to be explicitly stated.

Parameterized Modules

In Maude, parameterized modules are (system or functional) modules with
one or more parameters, each of which being expressed by means of a theory.
They are declared by using the same module syntactic schemes previously
described. For example, a parameterized system module can be declared as
follows:

mod Moduleld{ ParameterDeclList } is ... endm

where Moduleld is the identifier of the module and ParameterDeclList is a list
of parameter declarations of the form X :: Ty, ..., X, :: T, withn > 1, where
each tuple X; :: T,, is a parameter declaration consisting of an identifier X; and
an expression T; that returns a theory.

As for their instantiations, parameterized modules are accomplished by
using theories and views, which are succinctly addressed in Sections 3.2.4

3. The Maude System and Language 41

and 3.2.5 of this manuscript. A much more extensive description about the
parameterizing capabilities of Maude is available in Section 6.3 of [Clavel

et al., 2016].
CONVERSION

RPN
NS

o) ~ ()~ ()

t

o o[)

7 XN

[TRUTH] [BOOL-OPS]

\ /

TRUTH-VALUE

Figure 3.1: Hierarchy of predefined modules in Maude.

FLOAT]

3.2.4 Theories

Theories in Maude are the means to specify the syntactic and semantic
properties that actual parameters must satisfy for the instantiation of parame-
terized modules. Just like modules, there are two types of theories: functional
theories and system theories.

Functional Theories

Functional modules and functional theories are both membership equa-
tional logic theories. The most significant difference though is that functional
theories do not need to be Church-Rosser and terminating. However, since
theories can be executed in the same way as modules, the set of executable

42 3. The Maude System and Language

equations and membership axioms of a theory must preserve these two prop-
erties. Consequently, non-executable* equations do not need to satisfy the two
properties, but they must be identified by using the nonexec attribute in their
respectively declarations. Moreover, non-executable equations and member-
ship axioms may have right-hand sides and conditions that include variables
not appearing in their corresponding left-hand sides. Non-executable state-
ments can also have left-hand sides consisting of a single variable, which is
not usually permitted in standard term rewrite theory.

Similarly to functional modules, functional theories are declared by using
the following syntax:

fth Theoryld is
ImportList SortSet SubsortDeclSet OpDeclSet
MembAxSet EquationSet

endfth

where Theoryld is the identifier of the theory and ImportList, SortSet, Subsort-
DeclSet, OpDeclSet, MembAxSet, and EquationSet have the same meaning as
in their module declaration counterparts. Note that functional theories can not
be parameterized, hence the need for a simple identifier as a header.

System Theories

Analogously to system modules, system theories specify rewrite theories.
For execution purposes, system theories are treated just as system modules
with the exception of the non-executable rules, equations, or membership ax-
ioms labeled with the nonexec attribute, which are ignored by the rewrit-
ing and narrowing mechanisms of Maude. Nevertheless, execution of non-
executable statements can be manually achieved at the metalevel by following
user-defined strategies. As for their syntax, system theories are specified by
using the following scheme:

th Theoryld is
ImportList SortSet SubsortDeclSet OpDeclSet
MembAxSet EquationSet RuleSet

endth

“Non-executable equations can be executed in a controlled manner at the metalevel, but
they are ignored by the Maude rewrite engine.

3. The Maude System and Language 43

where Theoryld is the identifier of the theory and ImportList, SortSet, Sub-
sortDeclSet, OpDeclSet, MembAxSet, EquationSet, and RuleSet have the same
meaning as in the declaration of system modules. Similarly to functional the-
ories, note that system theories can not be parameterized either.

Theory Importation

Theories use the same importation mechanism as modules, with the ex-
ception that a theory can only import another theory in including mode.

3.2.5 Views

Views are used to describe the interpretation of a source theory in the tar-
get theory or module, that is, to specify the mapping (of sorts and operators)
from the source theory to the target theory. Since there can be multiple inter-
pretations that ensure the satisfaction of requirements of a source theory by a
target one, there can be multiple views for the same pair of (source and target)
theories, each one describing a particular interpretation. Views can be defined
according to the following syntax:

view Viewld from SourceModuleExpression to TargetModuleExpression is
SortMappingSet OpMappingSet
endv

where Viewld is the identifier of the view, SourceModuleExpression is an
expression that yields the source theory, TargetModuleExpression is an ex-
pression that yields the target theory or module, and SortMappingSet (resp.
OpMappingSet) is the set of mappings that relate sorts (resp. operators) in
the source theory to sorts (resp. operators) in the target module or theory.
Likewise, mappings of sorts from one theory to another theory or module are
specified as follows:

sort Sourceld to Targetld .

where Sourceld is the identifier of the source theory and TargetId is the iden-
tifier of the target theory or module. As for operators, their mappings can be
specified in three different ways:

op Sourceld to Targetld .
op Sourceld : TypeList -> Type to Targetld .
op SourceTlerm to term TargetTlerm .

44 3. The Maude System and Language

where Sourceld (resp. Targetld) corresponds to the identifier of the source
(resp. target) operator, TypeList is the (sorted) list of types of the arguments
of a given source operator, Type is the coarity (i.e., the type) of the same source
operator, and SourceTerm (resp. TargetTerm) is the source (resp. target) oper-
ator. Note that in the first case all operators with the same name are affected,
while in the second case operators matching a given arity and coarity and their
entire family of overloaded operators are affected.

3.2.6 Sorts, Subsorts and Kinds

Sorts are types, in particular, the types of the data and operations defined
in a specification. Though Maude has some predefined sorts declared (e.g.,
Nat, Float, Char, String, Bool, etc.) in general, types can be declared with
relative freedom. Declaration of sorts can be done either separately or jointly
by using the following syntactic constructs:

sort Sortld; .
sorts Sortld; ... Sortld,, .

where n > 1 and each sort of the form SortId; is the identifier of a newly de-
fined type. Sorts can also be partially ordered® by means of subsort relations,
which are defined as follows:

subsort Sortld; < Sortld, .
subsorts Sortld; ... Sortld; < ... < Sortld; ... Sortldy .

where 1 < i < j < k. In the first case, where a single subsort relation is
defined, Sortld, is declared a subsort of Sortld,, whereas in the second case,
where multiple subsort relations are defined, sorts Sortld; ... Sortld; are de-
clared subsorts of sorts Sortld; ... Sortldy.

A side-effect of partially ordering the set of sorts of a specification is
that they are arranged into disjoint, ordered sets called connected compo-
nents, which define equivalence classes named kinds. In Maude, kinds are
named by encasing the identifier of their top sort (if it is unique) or the list
of all their top sorts (if there are more than one) with brackets. For exam-
ple, Figure 3.2 shows the (six) connected components, namely [DecFloat],

>To define a partial order among the set of sorts, the declaration of subsorts must not
contain cycles.

3. The Maude System and Language 45

Qid Rat

DecFloat Bool

[FindResult] [Int] [NzRat]
N N e
Fw J] Char

| Zero I NzNat

Figure 3.2: Partial order of sorts declared in the prelude of Maude.

[Float], [Qid], [Rat,FindResult], [Bool], and [String], resulting from
the sort and subsort declarations inside the predefined modules of Figure 3.1.
Note that all those connected components have unique top sorts except for
[Rat,FindResult], which has two, namely Rat and FindResult.

3.2.7 Variables

Variables in Maude are specified inline by concatenating an identifier, a
colon, and the sort or kind in which they are constrained to range over (e.g.,
X:Nat declares a variable named X of sort Nat and Y: [Nat] declares a variable
named Y of kind [Nat]).

Variables can also be declared inside modules® so that they can be used in
the declaration of memberships, equations, or rules. Declaration of variables
inside modules is thus accomplished by using the following constructs:

var Variableld, : Sort .
var Variableld; : Kind .

vars Variableld, ... Variableld,, : Sort .

®Note that the declaration of variables inside modules is just syntactic sugar, since they
are not part of modules (see Section 3.2.3). Hence, they are translated into inline declarations
at the metalevel.

46 3. The Maude System and Language

vars Variableld; ... Variableld,, : Kind .

where n > 1, each Variableld; is the name of a new variable, and Sort and
Kind are respectively the sort and kind associated with the variable.

Finally, note that variables declared inside modules can be reused in the
declaration of different equations, membership axioms, or rules of the same
module, but then they are considered to be different variables even though they
share the same identifier and sort or kind. Nevertheless, multiple occurrences
of a given identifier of a variable inside a (conditional) statement refer to the
same variable.

3.2.8 Operators

Similarly to sorts or variables, operators can be declared either individually
or in groups, provided they share arity and coarity.

Operators with zero arity are named constants’, and their syntax is as fol-
lows:

op Operatorld; : -> Sort [OperatorAttrs 1 .
ops Operatorld; ... Operatorld,, : -> Sort [OperatorAttrs]

where n > 1, each Operatorld; is the name of a new constant, Sort is the respectively
coarity, and OperatorAttrs is an optional list of (operator) attributes. Furthermore,
operators with one or more arguments can be declared by using the following scheme:

op Operatorld; : Sorty ... Sort,, => Sort [OperatorAttrs]
ops Operatorldy ... Operatorld,, : Sort; ... Sort,, => Sort [OperatorAttrs]

where m > 1, n > 1, each Operatorld; is the name of an operator, each Sort; is the
type of the i-th argument of the operator, Sort is the coarity, and OperatorAttrs is also
an optional list of (operator) attributes.

Operator Attributes

Maude allows the user to provide additional syntactic, semantic, or operational
information about an operator by introducing some predefined attributes in their dec-

"Note that constants in Maude do not share the traditional concept of immutability given
in most imperative languages, since they can be rewritten into other terms by means of the
application of appropriate equations or rules.

3. The Maude System and Language 47

larations. The list of admissible operator attributes that are relevant to this thesis
together with a brief description is as follows:

assoc indicates that the operator has the associativity property.
comm indicates that the operator has the commutativity property.
idem indicates that the operator has the idempotency property.

id: Term indicates that the operator has the identity property, with Term being
the identity element.

left id: Term, indicates that the operator has the left identity property, with
Term being the left identity element.

right id: Term, indicates that the operator has the right identity property,
with Term being the right identity element.

iter, short for iterated operator, allows very large stacks of unary operators
to be easily introduced or manipulated. For example, given an iterated, unary
operator f, the term f (f(f(X:Nat))) is equivalent to f*3(X:Nat).

ctor, indicates that the operator is a constructor®.

poly (SortSeq) stands for polymorphic operator, where SortSeq is a (non-
empty) sorted® sequence of natural numbers, each of them identifying the po-
sition of a universal argument in the operator declaration (i.e., an argument
that is not constrained to a particular sort and that is declared to be of the spe-
cial sort Universal). For example, op if_then_else_fi : Bool Universal
Universal -> Universal [poly (2 3 @) 1]declaresa polymorphic 3-ary
operator, namely if_then_else_fi whose second and third arguments are of
sort Universal, as well as its coarity.

format (InsWord), where InsWord is an instruction word based on an alphabet
consisting of symbols ‘d’ (for default spacing), ‘+’ (for increasing the indent
counter), ‘-’ (for decreasing the indent counter), ‘s’ (for space), ‘t’ (for tab),‘i’
(for the number of spaces determined by the indent counter), and ‘n’ (for new-
line), allows to define how to format the color and white space of terms when
printing them (see Section 4.4.5 of [Clavel et al., 2016]).

8Note that Maude does not check for the validity of this claim. Nevertheless, it can be
easily checked by using the Maude’s Sufficient Completeness Checker (SCC) [Hendrix et al.,

2005].

9The order established in the operator declaration is as follows: the first argument is asso-
ciated with position one (and so on) and the coarity, which is always stated in the last position,
is associated with position zero.

48

3. The Maude System and Language

prec N, where N is a natural number that states the precedence value of the
operator. This attribute allows (in combination with the gather attribute) to
reduce the number of possible ambiguities when parsing.

gather (SortSeq), where SortSeq is a sequence of symbols ‘E’, ‘e’, or ‘&’, each
of which restricts the precedence value of a term to be admissible as a corre-
sponding argument. Specifically, ‘E’ indicates that the argument must have a
precedence value lower than or equal to the operator, ‘e’ that the precedence
value of the argument must be strictly lower, and ‘& allows any precedence
value for a term to be admissible as the argument.

memo, which provides an improvement in efficiency by instructing Maude to
memoize the results of equational simplification for those subterms that have
the operator at their respectively top positions, so that the reduction result can
be swiftly and directly retrieved in subsequent computations.

metadata Str, where Str is a term of sort String, allows users to associate
useful information with the operator.

special is reserved to bind built-in operators that are defined in the prelude
by using Maude syntax with their appropriate C++ code and functionality.

From a syntactic point of view, (operator) attributes can be combined with abso-
lute freedom. However, from a semantic point of view, there are some restrictions
and side-effects that must be considered. Following are some of relevance:

Arguments of binary operators that are declared with either assoc, comm, id,
or idem must belong to the same kind.

The attribute idem can not be used in combination with assoc. However,
Maude enforces compliance with this constraint by ignoring the former at-
tribute (while keeping the latter) when needed.

Only the first identity attribute (i.e., id:, left id:, or right id:) appear-
ing in an operator declaration is considered. Subsequent identity occurrences,
although different, are simply ignored.

Combining either left id: orright id: with comm converts the former two
attributes into id:.

Membership axioms can interact in undesirable ways with operators decorated
with the assoc or iter attributes (see Section 14.2.8 and 14.2.9 of [Clavel
et al., 2016]).

It is recommended not to modify operators declared to be special in any way,
since it might produce serious stability problems.

3. The Maude System and Language 49

3.2.9 Statements

Statements in Maude are either membership axioms, equations, or rules, all of
which may be conditional or not. In the following there are described all three types
of statements together with a list of admissible (statement) attributes and conditions.

Membership Axioms

Membership axioms specify that terms that are matched by a given pattern must
have a given sort. They can be unconditional as well as conditional. Unconditional
membership axioms are declared by using the following constructs:

mb Term : Sort [StatementAttrs 1 .
mb [Label 1 : Term : Sort [StatementAttrs]

where Term is a pattern, Sort is the sort associated to terms that are matched by Term,
StatementAttrs is an optional set of statement attributes (shown below), and Label is
the identifier of the membership statement. As for conditional membership axioms,
they are declared in an analogous manner:

cmb Term : Sort if EqCond [StatementAttrs]
cmb [Label] : Term : Sort if EqCond [StatementAttrs 1 .

where Term, Sort, and Label have the same meaning as in their unconditional coun-
terparts and EqCond is an equational condition.

Finally, remember that membership axioms can interact in undesirable ways with
operators having the assoc or i ter attributes (see Section 14.2.8 and 14.2.9 of [Clavel
etal., 2016]). Moreover, the use of a single variable pattern in a membership statement
may lead to non-termination.

Equations

The most relevant characteristic of equations in Maude is that they are required to
be Church-Rosser and terminating'®. Unconditional equations are declared by using
the following schemata:

eq Termy,s = Termy,s [StatementAttrs]

19Except for those equations holding the nonexec attribute, which are simply ignored by
the internal simplification mechanism of Maude.

50 3. The Maude System and Language

eq [Label 1 : Termy,s = Termy,s [StatementAttrs]

where Termy,s and Term,s are respectively the left-hand side and right-hand side
terms'! of the equation, StatementAttrs is an optional list of (statement) attributes,
and Label is the identifier of the equational statement.

Equations can also be conditional, which are declared as follows:

ceq Termys = Termyys if EqCond [StatementAttrs]
ceq [Label 1 : Termys = Termyns if EqCond [StatementAttrs]

where Termyns, Term.ys, StatementAttrs, and Label have the same meaning as in the
declaration of unconditional equations, and EqCond is an equational condition.

Rules

Rules are used to model (non-deterministic) transitions between states in a sys-
tem. Hence, unlike equations, rules are not required to be confluent and terminating.
The syntax for declaring unconditional rules is as follows:

rl Termy,s => Termyns [StatementAttrs]
rl [Label 1 : Termy,s => Termyns [StatementAttrs]

where Termyns and Termyy are respectively the left-hand side and right-hand side
terms of the rule, StatementAttrs is an optional list of statement attributes, and Label
is the identifier of the rule statement.

Similarly, conditional rules are declared by using the following syntax:

crl Termy,s => Term,,s if Cond [StatementAttrs]
crl [Label 1 : Termys => Termu,s if Cond [StatementAttrs]

where Termyys, Term,ys, StatementAttrs, and Label have the same meaning as in the
declaration of unconditional rules and Cond is a condition.

Statement Attributes

Similarly to operators, statements can be further defined by adding attributes to
their declarations. As for Maude 2.7.1, there are six admissible statement attributes:

Note that, since equations define equalities, both Termy;,s and Term,,s are required to
belong to the same equivalence class (i.e., the same kind).

3. The Maude System and Language 51

= label Qid, which facilitates debugging and tracing by associating a statement
with an identifier. Note that statements can also be labeled by declaring them
using the sugared syntactic constructs discussed above. Nevertheless, in case
of discrepancy between the identifier stated by the sugared declaration of the
statement and the identifier stated by this attribute, the former prevails.

= metadata Str, where Str is a term of sort String, allows users to associate
useful information with the statement.

= nonexec, which states that the rewriting and narrowing mechanisms of Maude
must ignore the statement. Nevertheless, as mentioned before, non-executable
statements can be executed at the metalevel in a controlled manner.

= owise, short for otherwise, alters the (non-established) order of application of
equations while reducing a term to its canonical form so that those equations
with the owise attribute are always considered as the last option. Therefore,
this attribute can only be used in the declaration of equations. Moreover, note
that the use of owise directly affects the Church-Rosser and termination prop-
erties of equational definitions, which must be preserved in any case.

» print Str; Vary, ..., Stry, Vary, where n > 1, each Str; is a term of sort String,
and for all i in 1..n Varj is a variable in the domain of the statement (e.g., rl

f(X,Y) => g(X,Y) [print "VarX = " X, "VarY = " Y 1), prints useful
information about the values of variables X and Y whenever the statement is
executed.

= variant, which is used to identify those equations that are to be used for vari-
ant generation or variant-based unification. Note that, because of the restric-
tions imposed by the current implementation of variant generation in Maude,
this attribute can only be used in the declaration of non-conditional equations.
Moreover, it is also incompatible with the use of the owise attribute.

Statement Conditions

Let R = (X, E,R) be a conditional rewrite theory, with E = A U B, where A is
a set of conditional equations and membership axioms and B is a set of equational
axioms (e.g., associativity, commutativity, and identity) associated with some binary
operators in the signature 2. Let o be the matching substitution computed in the ap-
plication of a conditional statement to a term. Then, an admissible condition for such
statement is either a single statement or a conjunction of statements specified by using
the (associative) connective /\ as follows:

52 3. The Maude System and Language

Cond; /\ ... \ Condy,
where each statement Cond; is either:

= an ordinary equation of the form Term,, = Term,,, which only evaluates to true
if (Termm(r)lA,B = (Termp G)lA,B,

= an abbreviated equation Term, with Term a term in the [Bool] kind, which
abbreviates the equation Term = true,

= a matching equation of the form Term,, := Term,, which evaluates to true if
Term, o matches (Term,,, o)A g. Note that, by matching both terms, the fresh
variables of Term, (i.e., those variables that do not appear in the left-hand
side of the conditional statement) become instantiated. Also, for this match to
decide the equality with (Term,,)| s, then Term, must be a A-pattern, that
is, a term t such that for every substitution ¢, if x¢ is a canonical form with
respect to A modulo B for every x € Dom(¢), then t¢ is also a canonical form
with respect to A modulo B.

= or arewrite expression Term,, => Term,, that evaluates to true if there exists
a computation Termy, o —% JE Term;, such that Term, o matches Term, . Note
that, as in matching equation conditions, the possible fresh variables of Term,,
become instantiated if the rewrite condition finally evaluates to true.

It is important to remark that the first three types of conditions are equational
conditions, which can be freely used in the declaration of all types of conditional
statements, whereas the last type of condition is a rewrite expression, which can only
be used in the declaration of conditional rules. Moreover, although conditions can be
listed in any order regardless of their type, operationally speaking the order is very
much relevant, since the evaluation of such conditions is performed from left to right,
and so is done the binding of possible fresh variables appearing in matching or rewrite
conditions, which may affect the final result.

3.3 Full Maude

For the sake of maximizing its expressiveness, Maude was endowed with metapro-
gramming capabilities from the very beginning. In practice, Full Maude is much more
than just the implementation of Core Maude in the Maude language. It is an extended
version that has been proved to be notably useful as a test field in the development of
Maude by allowing the developers to define new features with reasonably low cost,
which are then ported to Core Maude when they become mature enough.

3. The Maude System and Language 53

The rest of this section briefly addresses the main features of Full Maude in regard
to this thesis, from the basic insights to the object-oriented improvements it offers.

3.3.1 Basic Insights

Here are presented two of the most relevant characteristics of Full Maude, i.e.,
the use of the loop module of Core Maude to mimic the interactive capabilities of the
Maude interpreter and the module database, which also mimics the persistence of the
original system.

Using the Loop

To mimic the interaction capabilities of the Maude system, Full Maude makes
use of the LOOP-MODE module of Core Maude, which provides support for basic in-
put/output interaction by means of a generic read-eval-print loop. As simple as pow-
erful, the LOOP-MODE module is actually part of Maude’s prelude and is defined as
follows:

mod LOOP-MODE is
protecting QID-LIST .
sorts State System .
op [_,_,_] : QidList State QidList -> System
[ctor special (
id-hook LoopSymbol
op-hook qidSymbol (<Qids> : ~> Qid)
op-hook nilQidListSymbol (nil : ~> QidList)
op-hook qidListSymbol (__ : QidList QidList ~> QidList))
1.

endm

As shown above, LOOP-MODE consists of the declaration of a single, special ternary
operator [_, _, _] that holds all the data needed for such interaction. This operator is
called the loop object and its arguments are, in this order, the input stream, the state
of the loop, and the output stream. There are some limitations though. Currently, the
input stream is inevitably linked to Maude’s terminal, thus leading to some ambiguity
problems. Specifically, the Maude system has to distinguish which inputs should
be interpreted by Core Maude and which by the Maude program that has activated
the loop (e.g., Full Maude). To workaround this problem, Maude requires an active
distinction between inputs by forcing to enclose with parenthesis those inputs that
are to be interpreted within the loop. However, this clever solution implies losing

54 3. The Maude System and Language

the advantages that the highly efficient parser of Maude offers and painfully slows
the parsing process for very large inputs such as execution traces. Nevertheless, this
issue can be easily solved by implementing a small input framework that is discussed
in Section 7.3.2 of this thesis.

Module Database

By taking advantage of the above mentioned loop object, Full Maude is capable
to maintaining a semi-persistent'? database in which modules can be easily stored
for later access. Equally interesting is that modules loaded in Core Maude prior to
the execution of Full Maude can also be freely accessed from within the later, which
allows users to combine both Core and Full Maude’s declared modules to specify their
programs.

3.3.2 Object-Oriented Programming

Object-oriented programming is a well known programming paradigm that aims
to facilitate the modeling of systems by providing some conceptual advantages similar
to those of human reasoning. In the following, the section presents the most relevant
characteristics that Full Maude provides in order to easily implement object-oriented,
concurrent systems.

Object-Oriented Modules

In addition to supporting both functional and system modules, Full Maude ex-
tends Core Maude with a new type of modules, namely object-oriented modules.
This extension is just syntactic sugar, since object-oriented modules are internally
transformed into system modules for execution purposes. Still, object-oriented mod-
ules provide interesting conceptual advantages to users when defining object-oriented
systems. The declaration of object-oriented modules is performed by means of the
following syntactic scheme:

omod Moduleld is
ImportList SortSet SubsortDeclSet
ClassDeclSet SubclassDeclSet OpDeclSet MsgDeclSet
MembAxSet EquationSet RuleSet

endm

12The information enclosed in the database is inevitably lost once the loop is broken and
the corresponding loop object destroyed.

3. The Maude System and Language 55

where Moduleld is either the identifier of the module or (in case of parameterized
modules) an expression consisting of an identifier together with a list of parameter
declarations, ImportList is a list of module importations, SortSet is a set of sorts dec-
larations, SubsortDeclSet is a set of subsorts declarations, ClassDeclSet, is a set of
class declarations, SubclassDeclSet, is a set of subclass declarations, OpDeclSet is a
set of operator declarations, MsgDeclSet, is a set of message declarations, MembAxSet
is a set of (conditional) membership statements, EquationSet is a set of (conditional)
equational statements, and finally RuleSet is a set of (conditional) rule statements.

Objects

An object in Full Maude is a term of the form < Oid : Cid | Attry, ..., Attry, >,
with n > 0, where Oid is the identifier of the object, Cid is the class of the object, and
each Attr; is an attribute, a tuple of the form AttrName : AttrValue.

As mentioned above, object-oriented modules offer a more convenient syntax
and conceptual advantages, but they are internally transformed into system modules
for execution purposes. A side effect of this translation is that positions in object
terms can be easily misinterpreted since each attribute AttrName of sort AttrSort is
automatically translated into a term of sort Attribute by dynamically introducing
ad-hoc unary operators (one per attribute) of the form

AttrName" : _ : AttrSort -> Attribute

as illustrated in the following example.

Example 2. Consider the following Full Maude object
< 'A1l : EconomyCar | available : true , rate : 30 >

that models a car with identifier ' A1, class EconomyCar, and two attributes: a Boolean
attribute available that indicates whether the car is available for renting, and an
integer attribute rate that stores the rental price per day.

Intuitively, we can wrongly state that the value true of attribute available ap-
pears at position 3.1.2 of the term but its position is 3.1.1.

As pointed out, object-oriented modules in Full Maude are translated into Core
Maude system modules for execution purposes. For this example in particular, the
attributes available and rate are automatically translated by using the following
1-arity operator declarations that are dynamically created by Full Maude:

op 'available':_ : 'Bool -> 'Attribute [gather('&) 1]
op 'rate':_ : 'Nat -> 'Attribute [gather('&)]

56 3. The Maude System and Language

A graphical, meta-level® representation of the transformed term is depicted in
Figure 3.3. Note that the value true of the attribute available is addressed by
position 3.1.1, which is not obvious by only looking to the source-level representation
of the original term.

< i | >
A
|
I]]
''Al.Qid 'EconomyCar.EconomyCar e
1 2 3
|
l 1
'available™:_ 'rate”:_
3.1 3.2
'true.Bool 's_"30
311 3.21
'0.Zero
3.2141

Figure 3.3: Positions of the car object of Example 2.

(lasses and subclasses

Classes are defined by using the keyword class, followed by the name of the
class, a bar, and a list of attribute declarations separated by commas:

class ClassName | AttrName; : Sorty, ... , AttrName,, : Sort, .
Class names are considered to be a particular case of sort names. Therefore, class
inheritance is directly supported by Maude’s order-sorted type structure. A subclass

declaration is an expression of the form

subclass ClassName; < ClassName; .

13By using the meta-level notation, we can easily and unequivocally identify the arity of
each operator, with the underscores indicating the exact place of its arguments in the mixfix
notation.

3. The Maude System and Language 57

where ClassName; and ClassName; are the names of the classes. Moreover, multiple
inheritance is also supported, allowing a class to be defined as a subclass of several
classes.

Messages

Messages are the elements that provide communication between objects. Mes-
sages do not have a fixed syntax, which is usually defined by the user. Their only
requirement is that the first argument of a message is the object identifier of its des-
tination object. Messages are thus declared by using the msg keyword as follows.

msg Messageld : Objectldges; Sorty ... Sort, =>Msg .

where n > 0, Messageld is the name of the message, ObjectIdges is the object iden-
tifier of the destination object, and Sort, ... Sort, is a (possibly empty) list of sorts.

Chapter 4

Inspection of
Rewriting Logic Computations

Dynamic analysis is crucial for understanding the behavior of large, often com-
plex, software systems. Dynamic information is typically represented using execution
traces whose analysis is almost impracticable without adequate tool support. Exist-
ing tools for analyzing large execution traces commonly rely on a set of visualization
techniques that facilitate the exploration of the trace content. Common capabilities
of these tools include stepping the program execution while searching for particular
components. Program animation or stepping refers to the very common debugging
technique of executing code one step at a time, allowing the user to inspect the pro-
gram state and related data before and after the execution step. This allows the user
to evaluate the effects of a given statement or instruction in isolation and thereby gain
insight into the program behavior.

This chapter introduces an interactive program animation technique for the under-
standing and debugging of rewriting logic computations together with an instrumen-
tation technique that aims to uncover equational and axiomatic steps that are usually
hidden within Maude’s rewrite machinery. The chapter is organized as follows. Sec-
tion 4.1 introduces the two running examples that are used in the thesis to facilitate
the understanding of the main notions and demonstrations. Section 4.2 presents a
technique for instrumenting Maude steps that uncovers equational simplification and
algebraic axiomatic steps and greatly facilitates the understanding of Maude execu-
tions. Section 4.3 formalizes an exploration technique that interactively constructs
computation trees stemming from an initial input term. Finally, Section 4.4 shows
an animated debugging session that exploits the techniques previously discussed in
order to detect and locate possible program misbehaviors.

4.1 The Running Examples

Since the techniques that have been developed in this thesis can be applied to both
Core Maude and object-oriented, Full Maude programs, two running examples, one

60 4. Inspection of Rewriting Logic Computations

of each aforementioned category, are introduced in this section and used throughout
the thesis.

4.1.1 AStock Exchange System

The first example consists of a (faulty) rewrite theory written in Core Maude that
specifies a stock exchange concurrent system in which traders operate on stocks via
limit orders, that is, orders that set the upper bound (price limit) at which traders want
to buy stocks. The system is modeled primarily by means of the STOCK-EXCHANGE
system module, which in turn imports parameterized and functional auxiliary mod-
ules and establishes a rather intricate hierarchy of modules and views. For the sake
of clarity, Figure 4.1 focuses on the most relevant parts of the system. Neverthe-
less, the complete Maude specification of the stock exchange model can be found in
Appendix A.

In STOCK-EXCHANGE, when the stock price equals or drops below the price limit
L, the associated order is opened and the trader buys the stocks at the current stock
price. An order is automatically closed and the associated stocks are sold either (a)
when the current stock price P exceeds the purchase price limit L plus a predetermined
profit target PT (i.e., P — L > PT), or (b) when L — P exceeds a predetermined stop
loss SL (i.e.,L — P > SL).

Within the system model, variable names are fully capitalized, while names that
begin with the symbol ' are constant identifiers for traders, stocks and orders. System
states have the form R : SS | TS | OS, where R is a natural number (called round)
that models the market time evolution, and SS, TS, and 0S are sets! of stocks, traders,
and orders, respectively.

Stocks are modeled as terms st (SID,P) with SID being the stock identifier and
P being the current stock price. Traders are modeled as tr(TID,C), where TID is the
trader identifier and C is the trader’s available capital. We consider two classes of
traders: premium traders and ordinary (or non-premium) traders. Premium traders
are allowed to buy even if they run out of capital. Premium traders are identified by
the conditional membership axiom premT (see Figure 4.1) that simply checks whether
the trader identifier belongs to the (hard-coded) list PreferredTraders, which in this
example just contains the premium trader 'T2.

Orders are specified by terms of the form ord (01D, TID,SID,L,PT,SL,ST), which
record the order identifier OID, the trader identifier TID, the stock identifier SID, the
stock price limit L, the profit target PT, the stop loss SL, and the order status ST (which
can be either open or closed). For simplicity, an order allows only a single stock to

1To specify sets of X-typed elements, the Maude parameterized sort Set{X} is instantiated,
which defines sets as associative, commutative, and idempotent lists of elements that are
simply written as (es, ..., e,). The empty set is denoted by the constant symbol empty.

4. Inspection of Rewriting Logic Computations 61

cmb [premT] : tr(TID,C) : PremiumTrader if TID in PreferredTraders .

eq LupdP] : updP(R,S, (st(SID,P),SS)) =
if (rndDelta(R * S) rem 2) ==
then st(SID,S + rndDelta(R * S)),updP(R,S + 1,SS)
else st(SID,S + (- rndDelta(R * S))),updP(R,S + 1,SS)
fi .

eq [updP-owise] : updP(R,S,empty) = empty [owise] .

eq [prefT] : PreferredTraders = 'T2 .

rl [next-rnd] :
R:SS | TS| 0S =>
R+ 1 : updP(R + 1,reSeed(R + 1),SS) | TS | 0OS .

crl [open-ord] :
R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(0ID,TID,SID,L,PT,SL,
closed),0S) =>
R : (st(SID,P),SS) | (tr(TID,C - P),TS) | (ord(OID,TID,SID,L,
PT,SL,open),0S)
if P<=1L .
crl [close-ord-SL] :
R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(0ID,TID,SID,L,PT,SL,
open),0S) =>
R : (st(SIiD,P),SS) | (tr(TID,C + L + (- SL)),TS) | OS
if P<=1L - SL .
crl [close-ord-PT] :
R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(0ID,TID,SID,L,PT,SL,
open),0S) =>
R : (st(SID,P),SS) | (tr(TID,C + L + PT),TS) | 0S
if P>=L + PT .

Figure 4.1: A fragment of the STOCK-EXCHANGE system module.

be traded at a time. This is not a limitation since multiple stocks can be managed by
multiple orders.

Basic operations of the stock exchange model (i.e., market time evolution, open-
ing and closure of orders) are implemented via the rules and equations of Figure 4.1.
The open-ord rule opens a trader order only if the stock price P falls below or is
equal to the order price limit L. When the order is opened, the stock price is sub-
tracted from the trader’s capital, thereby updating the capital. Note that, in the set of

62 4. Inspection of Rewriting Logic Computations

stocks (st(SID,P),SS), the stock st(SID,P) is distinguished from all other stocks
SS in the system.

Similarly, the close-ord-SL rule closes an order for the stock SID and removes it
from the current state when the SID stock price P falls below or is equal to the L — SL
stop loss threshold. The trader’s capital then increases by the price P that the trader
gets for the sold stocks. The close-ord-PT rule is similar and closes an order when
its stock price satisfies the profit target.

Finally, the next-rnd rule models the time evolution by simply increasing the
round number by one and then automatically updating the stock prices by means of
the function updP, which randomly increases or decreases the stock prices via the
naive pseudo-random number generator rndDelta that is re-seeded at the beginning
of each round with the round tick R + 1.

Note that the specification of STOCK-EXCHANGE given in Figure 4.1 contains two
sources of error. First, the function updP is flawed because it could generate non-
positive stock prices, which are meaningless and should be disallowed. Second,
the rule open-ord does not check if the available capital of a non-premium trader
is enough to cover the order price limit. For instance, for the ordinary Trader 'T, the
following reachability goal?

(1 : st('s,8) | tr('T,9) | ord('0,'T,'S,12,4,3,closed))
=>x R : SS | tr('T,C) | 0S

which can be solved in Maude via the search command, computes (among other
solutions) the substitution { R / 3, SS / st('S,12), C / - 3, 0S / ord('0,
'T, 'S, 12, 4, 3, open) }thatwitnesses the existence of an execution trace that
starts from the specified initial state and ends in a final state with a faulty, negative
capital C = - 3.

4.1.2 An Object-oriented Car Rental Store

The second example specifies the RENT-A-CAR Full Maude module that models
the logic of a (faulty) distributed, object-oriented, online car-rental store that is in-
spired by a specification in [Clavel et al., 2016]. Similarly to STOCK-EXCHANGE, the
source code of RENT-A-CAR is fully available for consultation in Appendix B.

Here, each state of the system is modeled as a multiset of objects e; ... en, where
each e; is:

= a customer that is registered at the store with a certain credit,

2Given a (possibly) non-ground term s, search checks whether a reduct of t is an instance
(modulo the program equations and axioms) of s and delivers the corresponding (equational)
matcher.

4. Inspection of Rewriting Logic Computations 63

class Register | rentals : Nat ,
date : Nat .

class Customer | credit : Int,
suspended : Bool .

class Car | available : Bool,
rate : Nat .

class Rental | deposit : Nat,
dueDate : Nat,
pickUpDate : Nat,
customer : 0id,
car : 0id .

class PreferredCustomer .
class EconomyCar .
class MidSizeCar .
class FullSizeCar .

subclass PreferredCustomer < Customer .
subclasses EconomyCar MidSizeCar FullSizeCar < Car .

Figure 4.2: Class and subclass declarations of RENT-A-CAR.

= a (rented or available) car,
= arenting contract, or

= the register, which models time elapsing and records the number of active car
rentals.

Figure 4.2 depicts the class and subclass declarations of the RENT-A-CAR object
module. The system considers two kinds of customers: standard customers and pre-
ferred customers (who are allowed to rent even if they run out of credit). Basic op-
erations of the store (i.e., rental and return of cars) are implemented via three rewrite
rules: 3-day-rental, on-date-return, and late-return (see Figure 4.3).

The 3-day-rental rule enables car rental only if the chosen car is available and,
at the time when the contract is signed, the customer makes a deposit (that is sub-
tracted from his credit) aimed to cover the estimated charge depending on the daily
rental rate of the car. Note that the 3-day-rental rule is flawed because it does not

64

4. Inspection of Rewriting Logic Computations

rl [new-day]

crl

crl

crl

< RG : Register | date : TODAY > =>
< RG : Register | date : TODAY + 1 > .

[3-day-rental] :

U : Customer | credit : CREDIT, suspended : false >

C : Car | available : true, rate : RATE >

RG : Register | rentals : RNTLS, date : TODAY > =>

U : Customer | credit : CREDIT - AMNT >

C : Car | available : false >

RG : Register | rentals : RNTLS + 1 >

gid("R" + string(RNTLS,10)) : Rental | pickUpDate : TODAY,
dueDate : TODAY + 3, car : C, deposit : AMNT,
customer : U, rate : RATE >

if AMNT := 3 % RATE .

AN N AN AN AN AN AN

[on-date-return]

< U : Customer | credit : CREDIT >

< C : Car | rate : RATE >

< R : Rental | customer : U, car : C, pickUpDate : PDATE,
dueDate : DDATE, deposit : DPST >

< RG : Register | date : TODAY > =>

< U : Customer | credit : (CREDIT + DPST) - AMNT >

< C : Car | available : true > < RG : Register | >

if (TODAY <= DDATE) / AMNT := RATE * (TODAY - PDATE) .

[late-return]

< U : Customer | credit : CREDIT >

< C : Car | rate : RATE >

< R : Rental | customer : U, car : C, pickUpDate : PDATE,
dueDate : DDATE, deposit : DPST >

< RG : Register | date : TODAY > =>

updateSuspension(< U : Customer | credit : (CREDIT - AMNT) +
DPST >)

< C : Car | available : true > < RG : Register | >

if DDATE < TODAY / AMNT := RATE * (DDATE - PDATE) +
(120 * RATE * (TODAY - DDATE)) quo 100 .

Figure 4.3: Concurrent rules of the RENT-A-CAR object module.

4. Inspection of Rewriting Logic Computations 65

check whether the current credit of the customer is sufficient to cover the requested
deposit, which could lead to erroneous system behaviors.

When a rented car is returned before the due date, the on-date-return rule is
applied. In this case, the customer is reimbursed for the payment of the initial deposit
and is only charged for the number of days he used the car. If the car is returned past
the due date, the late-return rule is instead applied and the customer is charged an
additional sanction that amounts to 20% of the established fee (for each day past the
due date).

op updateSuspension : Object -> Object .

ceq [suspend] : updateSuspension(
< U : Customer | credit : CREDIT , suspended : false >) =
< U : Customer | credit : CREDIT , suspended : true >
if (CREDIT < Q) .

eq [maintainSuspension] : updateSuspension(
< U : Customer | suspended : B >) =
< U : Customer | suspended : B > [owise]

Figure 4.4: Equations modeling customer suspension.

Non-preferred customers are suspended when they reach a negative credit, i.e.,
if they have a debt. Defaulter (non-preferred) customer suspension is modeled by
the equations suspend and maintainSuspension (see Figure 4.4), which applies
when the defaulter customer repeats infringement while already suspended. Note that
late-return rightly admits negative credit and deals with the issue by triggering the
function updateStatus that suspends the debtor customers who are non-preferred.
However, the equations for modeling suspension are erroneous because they cause
preferred customers to be suspended as well, which is not what is intended.

4.2 Instrumented Computations

Instrumentation is the ability to monitor the running of a process or a product’s
performance and to diagnose errors. Maude’s computations can be expanded into an
instrumented computation by explicitly mimicking each application of the matching
modulo B algorithm that is used in rewrite and equational simplification steps. In our
framework, this is done by means of the specific application of a bogus equational ax-
iom, which is oriented from left to right and then applied as a rewrite rule in the stan-
dard way. This is beacuse, typically hidden inside the B-matching algorithms, some

66 4. Inspection of Rewriting Logic Computations

pertinent term transformations allow terms that contain operators obeying equational
axioms to be rewritten into supportive B-normal forms that facilitate the matching
modulo B. In the case of AC-theories, these transformations allow terms to be re-
ordered and correctly parenthesized in order to enable subsequent rewrite steps. Ba-
sically, this is achieved by producing a single, auxiliary representative of their AC
congruence class (i.e., the AC-normal form). An AC-normal form is typically gener-
ated by replacing nested occurrences of the same AC operator by a flattened argument
list under a variadic symbol, sorting these arguments under some linear ordering and
combining equal arguments using multiplicity superscripts [Eker, 2003]. For exam-
ple, the congruence class containing f(f(o, f(, «)), f(f(y,),)) where f is an AC
symbol and subterms «, {3, and y belong to alien theories might be represented by
(o?, B3,7y), where f is a variadic symbol that replaces nested occurrences of f. A
more formal account of this transformation is given in [Eker, 1995].

As for purely associative theories, an A-normal form can be achieved by just
flattening nested function symbol occurrences without sorting the arguments. This
case has practical importance because it corresponds to lists. C-normal forms are
just obtained by properly ordering the arguments of a commutative binary operator.
Finally, for function symbols that satisfy the unit axiom U, the unity element of U is
not included in the U-normal form, and variables under a U symbol can always be
assigned the unity element through U-matching [Eker, 1995].

Then, rewriting modulo B in Maude proceeds by using the special form of match-
ing called B-matching on the internal representation of terms as B-normal forms,
where B may contain, among others, any combination of associativity, commutativ-
ity, and unity axioms for different binary operators. Moreover, at each Maude step,
the resulting term is shown in B-normal form (without multiplicity superscripts).

In the proposed framework, B-matching is simulated by means of specific “fake”
axioms that mimick the B-matching transformations of terms that occur internally
in the Maude rewrite engine. This allows these transformations to be unhidden and
explicitly revealed in the output trace. This artifice is only a means to reveal the term
transformations of subterms that are forced by the step so that any position can be
properly traced across rewrite steps.

Example 3. Consider a binary AC operator f together with a simple, standard lexico-
graphic ordering over constant symbols. Also consider the termt = f(b, f(f(b, a),c)).
Then, t matches modulo AC the left-hand side of the rule

[r] : f(f(x7 Y)» f(Z, X)) =X

with AC-matching substitutions { X / b,Y / a,Z /¢ }and{X /b,Y /¢c,Z / a}. For
the first solution, this is mimicked by the transformation sequence

fromACnf
—

f(b, f(f(b, a),¢)) L8 £ (a, b) f(f(b, a), f(c, b))

4. Inspection of Rewriting Logic Computations 67

where:

(i) the first step corresponds to a term transformation that obtains the AC-normal
form f*(a, b?,c), and

(ii) the second step corresponds to the inverse, an unflattening transformation that
delivers the A C-equivalent term f(f(b, a),f(c,b)) that syntactically matches
the left-hand side of r with substitution{ X / b,Y / a,Z / c }.

Note that an alternative unflattening transformation is possible:
(a,b%,¢) TS (£(b, c), f(a, b))

which actually delivers the second AC-matcher { X / b,Y / ¢,Z / a }. When several
B-matchers exist, we only consider those that are effectively computed by means of
the Maude internal rewriting strategy.

Roughly speaking, rewriting modulo B proceeds by using the standard form of
B-matching on B-normal forms supported by Maude, where the left-hand sides of the
rules are always normalized and the right-hand sides are (partially or totally) normal-
ized when convenient (typically, when the unity element needs to be removed).

Example 4. Consider two binary AC operators f and g and the rules
[rq] f(C,b, a) = g(C, b, a)

[r2] - f(c, f(b, a)) = g(c, g(b, a))

whose left-hand (resp. right-hand) sides are pairwise equivalent modulo B.
When the specification that contains them is loaded, the two rules are respectively
normalized by Maude into the B-equivalent rules

[ri]:f(a,b,c) = g(a,b,c)
[r3]: f(a,b,¢) = g(c,g(a,b))

Note that the left-hand side f(c, b, a) of ry is reordered as f(a, b, c) in r{, whereas
the left-hand side f(c, f(b, a)) of r, is not only reordered but also flattened as f(a, b, ¢)
inri.

As for the right-hand sides of the rules, the right-hand side g(c, b, a) of ry is
reordered as g(a, b, c) in r| whereas the right-hand side of r is not flattened in r/,
and only the subterm at position 2 (i.e., g(b, a)) is reordered; hence, the whole term
in the right-hand side of r is neither ordered nor flattened in r’,.

68 4. Inspection of Rewriting Logic Computations

function expand(s, R)

1. A=0

2. for each M € mS(s)

3. A= AUinstrument(M)
4. end for

5. return A

end

Figure 4.5: The one-step expand function.

In the sequel, when no confusion can arise, we refer to a given program’s rule and
its corresponding, internally normalized version by using the same label. Therefore,
any given instrumented computation consists of a sequence of conditional rewrite
steps using the conditional equations (—), conditional rewrite rules (—g), equa-
tional axioms, and (internal) B-matching transformations (—g). More precisely, each
rewrite step s r’ﬁ%g t (resp., s e&WA,B t) is broken down into a rewrite sequence
s —5 s’ T‘QWR,@ t’" =} t(resp., s —f s’ e&WA,@ t’ —} t), where s’ =g s and
s’ syntactically matches the (normalized) left-hand side of the equation e or rule r
that is applied in the considered rewrite step. We define the rewrite relation — as
—Rr U —a U —p. By instrument(C), we denote a function that takes a computation
C and delivers its instrumented counterpart. Nevertheless, in order to improve read-
ability, we omit B-matching transformations and the evaluation of built-in operators
when displaying Maude steps (unless explicitly stated otherwise). This is consistent
with the strategy adopted by Maude for the case of B-matching transformations, and
it is the default option in the ABETS tool (see Chapter 7).

In the following section, an inspection technique is formalized that incrementally
builds instrumented computation trees.

4.3 The Exploration Technique

Instrumented computation trees can be easily constructed incrementally by ex-
panding tree nodes (i.e., terms) starting from the root node (i.e., the initial term). For-
mally, given the term s, the expansion of s in the rewrite theory R = (£, A U B,R)
is defined by the function expand(s, R) (see Figure 4.5), which unfolds the term by
deploying all the possible instrumented Maude computation steps stemming from s,
which is given by mS(s). In other words, for each Maude step M = s —ap SlaB
—rB t =5 g tla,B, we first compute its instrumented version and then add the result
to the output set A.

4. Inspection of Rewriting Logic Computations 69

function explore(sy, R)

1. Tz (s0) = so

2. while((s = pickLeaf(74 (so)) # EoE) do

3. Ta(so) = addPaths(T5 (so),expand(s, R))

4. end while
5. return 73 (so)
end

Figure 4.6: The explore function.

The overall construction methodology for instrumented computation trees is spec-
ified by the function explore, defined in Figure 4.6. Given a rewrite theory R and the
initial term s, the function explore essentially formalizes an interactive procedure that
is driven by the user starting from an elemental tree fragment, which only consists of
the root node sy. The instrumented computation tree 7'73“ (so) is built by choosing, at
each loop iteration of the algorithm, the tree leaf that represents the term to be ex-
panded by means of the auxiliary function pickLeaf(Tﬁr (sp)), which allows the user
to freely select a leaf node from the frontier of the current tree 7'7{ (so). Then, T3 (so)
is augmented by calling addPaths(T%r (so), expand(s,R)). This function call adds
all the instrumented computations that correspond to the Maude steps that originate
from the term s. The special value EoE (End of Exploration) is used to terminate the
inspection process: when the function pickLeaf(Tﬁr (s0)) is equal to EeE, no term to
be expanded is selected and the exploration terminates delivering (a fragment of) the
computation tree 7 (so).

4.4 An Animated Debugging Session

Let us illustrate the exploration methodology proposed in this section by repro-
ducing a debugging session with the analysis and exploration tool ANIMA developed
in [Alpuente et al., 2015a].

Consider the buggy, object-oriented Full Maude program RENT-A-CAR of Sec-
tion 4.1.2, which models a car renting online store. Recall that the program behaves
in two unintended ways, namely (i) customers can rent cars without enough credit
to cover the requested deposit and (ii) preferred customers with negative credit get
erroneously suspended. Also, consider the following input state:

so = < 'A1 : EconomyCar | available : true , rate : 30 >
< 'A3 : MidSizeCar | available : true , rate : 45 >
< 'A5 : FullSizeCar | available : true , rate : 70 >

70

4. Inspection of Rewriting Logic Computations

<

"C1 : Customer | credit : 50 , suspended : false >

< 'C2 : PreferredCustomer | credit : 100 , suspended : false >
< 'RG : Register | rentals : @ , date : @ >

that describes a car rental system with three car object identifiers 'A1, 'A3, and A5,
a non-preferred customer 'C1, a preferred customer 'C2, and a register 'RG.

PROVIDE THE MAUDE INPUT PROGRAM AND INPUT STATE OR TRACE ?

13
14
15
16
17
18
19
20
21
22
28
24
25
26

(omod RENT-A-CAR-ONLINE-STORE is
pr CONVERSION .
pr QID .

subsort Qid < 0id .

class Register | rentals : Nat , date : Nat .
class Customer | credit : Int, suspended : Bool .
class Car | available : Bool, rate : Nat .

class Rental | deposit : Nat, dueDate : Nat, pickUpDate : Nat, customer : 0id, c3
class PreferredCustomer .

subclass PreferredCustomer < Customer .

class EconomyCar .
class MidSizeCar .
class FullSizeCar .
subclasses EconomyCar MidSizeCar FullSizeCar < Car .

vars U C R RG : 0id .
vars CREDIT AMNT : Int .

vars TODAY PDATE DDATE RATE DPST RNTLS : Nat .

rl [new-day] : < RG : Register | date : TODAY >
=> < RG : Register | date : TODAY + 1 > .

crl [3-day-rental] :

Synchronous checking < Generate

<

'Al : EconomyCar | available : true , rate : 30 > < 'A3 : MidSizeCar | available :
true , rate : 45 > < 'A5 : FullSizeCar | available : true , rate : 70 > < 'Cl : Cust
omer \ credit : 50 , suspended : false > < 'C2 : PreferredCustomer | credit : 100 ,
suspended : false > < 'RG : Register | rentals : 0 , date : 0 >

Figure 4.7: Input Phase.

To start debugging the program, we load the source code of RENT-A-CAR and
the considered input term in the ANIMA tool [Alpuente et al., 2015a], which is an

4. Inspection of Rewriting Logic Computations 71

interactive, parametric exploration tool for Maude and Full Maude programs with
(forward and partial) slicing capabilities that implements the techniques described
in this chapter. Figure 4.7 illustrates the data input phase that starts the debugging
session.

At this moment, the animation of the program proceeds by expanding the first
level of the computation tree of RENT-A-CAR. We immediately appreciate that the car
rental system is highly concurrent, since the initial state sy can be rewritten in seven
different states. Specifically, for each customer and each car, a possible rental is mod-
eled. Also, an additional rewrite step that models the pass of time is also computed.
By inspecting all seven states, we can detect that five of them include an erroneous
customer negative credit, which signals a possible misbehavior. Note that, in the un-
likely case when the user knows in advance the wrong data to be searched, this action
can be partially automatized by using the query facility included in ANIMA. Specifi-
cally, this facility allows users to highlight those fragments of data that match a given

query pattern. Figure 4.8 (partially) illustrates the result of querying the computation
tree for negative customer credits.

S1 (;)

< 'Al : EconomyCar | available : true,rate :
30 > < 'A3 : MidSizeCar | available : true,
rate : 45 > < 'A5 : FullSizeCar | available
: true,rate : 70 > < 'Cl : Customer | cre-
dit : 50,suspended : false > < 'C2 : Prefe-
rredCustomer | credit : 100,suspended : fal-
se > < 'RG : Register | date : 0,rentals : 0
>

o) o)

Sss Y crl: 3-day-rental Sso \?crl: 3-day-rental Sgs Y crl: 3-day-rental

< 'Al : EconomyCar | available : false,rate < 'Al : EconomyCar | available : true,rate :||< 'Al : EconomyCar | available : true,rate :
: 30 > < 'A3 : MidSizeCar | available : true 30 > < 'A3 : MidSizeCar | available : fal- 30 > < 'A3 : MidSizeCar | available : fal-
,rate : 45 > < 'A5 : FullSizeCar | availa- se,rate : 45 > < 'A5 : FullSizeCar | availa-||se,rate : 45 > < 'A5 : FullSizeCar | availa-

ble : true,rate : 70 > < 'Cl : Customer | cr||ble : true,rate : 70 > < 'Cl : Customer | cr||ble : true,rate : 70 > < 'Cl : Customer | cr

edit : 50,suspended : false > < 'C2 : Prefe-|| edit : -85, suspended : false > < 'C2 : Pre- |[edit : 50,suspended : false > < 'C2 : Prefe-

rredCustomer | credit : 10,suspended : fal- ferredCustomer | credit : 100,suspended : fa

rredCustomer | credit : -35,suspended : fal-
se > < 'RO : Rental | car : 'Al,customer : '|[lse > < 'RO : Rental | car

: 'A3,customer : se > < 'R0 : Rental | car : 'A3,customer : '

C2,deposit : 90,dueDate : 3,pickUpDate : 0,r||'Cl,deposit : 135,dueDate : 3,pickUpDate : 0[|cC2,deposit : 135,dueDate : 3,pickUpDate : 0,

ate : 30 > < 'RG : Register | date : 0,ren- ,rate : 45 > < 'RG : Register | date : 0,ren||rate : 45 > < 'RG : Register | date : 0,ren-
tals : 1 > tals : 1 > tals : 1 >

Figure 4.8: Computation tree after querying for negative credit (partial view).

Now, we can discover that all five erroneous states are generated by the same
rewrite rule, namely 3-day-rental, whose extremely complex normalized form is
depicted in Figure 4.9. By carefully analyzing the rule, we can observe that it does
not check whether the customer credit covers the 3-day car rental deposit, hence the
erroneous negative credit in the observed states.

Therefore, we just encountered the first program flaw, which, luckily, was dis-
covered relatively fast. The second bug (i.e., the erroneous suspension of preferred
customers) requires much more effort to be isolated, since it involves a huge fragment
of the computation tree to be built and inspected. Actually, with no prior information
about the possible erroneous behavior, by using a breadth-first strategy we should gen-
erate and analyze a computation tree fragment of thousands of states, which makes the

72

4. Inspection of Rewriting Logic Computations

Transition information from state s; to ss, X

Normalized Rule

crl [3-day-rental]

t),suspended :

t + 1),date
tal | pickUpDate
t,customer : U:0id,rate :

Substitution

AMNT:Int / 135

c:0id / 'A3
CREDIT:Int / 50
RATE:Nat / 45

RG:0id / 'RG
RNTLS:Nat / 0
TODAY:Nat / 0

U:0id / 'Cl

V#10:Car / MidSizeCar

V#12:Register / Register

V#8:Customer / Customer

: < U:0id :

none,V#9:AttributeSet > < C:0id
#11:AttributeSet > < RG:0id
one,V#13:AttributeSet > => < U:0id
false,V#9:AttributeSet > < C:0id :
e : RATE:Nat,V#1l1l:AttributeSet > < RG:0id :
: TODAY:Nat,V#13:AttributeSet > < gid("R" + string(RNTLS:Nat, 10)) :
: TODAY:Nat,dueDate :
RATE:Nat > if AMNT:Int :=

V#11:AttributeSet / (none).AttributeSet

V#13:AttributeSet / (none).AttributeSet

V#9:AttributeSet / (none).AttributeSet

V#8:Customer | suspended : false,credit : CREDIT:Int,
: V#10:Car \ rate : RATE:Nat,available : true,none,V
: V#12:Register | date : TODAY:Nat,rentals : RNTLS:Nat,n
: V#8:Customer | credit : (CREDIT:Int - AMNT:In
V#10:Car | available : false,rat
V#12:Register | rentals : (RNTLS:Na
Ren
(TODAY:Nat + 3),car : C:0id,deposit : AMNT:In
3 * RATE:Nat .

Figure 4.9: Normalized 3-day-rental rule.

exploration technique totally unfeasible. Even by considering the minimal fragment
of the computation tree that includes a trace that erroneously suspends a preferred
customer, we have to manually inspect 38 states (457 instrumented states) to detect
the origin of the anomaly in order to discover that the updateSuspension function er-
roneously suspends all kinds of customers whose credit is negative (see Figure 4.10).
Figure 4.11 depicts a view of the minimal execution trace that, starting from the input
state sg, ends with the preferred customer 'C2 being erroneously suspended.

Transition information from state s;5; to S3gg X

Normalized Equation

ceq [suspend]

Substitution

CREDIT:Int / -26
U:0id / 'c2

Position
2.1

: updateSuspension(< U:0id
t : CREDIT:Int,suspended :
#4 :AttributeSet, suspended :

V#3:Customer / PreferredCustomer
V#4:AttributeSet / (none).AttributeSet

: V#3:Customer | V#4:AttributeSet,credi
false >) = < U:0id : V#3:Customer | credit : CREDIT:Int,V
true > if CREDIT:Int < 0 = true .

Figure 4.10: Normalized suspend equation.

4. Inspection of Rewriting Logic Computations 73

Trace information (trusted mode)

State Label

Trace

1 'Start

<Al : EconomyCar | available : true,rate : 30 > < 'A3 : MidSizeCar | available : true,rate : 45 > < 'AS : FullSizeCar | available : true,rate : 70 > < 'C1 : Cus-
tomer | credit : 50,suspended : false > < 'C2 : PreferredCustomer | credit : 100,suspended : false > < 'RG : Register | rentals : 0,date : 0 >

2 [3-day-rental

(< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) < 'C2 : P
referredCustomer | credit : (100 - 90),suspended : false,none > < 'Al : EconomyCar | available : false,rate : 30,none > < 'RG : Register | rentals : (0 + 1),da
te : O,none > < qid("R" + string(0, 10)) : Rental | pickUpDate : 0,dueDate : (0 + 3),car : 'Al,deposit : 90,customer : 'C2,rate : 30 >

(< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) < 'C2: P

3 [builtin referredCustomer | credit : 10,suspended : false,none > < 'Al : EconomyCar | available : false,rate : 30,none > < 'RG : Register | rentals : (0 + 1),date : 0,n

one > < qid("R" + string(0, 10)) : Rental | pickUpDate : 0,dueDate : (0 + 3),car : 'Al,deposit : 90,customer : 'C2,rate : 30 >

(< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) < 'C2 : P
4 |builtin referredCustomer | credit : 10,suspended : false > < 'Al : EconomyCar | available : false,rate : 30 > < 'RG : Register | rentals : 1,date : 0,none > < gid("R"

+ string(0, 10)) : Rental | pickUpDate : 0,dueDate : (0 + 3),car : 'Al,deposit : 90,customer : 'C2,rate : 30 >

(< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) < 'C2 : P
5 [builtin referredCustomer | credit : 10,suspended : false > < 'Al : EconomyCar | available : false,rate : 30 > < 'RG : Register | date : 0,rentals : 1 > < qid("R" + "0")

: Rental | pickUpDate : 0,dueDate : (0 + 3),car : 'Al,deposit : 90,customer : 'C2,rate : 30 >

(< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) < 'C2 : P
6 |builtin referredCustomer | credit : 10,suspended : false > < 'Al : EconomyCar | available : false,rate : 30 > < 'RG : Register | date : 0,rentals : 1 > < qid("R0") : Re

ntal | pickUpDate : 0,dueDate : (0 + 3),car : 'Al,deposit : 90,customer : 'C2,rate : 30 >

(< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) < 'C2 : P
7 |builtin referredCustomer | credit : 10,suspended : false > < 'Al : EconomyCar | available : false,rate : 30 > < 'RG : Register | date : 0,rentals : 1 > < 'RO : Rental |

pickUpDate : 0,dueDate : (0 + 3),car : 'Al,deposit : 90,customer : 'C2,rate : 30 >

(< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) < 'C2 : P
8 |builtin referredCustomer | credit : 10,suspended : false > < 'Al : EconomyCar | available : false,rate : 30 > < 'RG : Register | date : 0,rentals : 1 > < 'RO : Rental |

pickUpDate : 0,dueDate : 3,car : 'Al,deposit : 90,customer : 'C2,rate : 30 >

9 |new-day

<Al : EconomyCar | available : false,rate : 30 > < 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Cus
tomer | credit : 50,suspended : false > < 'C2 : PreferredCustomer | credit : 10,suspended : false > < 'R0 : Rental | car : 'Al,customer : 'C2,deposit : 90,due-
Date : 3,pickUpDate : 0,rate : 30 > < 'RG : Register | date : (0 + 1),rentals : 1,none >

< 'Al : EconomyCar | available : false,rate : 30 > < 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Cus

10 |builtin tomer | credit : 50,suspended : false > < 'C2 : PreferredCustomer | credit : 10,suspended : false > < 'R0 : Rental | car : 'Al,customer : 'C2,deposit : 90,due-

Date : 3,pickUpDate : 0,rate : 30 > < 'RG : Register | date : 1,rentals : 1,none >

<Al : EconomyCar | available : false,rate : 30 > < 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Cus
11 [new-day tomer | credit : 50,suspended : false > < 'C2 : PreferredCustomer | credit : 10,suspended : false > < 'R0 : Rental | car : 'Al,customer : 'C2,deposit : 90,due-

Date : 3,pickUpDate : 0,rate : 30 > < 'RG : Register | date : (1 + 1),rentals : 1,none >

<Al : EconomyCar | available : false,rate : 30 > < 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Cus
12 [builtin tomer | credit : 50,suspended : false > < 'C2 : PreferredCustomer | credit : 10,suspended : false > < 'R0 : Rental | car : 'Al,customer : 'C2,deposit : 90,due-

Date : 3,pickUpDate : 0,rate : 30 > < 'RG : Register | date : 2,rentals : 1,none >

<Al : EconomyCar | available : false,rate : 30 > < 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Cus
13 [new-day tomer | credit : 50,suspended : false > < 'C2 : PreferredCustomer | credit : 10,suspended : false > < 'R0 : Rental | car : 'Al,customer : 'C2,deposit : 90,due-

Date : 3,pickUpDate : 0,rate : 30 > < 'RG : Register | date : (2 + 1),rentals : 1,none >

<Al : EconomyCar | available : false,rate : 30 > < 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Cus
14 builtin tomer | credit : 50,suspended : false > < 'C2 : PreferredCustomer | credit : 10,suspended : false > < 'RO : Rental | car : 'Al,customer : 'C2,deposit : 90,due-

Date : 3,pickUpDate : 0,rate : 30 > < 'RG : Register | date : 3,rentals : 1,none >

<Al : EconomyCar | available : false,rate : 30 > < 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Cus
15 [new-day tomer | credit : 50,suspended : false > < 'C2 : PreferredCustomer | credit : 10,suspended : false > < 'RO : Rental | car : 'Al,customer : 'C2,deposit : 90,due-

Date : 3,pickUpDate : 0,rate : 30 > < 'RG : Register | date : (3 + 1),rentals : 1,none >

<Al : EconomyCar | available : false,rate : 30 > < 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Cus
16 [builtin tomer | credit : 50,suspended : false > < 'C2 : PreferredCustomer | credit : 10,suspended : false > < 'RO : Rental | car : 'Al,customer : 'C2,deposit : 90,due-

Date : 3,pickUpDate : 0,rate : 30 > < 'RG : Register | date : 4,rentals : 1,none >

17 |late-return

(< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) update-
Suspension(< 'C2 : PreferredCustomer | credit : ((10 - 126) + 90),suspended : false,none >) < 'Al : EconomyCar | available : true,rate : 30,none > < 'RG : R
egister | date : 4,rentals : 1,none >

(< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) update-

18 |builtin Suspension(< 'C2 : PreferredCustomer | credit : (-116 + 90),suspended : false,none >) < 'Al : EconomyCar | available : true,rate : 30,none > < 'RG : Regis-
ter | date : 4,rentals : 1,none >
(< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) update-

19 |builtin Suspension(< 'C2 : PreferredCustomer | credit : -26,suspended : false,none >) < 'Al : EconomyCar | available : true,rate : 30,none > < 'RG : Register | date
: 4,rentals : 1,none >

20 | suspend (< 'A3 : MidSizeCar | available : true,rate : 45 > < 'A5 : FullSizeCar | available : true,rate : 70 > < 'C1 : Customer | credit : 50,suspended : false >) < 'C2 : P

referredCustomer | credit : -26,none,suspended : true > < 'Al : EconomyCar | available : true,rate : 30,none > < 'RG : Register | date : 4,rentals : 1,none >

14049 bytes

Figure 4.11: Compact View of the faulty trace.

Hence, the faulty program has been successfully debugged by finding the two
estimated error sources, namely the 3-day-rental rule and the suspend equation.
However, note that during the analysis session we exactly knew which errors to fix
and how to locate them. And even so, a number of painful manual inspections were
required in order to uncover them. In the following two chapters, an assertion-based,
automated trace slicing methodology is formalized that mechanizes and highly im-
proves the debugging experience.

Chapter

Runtime Verification of
Maude Programs

Assertion checking is one of the most useful automated techniques available for
detecting program faults. In runtime assertion checking, assertions are traditionally
used to express conditions that should hold at runtime. By finding inconsistencies
between specified properties and the program code, runtime assertion checking can
prove that the code is incorrect. Moreover, since an assertion failure usually reports an
error, the user can often pinpoint the error, direct his attention to the location at which
the logical inconsistency is detected, and (hopefully) trace the error back to its origin
more easily. Runtime assertion checking can also be useful in finding problems in the
specifications themselves, which is important for keeping the specifications accurate
and up-to-date. A brief history of the research ideas that have contributed to the
assertion capabilities of modern programming languages and development tools can
be found in [Clarke and Rosenblum, 2006]. Moreover, the advantages of equipping
software with assertions are extensively discussed in [Meyer, 1997].

This chapter presents an assertion-based framework for the runtime verification
of rewriting logic specifications. The chapter is organized as follows. Section 5.1 in-
troduces the assertion language and logic of the proposed dynamic verification frame-
work. Section 5.2 formalizes the satisfaction of assertional specifications, while Sec-
tion 5.3 formalizes the error symptoms of falsified assertions. Finally, Section 5.4 for-
mulates the verification technique that automatically checks Maude programs against
assertional specifications.

5.1 The Assertion Language

Assertions are linguistic constructions that formally express properties of a soft-
ware system. Assertions act as an oracle, giving a pass/fail indication to program
runs. Throughout this section, a software system that is specified by a rewrite theory
R = (X, AU B,R) is considered. Without loss of generality, it is assumed that X in-
cludes at least the sort State. Terms of sort State are called system states (or simply
states).

76 5. Runtime Verification of Maude Programs

In the proposed specification language, assertions are not mere Boolean expres-
sions but truly executable formulas that are built on user-defined functions and spe-
cialized by means of state patterns. The framework supports two kinds of assertions:
functional assertions and system assertions. Functional assertions allow properties
to be logically defined on the equational component of the rewrite theory R, while
system assertions specify formal constraints on the possibly non-deterministic rule
component of R. The benefit of the logic framework being integrated into the Maude
specification and analysis environment is that the definition and checking of all as-
serted properties can be performed in a uniform and familiar setting.

5.1.1 The Assertion Logic

The core of the proposed assertion language is based on order-sorted (member-
ship) predicate logic, where first order formulas are built over the signature X of the
rewrite theory R enriched with a set of user-defined Boolean function symbols (pred-
icates). The truth values are given by the formulas true and false. The usual con-
junction (and), disjunction (or), exclusive or (xor), negation (not), and implication
(implies) logic operators are used to express composite properties. Variables in the
formulas are not quantified.

Logic formulas can be defined in Maude by means of the predefined functional
module BOOL [Clavel et al., 2016], which specifies the built-in sort Bool, the truth val-
ues, the logic operators, and the built-in operators for membership predicates _:: S
for each sort S, and term equality _==_ and inequality _=/=_. The built-in Boolean
functions _==_ and _=/=_ have a straightforward operational meaning: given an ex-
pression u == v, then both u and v are simplified by the equations in the module
(which are assumed to be Church-Rosser and terminating) to their canonical forms
(modulo the equational axioms) and these canonical forms are compared for equality.
If they are equal, the value of u == v is true; if they are different, it is false. The
predicate u =/= v is just the negation of u == v. In the module BOOL, valid formulas
are reduced to the constant true, invalid formulas are reduced to the constant false,
and all the others are reduced to a canonical form (modulo axioms) consisting of ex-
clusive or disjunctions of conjunctions. By default, the BOOL module is implicitly
imported as a submodule of any other user-defined module.

Predicates that are not specified in BOOL are module-dependent and can be equa-
tionally defined as total Boolean functions over the system entities (e.g., states, func-
tion calls) formalized within R. In the same spirit of Maude’s equational theories,
where a single result is expected to be delivered for each input term, the framework
requires the user to ensure that the evaluation (i.e., the equational simplification) of
any property terminates for any possible initial state and that the resulting verdict is
unique.

5. Runtime Verification of Maude Programs 77

In the proposed framework, basic properties on a given rewrite theory R are de-
fined by means of a system module PRED(7R) that imports the (Maude encoding of
the) rewrite theory ‘R and specifies a set P of predicates via user-defined operators that
are associated with terminating and Church-Rosser definitions of some total Boolean
function. Note that the system module PRED(R) must fulfill the same properties as
R, that is, its rewrite rules must be coherent with respect to its equations (modulo the
equational axioms), and its embedded, extended equational theory, which includes
the equational definition of P, must be terminating and Church-Rosser (modulo the
equational axioms).

In this scenario, a well-formed formula is any term of sort Bool built using the
operators and variables declared in the system module PRED(R). Moreover, a formula
@ holds in R, iff ¢ can be reduced to true in PRED(R) (in symbols, R = ¢).

mod RENT-A-CAR-PRED is
pr RENT-A-CAR .

op isPreferredCustomer : Cid -> Bool .
eq isPreferredCustomer(PreferredCustomer) = true .
eq isPreferredCustomer(U:Cid) = false [owise] .

op isFullSize : Object -> Bool .
eq isFullSize(< 0:0id : FullSizeCar | available : B:Bool ,
rate : RATE:Nat >) = true .
eq isFullSize(< 0:0id : Car | available : B:Bool ,
rate : RATE:Nat >) = false [owise] .
endm

Figure 5.1: System properties specified by the RENT-A-CAR-PRED module.

Example 5. Consider the RENT-A-CAR object module of Section 4.1.2 and the new
predicate isFullSize given in the RENT-A-CAR-PRED module of Figure 5.1. Then,
we can specify the formula

isFullSize(< 0:0id : FullSizeCar | available : true , rate :
RATE:Nat >) implies RATE:Nat >= 70

which is true for every FullSizeCar object with an available attribute set to true
and a rate attribute greater than or equal to 70.

78 5. Runtime Verification of Maude Programs

5.1.2 System Assertions

System assertions define state invariants that must be satisfied by all system states
that match (modulo the equational theory E) a specified state template. Their general
syntax is S {¢}, where S is a term (called state template), ¢ is a logic formula in
conjunctive normal form @1 /A ... /A @y, and Var(@) C Var(S).

Example 6. Consider the STOCK-EXCHANGE example of Section 4.1.1. The following
system assertion specifies that the capital of ordinary traders must be non-negative
in every system state of the trace:

R:Nat : SS:Set{Stock} | tr(TID:TraderID,C:Int),TS:Set{Trader?} |
0S:Set{Order}
{ ordinary(tr(TID:TraderID,C:Int)) implies C:Int >= 0 }

where the user-specified predicate ordinary(T) simply checks whether T is a non-
premium trader.

5.1.3 Functional Assertions

Intuitively, functional assertions specify pre- and post-conditions over the equa-
tional simplification t —73 (t|a) that heads the rewriting t Dt/ of any term t
in the system. Their general form is I {@i,} — O {@ou} where ;O € T (L, V),
@in and @y are well-formed logic formulas, Var(g;,) C Var(1), and Var(@ey) C
Var(1) U Var(O).

Example 7. Consider the STOCK-EXCHANGE Maude specification of Section 4.1.1.
The functional assertion

updP(R:Nat,S:Nat, (st(SID:StockID, P:Int),SS:Set{Stock}))
{ P:Int >0 }
-> (st(SID:StockID, P':Int),SS’':Set{Stock})
{P':Int >0 }

specifies that stock market fluctuations modeled by function updP should generate
positive stock prices provided that the input stock prices are also positive.

Roughly speaking, functional assertions are implicative formulas between two
constrained terms I {@;,} and O {@,} that specify the general pattern O of the canon-
ical form for any input term t that matches the given template I, while allowing pre-
and post-conditions @;,, @y OVer the equational simplification to be also declared.
This allows users to specify the I/O behavior of the equational simplification of a term
t by providing two ingredients:

5. Runtime Verification of Maude Programs 79

Input: an input template I that t can match and a pre-condition ¢, that t can meet;

Output: an output template O that the canonical form of t has to match and a post-
condition @, that the computed canonical form of t has to meet (whenever
the input term t matching I meets @;;).

Note that, while system assertions S { ¢} resemble Matching Logic (ML) formulas
7t/\¢ (called ML patterns), where 7t is a configuration term and ¢ is a first order logic
formula, functional assertions I {@,} — O {@oy} remind Reachability Logic (RL)
formulas ¢ = @', where ¢, @’ are ML patterns (for a survey on ML/RL, see [Rosu,
2015]). In contrast to the functional assertions presented in this thesis, which predicate
on equational simplifications, RL formulas are evaluated on system computations: the
semantics of a RL formula ¢ = ¢’ is that any state satisfying ¢ transits (in zero or
more steps) into a state satisfying ¢’, while ML formulas are used to express (and
reason about) static state properties, similarly to our system assertions. Nevertheless,
it is important to recall that the proposed functional assertions are quantifier-free and
can be efficiently evaluated by relying on Maude standard infrastructure such as the
metaReduce, metaMatch, and metaNormalize meta-operations.

5.1.4 Assertional Specifications

An assertional specification A for a rewrite theory R = (X, E, R) is thus a set of
functional and system assertions for R. F(.A) denotes the set of functional assertions
in A, while S(.A) denotes the set of system assertions in .A. Moreover, s = S(.A)
(resp. u = F(A)) denotes that s satisfies all assertions in S(.A) (resp. w satisfies all
assertions in F(A)). Figure 5.2 summarizes the proposed assertion language.

In the following section, the notion of satisfaction for functional and system as-
sertions is described in detail.

5.2 Satisfaction of Assertions

This section formalizes the notion of satisfaction for system and functional asser-
tions.

5.2.1 System Assertion Satisfaction

System assertions are checked against states of the system that is specified by R.
Roughly speaking, a system assertion S {¢} (also called constrained term in [Rocha

80 5. Runtime Verification of Maude Programs

Formulas

o=@ N @lnote|pandg|¢ore|
@ implies o | true | false | t

wheret € T(Z',V)poorand £’ D L.

System assertions

S{p}

where S € T(Z,V) and Var(@) C Var(S).

Functional assertions

[{(pin} — O {(pout}

where I, O € T(Z, V), Var(@in) C Var(1),
and Var(@ey) € Var(I) U Var(O).

Figure 5.2: Summary of the assertion language.

et al., 2014]) allows users to validate all system states s that match (modulo the equa-
tional theory E) the state template S with respect to the formula ¢. More formally,
the satisfaction of a system assertion in a system state is defined as follows.

Definition 1 (system assertion satisfaction). Let R = (X, E, R) be a rewrite theory.
Let S {@} be a system assertion for R and s be a state in T (L,V). Then, S {¢} is
satisfied in s (in symbols, s = S {@}) iff for each w € Pos(s), for each substitution
o if shy =g So then @o holds in R.

Note that, if there is no subterm s|,, of s that matches S (modulo E), then trivially
s = S {@}. This implies that S {¢} is not satisfied in s (in symbols, s ~ S {@}) only
in the case when there exist w and o such that s|,, =¢ So, and the formula @ o does
not hold in R.

Example 8. Consider the STOCK-EXCHANGE specification of Section 4.1.1 and the
system assertion of Example 6. Also consider the system state

s=1: st('S1, 4) | tr('T1, 2) | empty

5. Runtime Verification of Maude Programs 81

which models a stock-exchange system consisting of a single stock, namely 'S1 with
a stock price of 4, and a trader ' T1 with a positive capital of 2. Then, the state pattern
S of the system assertion matches s at position A with substitution

o= { R:Nat / 1, SS:Set{Stock} / st(’'S1, 4), TID:TraderID / 'T1,
C:Int / 2, TS:Set{Trader} / empty, 0S:Set{Order} / empty }

and the formula @ of the assertion is instantiated as follows
@0 = ordinary(tr('T1,2)) implies 2 >= @

which is reduced to true since 'T1 is not a premium trader and his/her capital is
greater than or equal to 0. Hence, the state s satisfies the considered system assertion.
However, for a slightly mutated system state s’, where the original capital of trader
'T1 is changed to - 2, the formula @o’ is reduced to false, which means that s’
does not satisfy the assertion.

5.2.2 Functional Assertion Satisfaction

The notion of satisfaction for a functional assertion is given with respect to the
equational simplification p =t —7 5 t| A of term t into its canonical form t| g.

Definition 2 (functional assertion satisfaction). Let R = (X, E, R) be a rewrite theory,
with E = AUB. Let I {pin} — O {@ou} be a functional assertion for R, and
w be the equational simplification of the term t in T (%, V) into its canonical form
t [, with respect to A modulo B. Then, I {@in} — O {@ou} is satisfied in u (in
symbols, 1 = 1{@in} — O {@ou}) iff for each substitution o, such that t =g Ioj,,
if @in0in holds in R, then there exists ooy such that t [ag=p O(0inlaB)0ou and
©out(OinlaB) ooy holds in R.

The satisfaction of functional assertions could be equivalently defined on the call
term t (rather than on its equational simplification p : t %*A)B t/a,p) since the normal
form t |4 g is uniquely defined in a canonical equational theory. Nonetheless, it is
preferable to define the satisfaction with respect to p since this notion is much closer
to the intuitive meaning of functional assertions (whose satisfiability depends on both
the input term t and the reduced term t| 5 g of). Therefore, using u greatly simplifies
the description.

Note that T {@i} — O {@ey} is (trivially) satisfied in @ when either t does not
match I (modulo B), or t =g loj, and @;,0;, does not hold in R. Intuitively, a func-
tional error occurs in an equational simplification 1 where the computed canonical
form fails to match the structure or meet the properties of the output template O. In
other words, ® = I{@i,} — O {@ou} is not satisfied in p only in the case when there
exists an input substitution oj, (i.e., a substitution that matches t within the input
template I modulo B; in symbols, t =p Ioj,) such that

82 5. Runtime Verification of Maude Programs

= Q0 holds in R;

. tlA,B #8 O(oin lA,B)Gout or @out(Tin lA,B)O-out does not hold in R, for any
substitution o .

Example 9. Consider the STOCK-EXCHANGE specification of Section 4.1.1 and the
functional assertion of Example 7. Also consider the simplification trace

pw= updP(1 + 2, reSeed(1 + 2), (st('S1, 4),st('S2, 12)))
—* st('S1, 10),st('S2, - 2)

which leads
t = updP(1 + 2, reSeed(1 + 2), (st('S1, 4),st('S2, 12)))

to its canonical form. The input state pattern 1 of the functional assertion matches t
with substitution

oim= { R:Nat / 1 + 2, S:Nat / reSeed(1 + 2), SID:StockID / 'S1,
P:Int / 4, SS:Set{Stock} / st(’S2,12) }.

Then, oy, is simplified and applied to output state pattern O of the assertion and
results in

O(0oinlap) = (st(’S1, P':Int),st(’'S2,12)).
Therefore, O(0jn| a,8) matches t| g with substitution
Oout = { P':Int / 10}
On the other hand, the input formula j, is instantiated as follows
©inOin = 4 >0

which trivially reduces to true, whereas the instantiation of the output formula @ oy
results in the following concretization of the formula

(Pout(o—inlA,B)O—out =10 >0

which is also simplified to true. Hence, it might seem that p satisfies the given as-
sertion, but actually, it does not. Note that t also matches the input state pattern 1
with substitution

5. Runtime Verification of Maude Programs 83

o/, = { R:Nat / 1 + 2, S:Nat / reSeed(1 + 2), SID:StockID / 'S2,
P:Int / 12, SS:Set{Stock} / st('S1,4) }

which reduces the instantiated input formula @, to true, since
Qin0f, = 12 > 0.
Moreover, the output state pattern O is (partially) instantiated as
O(o],lag) = (st('S2, P':Int),st(’'S1,4)).
Therefore, O (o}, | A) matches t| A g with output substitution
o= {P':Int / - 2}
and the formula .y of the functional assertion gets evaluated as

(pOU[(Gj/nlA,B)Géut = - 2 > 0)

which reduces to false. Hence, now we can sdfely state that L does not satisfy the
given functional assertion, since at least one of the input substitutions causes the
output formula not to hold in the considered theory.

Given the set P of new user-defined predicates and their equational definition Q,
it is worth noting that we could split the set of all functions defined in the extended
equational theory E U Q into two disjoint sets, U & T, where U are the untrusted
functions of E (those to be debugged) and T is the extension of P with the set of
all trusted functions defined in E. Now, by requiring that T includes all functions
allowed in admissible functional assertions plus the functions they depend on (which
can be easily approximated by analyzing the graph of functional dependencies of the
extended theory), we do not even need the canonicity of the whole equational theory
E U Q; we only need the canonicity of the sub-theory that defines the trusted set T.

5.3 Uncovering Error Symptoms

To be able to precisely identify and isolate the subterms responsible for the viola-
tion of an assertion is a huge advantage, since it allows provenance techniques to be
applied, which faithfully track the origins of the detected errors thus opening the door
to possible repairs. Actually, the more accurate the detected errors, the higher au-
tomation achieved in the subsequent debugging process. This section formalizes the
computation of accurate error symptoms from both system and functional assertions.

84 5. Runtime Verification of Maude Programs

5.3.1 System Error Symptoms

When a system state s does not satisfy a system assertion S {¢}, the position w
in s (i.e., the bug position) precisely indicates the subterm of s that matches S and is
responsible for the assertion violation. The position w is called then a system error
symptom.

Definition 3 (system error symptoms). The set of all system error symptoms for a
state s and a system assertion S {} is defined as follows:

Esys(s, S{@}) ={w | Jo. sl =¢ So,w € Pos(s), and R I~ ¢o}.
Observe that &gys(s, S {@}) = 0, whenever s = S {¢}.
Example 10. Consider the extended rewrite theory of Example 5 together with the
system assertion
® = < 0:0id : C:Cid | credit : B:Int , suspended : S:Bool >
{ not(isPreferredCustomer(C:Cid)) implies B:Int >= @ }
Then, © is satisfied in the state

< 'A5 : FullSizeCar | available : true , rate : 70 >
< 'C1 : Customer | credit : 50 , suspended : false >
< 'RG : Register | date : @ , rentals : @ >

but it is not satisfied in

Serr = < 'A5 : FullSizeCar | available : false , rate : 70 >
< 'C1 : Customer | credit : - 160 , suspended : false >
< 'RO : Rental | car : 'A5 , customer : 'C1 , deposit : 210,
dueDate : 3 , pickUpDate : @ , rate : 70 >
< 'RG : Register | date : @ , rentals : 1 >

since non-preferred customer 'C1 has a negative credit. The computed error
symptom is the position 2 that refers to the subterm

< 'C1 : Customer | credit : - 160 , suspended : false >

of the anomalous state Sery.

5. Runtime Verification of Maude Programs 85

5.3.2 Functional Error Symptoms

Unlike system error symptoms, functional error symptoms are a little more com-
plex to uncover, since functional assertions can be violated in two different ways.
Specifically, functional error symptoms are specialized in two different modalities,
as shown in Definition 4.

Definition 4 (functional error symptoms). Let R = (X, E,R) be a rewrite theory,
withE = AUB. Let ® = I{@in} — O {@ou} be a functional assertion for R.
Let u =t =} 3 tlap be an equational simplification such that p = ® with input
substitution O'i,;. Then, a functional error symptom for pw with respect to @ is any
position in Pos(t/a) that belongs to the following set:

{m(w) | ((g, 01, 02),7) = Iggs (tLap, Olvinlas))

andw € VPos(g)} (1)
Epun(p, @) = if Aoou s-t. tlas=s O(0CinlaB)Oour
{A} if VOou s.t. tJ,A,B:B O(O-inlA,B)o-out)

R |7£ (p(o—inlA,B)O—out (2)

Roughly speaking, &g (1, @) is computed by distinguishing two cases.

Case (1) If no matching substitution o, exists that allows the canonical form t| A g
to be matched within the instance O(oi, [a) of the output template O by
the (normalized) substitution o, [g, the technique “compares” t |4 g with
O(oin lag) by using a least general generalization algorithm modulo equa-
tional theories. More specifically, an arbitrarily-selected least general gener-
alization (g, 07, 02) (modulo A U B) between t| 4 g and O(0cj,/a8) is chosen
via lg/\gB, and erroneous subterms of t| 5 p are detected by selecting every po-
sition 7t(w) € Pos(t|a) in correspondence with a position w € VPos(g).
The intuition behind this method is that variables in g reflect the discrepancies
between the computed canonical form and the instantiated output template, and
therefore subterms (t| A g)|x(w) represent anomalies in t| p.

Case (2) If for every matcher (modulo B) o, of the computed canonical form t| A p
in O(0oinla,B), the (instantiated) formula @ (0i, A B)0ou does not hold in R,
then t |5 g does not meet the property ¢ and its root position (which iden-
tifies the whole erroneous term) is signalled as a functional error symptom.
Note that, in this case, the detection of the error source could be only roughly
approximated, since the whole computed canonical form is considered faulty,
even though only some parts could be responsible for the error.

86 5. Runtime Verification of Maude Programs

Example 11. Consider again the extended rewrite theory of Example 5. Then, the
functional assertion

O = updateSuspension(< U:0id : PreferredCustomer | credit : B:Int,
suspended : false >){ B:Int < 0 }
— < U:0id : PreferredCustomer | credit : B:Int,
suspended : false >{ true}

states that, for preferred customers, the suspended flag (and other customer at-
tributes) remain unchanged after updateSuspension is invoked. Roughly speaking,
preferred customers are never suspended, even if they were slow payers. Thus, @ is
not satisfied in the following equational simplification

updateSuspension(< 'C1 : PreferredCustomer | credit : - 25,
suspended : false >)

suspend

—
< 'C1 : PreferredCustomer | credit : - 25, suspended : true >

with input substitution o, = { U:0id / 'C1, B:Int / - 25 }. The violation of
@ corresponds to case (1) of Definition 4, since the computed canonical form for
the updateSuspension function call does not match the instantiation of the output
template @ with oj, A (Which is equal to oy, in this case). Hence, the technique
computes the only (actually syntactical) least general generalization

@B(< '"Cl : PreferredCustomer | credit : - 25, suspended : true >,
< U:0id : PreferredCustomer | credit : B:Int, suspended : false >
(oinlag)) = ((< 'C1 : PreferredCustomer | credit : - 25, suspended :

X:Bool >,{ X:Bool / true },{ X:Bool / false }),{3.2.1 — 3.2.13})

where &g (1, @) = {3.2.1} is the set of functional error symptoms that pinpoint the
anomalous suspended flag value in 'C1’s data structure, that is,

< 'C1 : PreferredCustomer | credit : - 25,
suspended : true >[3771 = true.

Now, consider this slight mutation of the assertion ©

@’ = updateSuspension(< U:0id : PreferredCustomer | credit :
B:Int , suspended : S:Bool >){ B:Int < @ }
— < U:0id : PreferredCustomer | credit : B:Int ,
suspended : S':Bool >{ S:Bool == S':Bool }

whose post-condition explicitly states that updateSuspension calls cannot change
the value of the suspended flag. Also @' is not satisfied in the equational simplifica-
tion above, but, in this case, the reason of the violation stands in the refutation of the

5. Runtime Verification of Maude Programs 87

(instantiated) post-condition, which corresponds to case (2) of Definition 4. There-
fore, our methodology delivers &gn(t, ®') = {A}, thereby providing a less precise
error detection analysis that marks the whole computed canonical form

< 'C1 : PreferredCustomer | credit : - 25 , suspended : true >
as incorrect.

It is worth noting that the use of @;B is generally preferable to the adoption of
a pure syntactic Igg algorithm since it minimizes the number of variables in g and,
hence, the points of discrepancy between t |4 g and O(oin [g), wWhich facilitates
isolating erroneous information. Let us see an example.

Example 12. Let us consider the equational simplification f(0,0) —7} 5 (1, 3) with
respect to an equational theory (X, A U B) in which the operator c is declared com-
mutative. Let ® = f(X,Y) { true } — c(Z,1) { even(Z) } be a functional
assertion, where predicate even(Z) checks whether Z is an even number.

Then, (f(0,0),c(1,3)) ¥~ @ (with input substitution o;, = {X/0,Y/0}), since
variable Z in the output template c(Z, 1) is bound to 3 and even(3) is false. Moreover,
@B(CU ,3),¢(Z,1)) returns a pair ((g, 01, 02), 7t) such that g contains the minimum
number of variables. For instance,

Iggg(c(1,3),¢(2,1)) = ((c(z,1),{2/3},, 1), (1 — 2})

and &fp(1, @) = {2}, which precisely detects that the term c(1,3)[, = 3 is what
causes the violation of @.

By contrast, the computation of a purely syntactic least general generalization
would have delivered the more general result (c(Z,W),{Z/1,W/3},{W/1}) and the larger
functional error symptom set {1, 2} (which represents the positions of both arguments
of the canonical form c(1, 3)), thereby hindering the isolation of the erroneous sub-
term of c(1, 3).

5.4 Dynamic Assertion-ChecRing

Let us first extend the notion of satisfaction of the functional assertions to state
equational simplifications (i.e., equational simplifications that reduce a state into its
canonical form), where the state may contain an arbitrary number of function calls that
might eventually be simplified. For this purpose, we introduce the following auxiliary
definitions. Given R = (L, E,R), with E = A U B, the term t is an equational redex
in R if there is (A = p if C) € A and substitution o such that t =g Ac. Given R and

88 5. Runtime Verification of Maude Programs

a system state s in 7 (X, V), Top(s) is the set of minimal positions w € Pos(s) such
that sl,, is an equational redex in R. Formally,

Top(s) = {w € Pos(s) |slw is an equational redex and

#w’ < w such that s|,, is an equational redex}.

Roughly speaking, Top(s) selects all the positions in Pos(s) that identify those
outermost subterms of s to be equationally simplified into their canonical form in
order to compute s |4 g. In other words, given the equational simplification of the
states,S: s —>Z g Sla,, each subterm sl,,, withw € Top(s), is reduced to (sl /A)
in S. This allows functional assertions to be effectively checked over each equational
simplification s}, —>X)B (slwla,p) such that w € Top(s).

Definition 5 (extended functional assertion satisfaction). Let R = (X,E,R) be a
rewrite theory, with E = A U B, and let s be a system state in T (¥,V) such that
Top(s) # {A}. Lets HX’B sla,B be an equational simplification for the state s in
T(%, V) Let A be an assertional specification for R. We say that F(.A) is satisfied
ins —>AB s a,g (in symbols, s —>AB sliapE F(A), iff for each w € Top(s),
Shy HAB (SlAB”w = F(A).

System and functional error symptoms (whose definitions have been given in
Section 5.3 for a single system/functional assertion) can be naturally extended to as-
sertional specifications in the following way.

Definition 6 (state error symptoms). Let R = (X, E,R), with E = AUB, be a rewrite
theory. Let A be an assertional specification for R. Let s be a state in T (£, V). Then,

‘isys S, ./4 U E,sys S, @

OeS(A

Efun(s —>JAF)B slag,A) = U {(slw —>X,B (slag)lw, Efunlslv — (slag)lw, @)}
D € F(A),
w € Top(s)
Example 13. Consider the rewrite theory R of Example 5 together with the asser-
tional specification A composed of the system assertion

® = < 0:0id : C:Cid | credit : B:Int , suspended : S:Bool >
{ not(isPreferredCustomer(C:Cid)) implies B:Int >= @ }

and the functional assertion

O® = updateSuspension(< U:0id : PreferredCustomer | credit : B:Int
, suspended : false >) { B:Int < @ }
— < U:0id : PreferredCustomer | credit : B:Int , suspended :
false > { true }

5. Runtime Verification of Maude Programs 89

Let 1rent be the state equational simplification that originates from

s= < 'Al : EconomyCar | available : true , rate : 30 >
< 'C1 : Customer | credit : - 160 , suspended : false >
updateSuspension(< 'C2 : PreferredCustomer | credit : - 120,

suspended : false >)
< 'RG : Register | date : @ , rentals : 1 >

and ends into the canonical form

slap= < 'Al : EconomyCar | available : true , rate : 30 >
< 'C1 : Customer | credit : - 160 , suspended : false >
< 'C2 : PreferredCustomer | credit : - 120 ,
suspended : true >
< 'RG : Register | date : @ , rentals : 1 >

Note that \Lrent includes the following equational simplification

lc; = updateSuspension(< 'C2 : PreferredCustomer | credit : - 120
, suspended : false >) HX’B< 'C2 : PreferredCustomer |
credit : - 120 , suspended : true >

for the outermost equational redex of s that is rooted at position 3 € Top(s).
Then,

E,sys(sy A) = {2}

which signals the system error symptom associated with the negative credit of non-
preferred customer 'C1.
Moreover,

Eva1n(PLr‘en'C) A) = {(H’c2> {32] })}

since O is not satisfied in rent (and hence in wic;). The computed functional er-
ror symptom allows us to isolate the anomalous suspended flag value in 'C2’ data
structure, that is,

< 'C2 : PreferredCustomer | credit : - 120,
suspended : true >[3,71 = true.

The notion of satisfaction for an assertional specification in a given computation
is then formalized as follows.

Definition 7 (satisfaction of an assertional specification). Let R = (X, E,R), with
E = AURB, be a rewrite theory and C be a computation in R. Let A be an assertional
specification for R. Then, the specification A is satisfied in C (in symbols C = A) iff

90 5. Runtime Verification of Maude Programs

» for each state s in C that is a canonical form with respect to A modulo B,

s = S(A);

= for each state s in C that is not a canonical form with respect to A modulo B,
s —ap SlapE FIA).

To check an assertional specification .4 in a given computation C, we can sim-
ply traverse C and progressively evaluate system assertions over simplified states and
functional assertions over state equational simplifications, respectively. Definition 8
formalizes this methodology into the function check(C, .A) that takes as input a com-
putation C and an assertional specification .4 and delivers a triple (P, Err, flag) where
P is a prefix of C, Err is a set of functional or system error symptoms with respect to
A, and flag € {none, sys, fun}.

Roughly speaking, function check(C,.A) returns (P, Err, flag) as soon as it en-
counters either a state or a state equational simplification in which A is not satisfied:
‘P represents a prefix of C that reaches a state in which a system/functional assertion
is violated, Err specifies the associated error symptom set, and flag declares the na-
ture of the computed symptoms (fun stands for functional error symptoms, sys for
system error symptoms, and the keyword none indicates that no symptom has been
identified).

Definition 8 (assertion checking). Let R = (X, E,R), with E = A U B, be a rewrite
theory and C be a computation in R. Let A be an assertional specification for R.

(sl(a,), 0, none) if C =slap) and sl ap)F S(A)
(sl(a,B), Esys(s, S(A)),sys) ifC =s|ap) and s|ap)l~ S(A)
(w—%p C", Err, flag) ifC=u—%pC and u F(A)

and (C", Err, flag) =
check(Can(p) —% C', A)
check(C, A) = (K, Efun(uwf(A)))fun) ifC=n %E,B C'and wiE F(A)
(s —r C”, Err,flag) ifC=s—gpC',s=slap) and
s = S(A) and (C”, Err, flag) =
check(C’, A)
(8, Esys(s, S(A)), sys) ifC=s—rpC' s =slap
and s £~ S(A)

where L = s %X s Sla,B is a non-empty equational simplification for s and Can(p) =
slag-

Example 14. Consider the rewrite theory R of Example 5 together with the asser-
tional specification A and the state equational simplification yen = s —>Z§ g SlaB

5. Runtime Verification of Maude Programs 91

of Example 13. Recall that e erroneously suspends the preferred customer 'C2
through the equational simplification ., included in yen;. This error is pinpointed
by the refutation of the functional assertion ® € A.

Now, by Definition 8,

CheCk(urent)A) = (P'rent) {(H’C2){3-2-]})}> fun)>

since Wrene = F(A) where
F(A) ={®}and Egn(prent, F(A)) = {(prc2,{3.2.1)}

The following proposition states that function check can be effectively used to
dynamically check assertional specifications across computations.

Proposition 1. Let R = (X, E,R) be a rewrite theory and C be a computation in
R. Let A be an assertional specification for R. Then, C = A iff check(C, A) =
(C, 0, none).

Proof. Let R = (X, E, R) be a rewrite theory and C be a computation in R. Let A be
an assertional specification for R.

(=) We assume that A is satisfied in C, that is, C = A. Hence, by Definition 7,
for each state s in C that is a canonical form with respect to A modulo B,
s = S(A); and for each state s in C that is not a canonical form with respect
to A modulo B, s —>X)B sl(aB)F F(A). We now proceed by induction on the
length of the computation C.

Base case: C = so|a . Inthis caseC consists of the single initial state so | A B,
which is a canonical form with respect to A modulo B. Since A is sat-
isfied in C, we have so| A = S(.A). Hence, by Definition 8, we trivially
have

check(C, A) = check(sola s, A) = (sola,s, 0, none) = (C,), none).

Inductive case 1: C = (sg %XB solaB—R B C’). In this case, C is a (non-
empty) computation that initially siﬁplifies the non-normalized input
term sy by means of the equational state simplification i = (s HX B
sola,). By inductive hypothesis, we have that)

check(solap—rp C'yA) = (&, 0, none).

Furthermore, u = F(A) since A is satisfied in C (and hence in).
Therefore, check(C, A) = check(p —% g C'VA) = (u kB C’, (0, none)
= (C, (), none).

92 5. Runtime Verification of Maude Programs

Inductive case 2: C = s —g 3 C’. Since the first rewrite step in C is a rule
application, this implies that s is already in canonical form, that is, s =
sla. Since A is satisfied in C we have that s = S(.A), which implies

slagkE S(A). (5.1)
Also, by inductive hypothesis, it holds that
check(C', A) = (&, 0, none). (5.2)

By combining Claims 5.1 and 5.2, we get

check(C, A) = check(s —gp C',A) = (s =g C’,0,none) =
(C, 0, none).

(&) By contradiction, we assume that check(C, A) = (C,®,none) and C (- A.
Since A is not satisfied in C, there exists either a state s in canonical form
such that s £ S(A) or an equational state simplification w such that p
F(A). Thus, by Definition 8, the function call check(C,.A) delivers a triple
(C",Err,flag) with Err # (). This leads to a contradiction since we have
assumed check(C, A) = (C, 0, none).

The runtime checking methodology formalized in Definition 8 can be interpreted
either as an asynchronous (and trace-storing) technique or as a synchronous one (by
considering that the input trace C is lazily generated as successive Maude steps that
are incrementally consumed by the calculus). In the following chapter, we formalize
a truly synchronous methodology where computations, or rather whole search trees,
can be stepwisely examined in a forward direction, reporting a violation at the exact
step where it occurs.

Chapter 6

Automated Debugging of
Maude Programs

Dynamic assertion-checking and trace slicing can be smoothly combined together
to facilitate the debugging of ill-defined rewrite theories. In the case when a functional
or system assertion A € A fails to be satisfied over a computation C, a fragment of
C (which exhibits the anomalous behavior with respect to A) is returned together
with the corresponding set of system/functional error symptoms. Then, a backward
trace slicing technique can take advantage of the computed error symptoms to pro-
duce small, easy-to-inspect computation slices of all those fragments that have been
proven to be erroneous by the assertion-checking methodology. In conventional pro-
gram development, if an assertion evaluates to false at runtime, an assertion failure is
signaled, which typically causes execution to abort while delivering a huge execution
trace. By automatically inferring deft slicing criteria from falsified assertions, the
proposed methodology derives a self-initiating, enhanced dynamic slicing technique
that automatically starts slicing the trace backwards at the time the assertion violation
occurs, without having to manually determine the slicing criterion in advance.

The chapter is organized as follows. Section 6.1 introduces a backward trace slic-
ing technique that can be used to drastically reduce complex, textually-large system
computations with respect to user-defined slicing criteria that selects those data that
we want to track back from a given point. Section 6.2 presents a technique that is able
to improve the accuracy of the inferred error symptoms as well as the efficiency of the
runtime checks by refining the formulas in the assertions. Section 6.3 formalizes the
technique that automatizes debugging by combining runtime verification and back-
ward trace slicing. Finally, Section 6.4 complements the methodology by introducing
a new technique that automatically suggests suitable repairs to the rules involved in
the violation of a system assertion.

6.1 Slicing of Execution Traces and Programs

Trace slicing [Alpuente et al., 2011, Alpuente et al., 2012, Alpuente et al., 2013a,
Alpuente et al., 2014a] is a transformation technique for rewriting logic theories that

94 6. Automated Debugging of Maude Programs

can drastically reduce the size and complexity of entangled, textually-large execution
traces by focusing on selected computation aspects. This is done by uncovering data
dependences among related parts of the trace with respect to a user-defined slicing
criterion (i.e., a set of symbols that the user wants to observe). This technique aims
to improve the analysis, comprehension, and debugging of sophisticated rewrite the-
ories by helping the user inspect involved traces in an easier way. By step-wisely
reducing the amount of information in the simplified trace, it is easier for the user to
locate program faults because pointless information or unwanted rewrite steps have
been automatically removed. Roughly speaking, irrelevant terms in trace slices are
omitted, leaving “holes” that are denoted by special variable symbols e.

A term slice of the term s is a term s® that hides part of the information in s; that
is, the irrelevant data in s that we are not interested in are simply replaced by (fresh)
e-variables of appropriate sort, denoted by e;, withi =0,1,2,....

The next auxiliary definition formalizes the function Tslice(t, P), which allows a
term slice of t to be constructed with respect to a set of positions P of t. The function
Tslice relies on the function fresh® whose invocation returns a (fresh) variable e; of
appropriate sort that is distinct from any previously generated variable e;.

Definition 9 (term slice). Let t € T(Z,)) be a term and let P be a set of positions
such that P C ‘Pos(t). Then, the term slice Tslice(t,P) of t with respect to P is
computed as follows.

Tslice(t, P) = recslice(t, P, A), where

f(recslice(ty, P,p.1),...,recslice(ty, P,p.n))
ift=f(t1,...,tn),n > 0,andp € P

t ift € Varandp € P

fresh® otherwise

recslice(t, P,p) =

and P = {u | u < p Ap € P}is the prefix closure of P. Note that the in-
ductive case (n = 0) includes the case when f is a 0-ary function symbol; hence,
f(recslice((, P,p)) = f.

Roughly speaking, the function Tslice(t, P) yields a term slice of t with respect to
a set of positions P that includes all (and only the) symbols of t occurring within the
access paths from the root of t to each position in P, while the remaining information
of t is abstracted by means of e-variables.

Example 15. Consider the specification of Section 4.1.2 and the state

t= < 'Al : EconomyCar | available : true , rate : 20 >
< 'RG : Register | rentals : @ , date : @ >

6. Automated Debugging of Maude Programs 95

Consider the set P ={ 1.1, 1.2, 1.3.1, 1.3.2 } of positions in t. Then,

Tslice(t,P) =< 'A1 : EconomyCar | available : e; , rate : e; > e3

Trace slicing can be carried out forwards or backwards. While the forward trace
slicing results in a form of impact analysis that identifies the scope and potential con-
sequences of changing the program input, backward trace slicing allows provenance
analysis to be performed; i.e., it shows how (parts of) a program output depend(s) on
(parts of) its input and helps estimate which input data need to be modified to accom-
plish a change in the outcome. While dependency provenance provides information
about the origins of (or influences upon) a given result, the notion of descendants is
the key for impact evaluation. In the sequel, we focus on backward trace slicing.

Throughout this chapter, it is assumed the existence of a trace slicing function
backwardSlicing(sy —}3 5 Sn,sn) as defined in [Alpuente et al., 2014a] that yields
the backward trace slice sje—* s}, of the computation trace sy —}3 5 Sn With respect
to a term slice s}, of s,,, which is called the slicing criterion. This function relies on
an instrumentation technique for Maude steps that allows the relevant information of
the step, such as the selected redex and the contractum produced by the step, to be
traced explicitly despite the fact that terms are rewritten modulo a set B of equational
axioms (which may cause the components of the terms to be implicitly reordered in the
original trace). Also, the dynamic dependencies exposed by backward trace slicing
are exploited in [Alpuente et al., 2014a] to provide a (preliminary) program slicing
capability that can identify those parts of a rewrite theory that can potentially affect
the values computed at some point of interest.

Let us illustrate by means of an example how backward trace slicing works in
practice and allows one to deduce the conditions under which a program produces the
observed data.

Example 16. Consider the RENT-A-CAR-ONLINE object module of Section 4.1.2 and
3-day-rental 3-day-rental
— S —

the computation trace Crens = So sy that starts in the initial

state
so = < 'A1l : EconomyCar | available : true , rate : 30 >
< 'A5 : FullSizeCar | available : true , rate : 70 >
< 'C1 : Customer | credit : 50 , suspended : false >
< 'C2 : PreferredCustomer | credit : 100 , suspended : false >
< 'RG : Register | date : @ , rentals : 0 >

96 6. Automated Debugging of Maude Programs

and ends in the state

s) = < 'Al : EconomyCar | available : false , rate : 30 >
< 'A5 : FullSizeCar | available : false , rate : 70 >
< 'C1 : Customer | credit : - 160 , suspended : false >
< 'C2 : PreferredCustomer | credit : 10 , suspended : false >
< 'RO : Rental | car : 'A1 , customer : 'C2 , deposit : 90 ,

dueDate : 3 , pickUpDate : @ , rate : 30 >

< 'R1T : Rental | car : 'A5 , customer : 'C1 , deposit : 210 ,
dueDate : 3 , pickUpDate : @ , rate : 70 >

< 'RG : Register | date : @ , rentals : 2 >

Roughly speaking, Cren; models the two following actions':

(i) customer 'C2 subscribes a 3-day rental contract (rule 3-day-rental) to rent an
economy car whose rate is 30 and his/her credit is reduced by 90,

(i) customer 'C1 subscribes a 3-day rental contract (rule 3-day-rental) to rent a
full size car whose rate is 70 and his/her credit is reduced by 210.

Let us assume we manually define as the slicing criterion the negative credit
- 160 for customer 'C1, which indicates a possible malfunction of the RENT-A-CAR
specification since the regular client credit must be non-negative according to the se-
mantics intended by the programmer. Therefore, we execute trace slicing on the trace
Crent With respect to the slicing criterion

sy=e1 0 < e3 : e | credit : - 160 , e5 > e; e; eg e
that allows for the observation of 'C1’% negative credit. By applying the backward

trace slicing technique of [Alpuente et al., 2014a] to Cyen With respect to s5, we get
the output trace slice C},,;:

e;3 < e1g : ey | available : true , rate : 70 >
< o3 : @4 | credit : 50 , suspended : false > ey4 @5
3-day-rental
-
e < ep : 17 | available : true , rate : 70 >
< o3 : o4 | credit : 50 , suspended : false > e o7 o)
3-day-rental
[
o] o) < o3 : e | credit : - 160 , o5 > e; e; eg @9

For the sake of clarity, we have intentionally omitted, from C,ey, all of the built-in equa-
tional simplifications that are needed to simplify arithmetic expressions.

6. Automated Debugging of Maude Programs 97

Indeed, by observing the first sliced state in C},,;, we can easily verify that the
conditions for the rental are met by customer 'C1 and car 'A5. In particular, 'A5
is available and (non-preferred) customer 'C1 is not suspended. However, the car
should not be rented because the credit 50 does not cover the charge 210 (70 for each

day), which causes the negative credit - 160 of customer 'C1.

The main idea of this work is to enhance backward trace slicing by using runtime
assertion checking to automatically identify the relevant symbols to be traced back
from the erroneous states of the trace, that is, those states where an assertion is fal-
sified. In conventional program development environments, when a given assertion
check fails, the programmer must thoughtfully identify which program statements
impacted on the values that cause the assertion failure. An additional advantage of
blending trace slicing and runtime checking together is that the runtime checking not
only helps automate the trace slicing, but trace slicing also helps answer the “What
caused it?” question that immediately arises when an assertion is violated. By using
the assertion-based, backward trace slicing methodology, error diagnosis is greatly
simplified because accurate criteria for slicing are automatically inferred from the
computed error symptoms that initiate the slicing process so that much of the irrele-
vant data that does not influence the falsified assertions is automatically cut off.

6.2 Improving the Inference of the Slicing Criteria

This section presents a practical strategy that delivers finer slicing criteria by re-
stricting the number of positions that are worth tracking to those that appear in selected
subformulas of the (post)conditions.

Without loss of generality, it is assumed that any logic formula ¢ in a system
assertion S {@} or in a functional assertion I{;,} — O {@oy}is written in conjunctive
normal form @1 /\.../\ @y, where /\ does not occur in any @i, 1 =1,...,n. Then,
a refined strategy for inferring accurate slicing criteria for an erroneous state e can be
formulated as follows:

1. When a system assertion S {@} with @ = @1 /A .../ @y is refuted, this is
because e matches S (modulo the enriched equational theory) with matching
substitution o, while @o is not satisfied. Hence, we sequentially examine the
conjuncts @i, i = 1,...,n, and for the first failing conjunct ¢j, a slicing crite-
rion is synthesized by instantiating the pattern S with 0y (¢;), Where 0yar(q;)
is the restriction of o to the variables that occur in ;.

2. In the case when a functional assertion I {@;,} — O {@ou/} is violated, an
instance I1oj, of the input template I reduces to a canonical form O, in e, and
one of the following two cases occurs:

98 6. Automated Debugging of Maude Programs

a) Oe does not equationally match the instance O(0in]a B)0ou of the out-
put template O; in this case, the slicing criterion is computed by apply-
ing the modular order-sorted least general generalization algorithm of
[Alpuente et al., 2014a] to gather up all of the mismatches (modulo the
considered equational theory) between the erroneous canonical form O,
and O(O-inJ,A,B) Oout-

b) O does equationally match O(0jn| A B)Tous, but all of the corresponding
matchers falsify the formula @,,; in this case, the methodology proceeds
analogously to case 1 (system assertions) and synthesizes the slicing cri-
terion by examining the failing conjuncts of @, systematically.

6.3 Integration of Assertion-Checking and Trace Slicing

Given a conditional rewrite theory R = (L, E,R), with E = A U B, the tran-
sition space of all computations in R from the initial state sy can be represented as
a computation tree,> Tr(sp). Rewriting logic computation trees are typically large
and complex objects that represent the highly-concurrent, non-deterministic nature
of rewrite theories.

Let us formalize a methodology that checks rewrite theories with respect to an
assertional specification .4 at runtime by incrementally generating and checking the
computation tree Tr(sp) until a fixed depth. In fact, the complete generation of
Tr(so) is generally not feasible since some of its branches may be infinite as they
encode non-terminating computations. The general analysis algorithm, which is spec-
ified by the routine analyze(sy, R, A, depth), is given in Figure 6.1. The computation
tree is constructed breadth-first, starting from a tree T that consists of a single root
node so. At each expansion stage, the leaf nodes of the current T are computed by the
function frontier(T). Expansion of an arbitrary node s is done by deploying all the
possible Maude steps stemming from s that are given by mS(s). Whenever a Maude
step M is produced, it is also checked with respect to the specification A by calling
check(M, A) that computes the triple (P, Err, flag). According to the computed flag
value, the algorithm distinguishes the following cases:

flag = none. No error symptoms have been computed; hence, A is satisfied in the
Maude step M, which can safely expand the node s by replacing s with the path
represented by M via the invocation of add(T, s, M), thereby augmenting T.

%In order to facilitate trace inspection, computations are visualized as trees, although they
are internally represented by means of more efficient graph-like data structures that allow
common subexpressions to be shared.

6. Automated Debugging of Maude Programs 99

function analyze(sy, (X, A U B, R), A, depth)

1. T= S0

2. d=0

3. while (d < depth) do

4. F = frontier(T)

5. foreachseF

6. for each M € mS(s)

7. (P, Err, flag) = check(M, A)

8. case flag of

9. none :

10. T =add(T, s, M)

11. Sys :

12. w = selectSysSymptom(Err)

13. 1* = TSlice(last(P), Pos(last(P))

14. return backwardSlice(s —>§LM)B P,1°)

15. fun:

16. (t —)X’B tlaB, L) = selectFunSymptom(Err)
17. (tla,s)® = TSlice(tla By Uyer Posw(tlas)
18. return backwardSlice(t — 5 tlag, (tlaB)*)
19. end case ,

20. end for

21. end for

22, d=d+1

23. end while

24, return T

end

Figure 6.1: The analyze function.

flag = sys. In this case, check returns a set of system error symptoms Err together
with a computation P (which is a prefix of the Maude step M) that violates a
system assertion of 4. The computation sy —% A Fis then generated and
backward sliced with respect to a term slice 1* of the last state of 7. This term
slice conveys all the relevant information that we automatically retrieve by us-
ing Definition 9 from the system error symptom w selected by the function
selectSysSymptom(Err), while all other symbols in 1 are considered meaning-
less and simply pruned away. This way, the algorithm delivers a trace slice
sge—" P* that removes from the computation all the information that does not
affect the production of the chosen error symptom.

flag = fun. Some functional assertions have been violated by the considered Maude

100 6. Automated Debugging of Maude Programs

step M. Hence, the algorithm selects a functional error symptom (t —7 5
tlaB, L) and returns the backward trace slicing of t —>X’B tlaB with respe&t
to a term slice of t| A g that includes all the subterms of t| A g that are rooted at
positions in L. As explained in Section 5.3.2, these subterms indicate possible
causes of the assertion violation.

It is worth noting that, in the proposed framework, no specific semantics is at-
tached to selectSysSymptom and selectFunSymptom functions since many selection
strategies can be specified with different degrees of automation and associated trade-
offs. For instance, we can simply obtain a fully automatic selection strategy (which is
the strategy followed by the ABETS tool of Chapter 7) by selecting the first symptom
in Err. On the other hand, an interactive strategy can also be implemented by asking
the user to choose a symptom at runtime.

Finally, if the analyze function terminates without detecting any assertion vio-
lation, then a (verified) tree T is delivered that encodes the first depth levels of the
computation tree T (sg); otherwise, the trace slice of the first computation that is
found to violate an assertion is delivered. When multiple assertions are violated,
analyze can be invoked iteratively: i.e., we can (manually) run analyze on a sequence
of mutations of the original program that fix (if possible) the violations progressively
encountered.

Theorem 1 (correctness). Let R = (L, E, R) be a rewrite theory, T (sg) be the com-
putation tree for initial state sy € T (X, Var) in R, and A be an assertional specifica-
tion for R. Let depth be a natural number. Then, analyze(so, R, A, depth) terminates
and

1. if there exists a computation C in Tr(so) such that C ¥~ A and length(C)
< depth, then analyze(so, R, A, depth) delivers a backward trace slice Cy,, of
a fragment Cpre of C that violates either a functional or a system assertion in
A. Cp,. is computed with respect to the term slice of the last state of Cpre that
includes all subterms correlated to a chosen error symptom;

2. otherwise, analyze(so, R, A, depth) delivers a tree T that corresponds to the
expansion of the first depth levels of Tr (so).

Proof (termination). Termination of analyze(sy, R, .A, depth) is trivial since the main
while loop is performed at most depth times, and at each iteration it invokes the
terminating backward slicing algorithm of [Alpuente et al., 2014a], and the function
check, which is terminating because the execution in R of the assertional specification
is also terminating.

Now, let us prove Claim 1. Function analyze implements a breadth-first visit of
the Maude steps in Tr(so) until an assertion violation occurs or the depth bound
has been reached. Since we assume that there exists C in Tr(so) such that C £ A

6. Automated Debugging of Maude Programs 101

and length(C) < depth, there exists a (minimum) prefix Cpre of C such that either
Cpre = S(A) or Cpre = F(A) that is detected by analyze. Let us assume that Cpre F-
S(A) (the proof of the case Cpre F~ F(A) follows an analogous argument). Hence,
Cpre = S0 —*aurp P Wwhere P is obtained by checking the last expanded Maude
step M, that is, check(M, A) = (P, Err,sys). Let | be the last state in Cpr.. Now,
the state 1 is a canonical form such that 1 = © for some © € S(.A). Therefore,
Eoys(1,0) C Err. Let w € &45(1,0) C Err be a selected system error symptom. By
Definition 9, 1° = TSlice(l, Pos, (1)) computes a term slice 1° that includes all of the
symbols in the subterm 1|,,. Thus,

backwardSlice(Cpre, 1*) = backwardSlice(so —giap Py1°)

is a backward trace slice of Cyr that is computed with respect to a state | that includes
the subterm 1,, that is univocally correlated to the chosen system error symptom w.

Note that, in the case when there is no computation C in T (so) such that C £ A
and length(C) < depth, Claim 2 is trivially proved by construction of the analyze
function. In this case, there is no assertion violation, and thus the algorithm generates
a tree T by unraveling all of the Maude steps of Tr(so) until the bound depth is
reached.

The assertion-based trace slicing methodology described in this section is a syn-
chronous procedure that incrementally executes, checks, and possibly slices Maude
computations at runtime. However, note that an offline, asynchronous procedure (that
works on pre-calculated computations) can be easily derived from our synchronous
algorithm with little effort. Actually, it suffices to provide the whole computation C
to be analyzed as input and to stepwisely check its Maude steps by using the check
function in search of assertion violations. When an assertion violation is detected on
a prefix Cpre of the input computation that reaches the erroneous state e, a slicing cri-
terion is then inferred by exploiting the error symptoms that are associated with the
violation, as happened in the synchronous case; finally, a backward trace slice of Cpy,
is computed with respect to the considered slicing criterion. Synchronous and asyn-
chronous modalities have been implemented in the ABETS tool, which is described in
Chapter 7.

6.4 Automated Repair of Faulty Rules

In the proposed framework, when a system assertion is falsified the execution
stops and the computation trace that led to the erroneous state is automatically sim-
plified by means of a backward trace slicing technique. However, the user still has
to decipher the counterexample and manually repair the program. In this regard, this
section proposes a transformation technique that automatically computes repairs to

102 6. Automated Debugging of Maude Programs

the program by using equational unification and by constraining the rules involved in
the generation of those erroneous states detected.

Given an equational theory E = A U Ax and two terms t; and t;, an E-unifier
for t; and t;, is a substitution o such that t;0 =¢ tyo0. In Maude, E-unifiers are not
represented as a single substitution, but as a pair of substitutions (o7, 02), one for
left unificands and the other for right unificands (i.e., t;o7 =¢ t203;). Also, Maude’s
E-unification algorithm may generate new (fresh) unification variables, denoted by
%n, with n being a natural number. The set of all such variables contained in a given
term t is denoted by UnifVar(t). Let us see an example.

Example 17. Consider a simple Maude program whose signature consists of two
unary operators, m and c, and one commutative, binary operator f. The program
includes a single equation m(X) = c(X).

Then,

o=(on0)= X/ % }{Z/% P

is an E-unifier for the terms t; = f(m(X),0) and t; = f(0,c(Z)). The new, unifi-
cation variable %1 is used to establish that X and Z represent the same value, and it is
the only common variable shared by t;07 and t;0;.

The proposed repair technique is based on a two-phase algorithm that takes as
input:

(i) thelast Maude step s Lo t%Z,B t] a,p of the execution trace that violates S {¢},
(ii) the violated system assertion S {¢}, and

(iii) the bug position p in the last trace state t| s .

Phase 1 [Semantic unification of the failing assertion and rule]. First we E-unify
the terms t[pl,, (that is, a more general version of t = s[po],, that does not apply the
substitution o to the reduced term) and t| o g [S], (that is, a more general version of
t/ A, where the subterm at the bug position p is replaced by the assertion pattern S
itself) in order to relate the variables in the right-hand side p of r with the variables
that appear in the state template S. Since there may be several E-unifiers, we just
select an E-unifier (o, os) such that the bindings in o, do not clash with the bindings
in the computed substitution o. This is done by performing a standard consistency
check through the parallel composition of ¢, and o, which computes the most general
unifier (mgu) of the set of all the equations x = term that represent a binding x / term
in either o, or o. If such an mgu exists, o, is consistent w.r.t. 0, and the corresponding
E-unifier (o,, 0s) is selected.

As an important remark, observe that we cannot simply E-unify p with S because
the state template S could include operators that are not in p but in t, and, hence, the

6. Automated Debugging of Maude Programs 103

two terms could be not E-unifiable and lead to no repair. This is the reason why we
need to E-unify p and S within their corresponding state contexts, that is, t[p],, and

tlag [Slp.

Example 18. Consider a Maude program that contains the rewrite rule
rl [r] : f(X) = g(X) .
and no equations, together with the execution trace
a& f(0) ——a & g0
and the system assertion

(@a&g)){z2>0}

that is violated in the state a & g(@). Observe that there is no E-unifier between the
right-hand side g(X) of r and the state template a & g(Z), whereas the pair ({ X
/ %1 },{ Z / %1 }) is an E-unifier for the terms a & g(X) and a & g(Z), which
include g(X) and a & g(Z) in their corresponding state context. More importantly,
the bindings in the computed E-unifier enforce X and Z to bind the very same value.
This suggests that we can achieve a repair by forcing the rewrite rule argument X to
inherit the constraints on Z.

Phase 2 [Strengthening the rule condition]. Given the computed E-unifier (o,, 0s),
first we split o, into two sets Oyyje and Opew such that oye ={X/t € 0, | X €
Var(p) AUnifVar(t) = 0}, and Onew = 0p \ Oryte. Note that oy contains all those
0, bindings that introduce new unification variables, while the bindings of o1 only
use the original variables of p. Then, we replace the faulty rule r with the following
corrected rule whose condition is strengthened by adding a constrained version (that
is built by using os and o) of the violated logic formula ¢:

Cr]. [r'FlX] : }\O-new => POnew

if Conew /\ ((/\ X==1t) implies (pag).

X/te Orule

The corrected rule rfix is produced by instantiating the original rule r with the
substitution oy, that introduces in rfix the fresh variables generated during the
unification process of Phase 1 and by adding the instance @ oy of the falsified logical
formula . The variables of such an instance are constrained via a logical implication
whose premise is the conjunction of all the bindings X / t in oy interpreted as

104 6. Automated Debugging of Maude Programs

Boolean expressions X == t3. In the case when 0, is empty, the logical implication
corresponds to (true implies (os), and thus simply reduces to the term @os.

Example 19. Consider a Maude program that includes the following conditional
rewrite rule r and equation e

crl [r] : f(X,Y)
eq [el : g(X,Y)

> c(2,g(X,Y)) if X =/=Y .
m(X,Y) .

and assume that the operator mis declared commutative. Also consider the system
assertion c(2,m(Z,5)) {even(Z)3}, where even(Z) checks if Z is an even natural
number.

The execution trace f(5,3) =5 ¢(2,g(5,3)) — c(2,m(5,3)), with computed
substitution 0 ={ X / 5, Y / 3}, is erroneous since the formula even(Z) does not
hold for the binding Z / 3 that is computed by matching modulo commutativity the
state c(2,m(5,3)) in the assertion state template c(2,m(Z,5)).

The repair proceeds by first performing Phase 1, which computes two E-unifiers
of the terms c(2,g(X,Y)) and c(2,m(Z,5)), namely,

(0, 05,) = ((X / %1, Y / 5}, {2 / %))
(GPZ?GSz):({X /5 Y /R KE{Z /%))

Now, observe that the E-unifier (o, , 05,) is discarded since oy, is not consistent
w.r.t. 0. Actually, there is no mgu of o,, and o because of the clash between the
bindingsY / 5 € op, andY / 3 € 0. The E-unifier (0,,, 0s,) is consistent w.r.t. o
and thus is used to infer the repair in Phase 2 of the algorithm.

Phase 2 generates the partition 65, = Oryle UOnew =1{X 7/ 5}U{Y / %1 }and
uses it together with os, to yield the following corrected version of the rule r:

crl [rfix] : f(X,%1) => c(2,g(X,%1))
if (X =/=%1 / (X ==5 implies even(%1)) .

Note that the generated condition of a repaired rule rfix might not be satisfi-
able, which makes rfix not applicable. Nevertheless, this is not bad since the non-
applicability of the corrected rule prevents the system from reaching the faulty state
signaled by the assertion violation. This therefore has the inherent effect of reducing
the number of erroneous runs in the system, which is of primary importance in the
repair of critical systems as first advocated by [Logozzo and Ball, 2012].

3A binding X / t in 04,1 can always be interpreted as an executable, Boolean expression
X ==1, since all the variables included in X / t appear in the rewrite rule as well and thus take
concrete values when the rule is applied.

Chapter 7

The ABETS System

The assertion-based, runtime checking, analysis, and repair methodologies pre-
sented in this thesis have been implemented in the prototype tool ABETS (Assertion-
Baskd Trace Slicer), which is publicly available at the ABETS website at http:
//safe-tools.dsic.upv.es/abets. For implementing the exploration capabilities
of ABETS, part of the inspection machinery of the dynamic exploration framework
ANIMA, which was developed in previous work [Alpuente et al., 2015a], was reused.
Likewise, the slicing-based analysis capabilities of ABETS (and ANIMA) are rooted
in the trace (and program) slicing procedures developed in [Alpuente et al., 2014a],
which were first implemented in the dynamic slicing tool iJulienne [Alpuente et al.,
2013a]. One of the main novelties of ABETS with respect to previous (ANIMA and
iJulienne) systems is that it has been implemented to run at both the Core Maude
and Full Maude levels. Furthermore, the need to invoke Full Maude is automatically
inferred so that high-performance analyses can be achieved for theories that do not re-
quire the time-expensive, Full Maude capabilities. This improvement was then ported
back to ANIMA and iJulienne as well.

This chapter presents ABETS, an assertion-based, automated dynamic trace slicer
that implements the methodologies presented in Chapters 5 and 6 of this thesis. The
structure of this chapter is as follows. Section 7.1 presents the main features of ABETS.
Section 7.2 reproduces a debugging session with ABETS. Section 7.3 describes the
most relevant implementation details, including both the architecture of ABETS and
some significant optimizations. Finally, Section 7.4 collects some experiments that
benchmark the efficiency of the system.

1.1 ABETS ina Nutshell

This section briefly describes the ABETS system, which operates under three dif-
ferent modes that are described in Section 7.1.1, while Section 7.1.2 explains the most
relevant services provided by the system.

http://safe-tools.dsic.upv.es/abets
http://safe-tools.dsic.upv.es/abets

106 7. The ABETS System

1.1.1 Operating Modes

Given a Maude module that encodes the rewrite theory R, runtime assertion
checking is performed in ABETS by first wrapping R, via inclusion, in a system mod-
ule PRED(R) that also contains the extra predicates the user may need to define new
formulas. Functional and system assertions are given sorts in the functional module
ASSERTION

fmod ASSERTION is
sorts sAssertion fAssertion Assertion .
subsorts sAssertion fAssertion < Assertion .
op _/_ : Bool Bool -> Bool [ctor assoc prec 125 gather (e e)]
op _‘{_"} : Universal Bool -> sAssertion [ctor poly (1)]
op _"{_"}>_"{_"} : Universal Bool Universal Bool -> fAssertion
[ctor poly (1 3)]
endfm

which is also included in PRED(R). This hierarchical setup allows assertions specifi-
cations in PRED(R) to be directly parsed by means of Maude’s metaParse operation,
resulting in a list A of (system and functional) assertions.

Given a computation C in R, for asynchronous checking ABETS proceeds by
incrementally consuming Maude steps (of C) while checking the assertions in .4 that
are relevant to the step.

In contrast, for the synchronous case, ABETS distinguishes two additional oper-
ation modes, depending on how computations are dynamically generated. The first
mode consists of a step-by-step generation of a computation C that follows Maude’s
internal strategy. Each time a Maude step is generated, the satisfaction of A is checked,
which is similar to the asynchronous case. The second mode allows a fragment of the
whole computation tree to be deployed up to a given depth that is measured in Maude
steps. Also in this case, the satisfaction of A is checked at each Maude step.

In the event that an assertion is falsified at state s, the dynamic checking is
immediately stopped and ABETS delivers a (simplified) counter-example trace. As
explained in Section 6.3, for system assertions violations the simplified trace is com-
puted as the backward slicing of the trace from the initial state sy to s, (with respect
to a slicing criterion that is automatically inferred by matching the discordant subterm
of s, with the state pattern of the falsified assertion). As for functional assertions, the
delivered counter-examples consist of the equational simplification trace for the out-
ermost term that is responsible for the falsification. In this case, the slicing criteria is
automatically obtained as the discrepancy between the normal form that is expected
and the normal form that is actually computed. This discrepancy is calculated by
using the least general generalization algorithm of [Alpuente et al., 2014d] that was
first implemented in ACUOS [Alpuente et al., 2014e], which has been coupled into

7. The ABETS System 107

the ABETS core. Note that the asynchronous mode is preferable for the debugging of
previously identified faulty executions, since this mode avoids having to re-execute
the program and thus it is the lightest of all three checking modes.

While the synchronous tree-checking mode is useful for analyzing all the non-
deterministic paths of a non-confluent program execution at the same time, the syn-
chronous trace-checking mode is the best to debug deterministic executions or (arbi-
trarily chosen) non-deterministic computations of non-confluent programs. An upper
bound is necessary to finitize the analyses in the synchronous checking modes, which
is typically based on counting the elapsed time or the number of rewrite steps. For the
synchronous trace-checking mode, ABETS has 250 rewrite steps as the upper bound,
mainly because trace formatting is rather time-consuming (the instrumentation of a
trace with 250 rewrite steps can result in thousands of instrumented rewrite steps
that also need to be properly formatted to be output). Nevertheless, offline (console)
checking can deal with much higher bounds, especially when formatting is dispensed.
As for the synchronous tree-checking mode, ABETS includes two different bounds:
the first one limits the depth of the deployed computation trees to 10, while the second
one limits the number of nodes that can be checked to 100,000.

Finally, as it has been mentioned in Section 3.3.2, object-oriented modules are
just syntactic sugar in Maude and are internally transformed into system modules for
execution purposes. In object notation, object attributes do not need to be explicitly
written in the rules when they remain unchanged, which overcomes the classical an-
noyance of expressing invariance or frame properties in algebraic specifications (i.e.,
that those parts of a state that are not affected by a change remain unchanged). How-
ever, these attributes do appear in (desugared) program states and computation traces.
In order to simplify object trace slices to the fullest and to effectively deal with frame
properties by mimicking attribute hiding, ABETS is endowed with refined matching
and filtering procedures that are transparent to the user and that are automatically
activated when dealing with object modules.

1.1.2 Features

This section summarizes the most relevant features and functionalities provided
by ABETS.

Constraint Checking

ABETS implements the analysis technique formalized in Chapters 5 and 6 in both
the asynchronous modality and the two synchronous modes previously described.

108 7. The ABETS System

Automated Slicing

The tool is endowed with a (forward and backward) incremental, interactive trace
slicer, which allows the user to greatly simplify any execution trace that falsifies at
least one of the constraints. In order to incrementally unmask the bugs that are re-
sponsible for the errors, at each run, the slicing criterion is automatically inferred
with respect to the first non-satisfied constraint.

Criteria Filtering

ABETS also provides a handy way to automatically synthesize refined slicing cri-
teria by means of special variables (i.e., those whose names begin with #) that can
be used in the assertions to indicate pieces of the matched term that the user does not
want to observe along the generated trace slice.

Incremental Trace Slicing

ABETS is equipped with an incremental backward trace slicing algorithm that
allows the computed trace slices to be further simplified by automatically applying
backward as well as forward trace slicing with respect to user-provided slicing crite-
rion refinements [Alpuente et al., 2015a].

Program Slicing

In addition to the simplification achieved by slicing execution traces, ABETS of-
fers the user the possibility to compute a dynamic program slice that only contains the
potentially faulty rules or equations [Alpuente et al., 2014a]. This feature is particu-
larly useful in the case when a functional assertion fails, since the relevant equations
are isolated from a presumably large, complex program that may possibly consist of
many modules.

Autorepair of Rules

ABETS is also provided with an automated program repair facility, which is de-
scribed in Section 6.4, that suggests fixes to potentially buggy rewrite rules whenever
it detects a faulty system state of a trace 7 that does not satisfy a system assertion
S {®}. Roughly speaking, the technique transforms the rewrite rule that is responsi-
ble for the system assertion failure (i.e., the last applied rule in 7 that causes (a piece
of) the transformed state to match the state pattern S). This fix is done by adding a
constrained instance of the logic formula ¢ into the conditional part of the rule, which
is computed by using Maude’s built-in E-unification [Duréan et al., 2016].

7. The ABETS System 109

Interactive Navigation

Computations and computation slices can be easily and thoroughly inspected by
navigating the traces and by accessing all of their available information, which in-
cludes the details of the instrumentation of each Maude step. Specifically, for each
instrumented Maude step, ABETS shows the rule and equations possibly applied to-
gether with their computed matching substitutions, redexes, and contractums. All
this information is accessible in both source and meta-level representations. More-
over, for conditional rewrite steps, an in-depth analysis of the condition proofs can be
accessed through the Inspect condition option of the context menu.

Trace information (trusted mode) x

State Label Original trace Sliced trace

1 ‘Start updP(1 + 2, reSeed(1 + 2), (St('S1, 4),5('S2, 12))) updP(1 + 2, reSeed(1 + 2), X N

2 builtn updP(3, reSeed(1 + 2), (st('S1, 4),st('S2, 12)))

3 builtin updP(3, reSeed(3), (st('S1, 4),5('S2, 12)))

4 re-seed updP(3, 3 + 3, (st('S1, 4),5t('S2, 12))) updP(3, 3 + 3, X)

5 builtin updP(3, 6, (st('S1, 4),st('S2, 12)))

6 fromBnf updP(3, 6, (st('S2, 12),st('S1, 4)))

5 updp if mdDelta(3 * 6) rem 2 == 0 then st('S1, 6 + mdDelta(3 * 6)),updP(3, 6 + 1, St(S2, |i¢ 1 dnelta(3 * 6) rem 2 == O then - updP(3, 6 + 1, yelse-fi

12)) else st('S1, 6 + - rndDelta(3 * 6)),updP(3, 6 + 1, st('S2, 12)) fi

if rndDelta(18) rem 2 == 0 then st('S1, 6 + rndDelta(3 * 6)),updP(3, 6 + 1, st('S2, 12

8 builtin)) else st('S1, 6 + - rndDelta(3 * 6)),updP(3, 6 + 1, st('S2, 12)) fi

34 |rnd-derta st('S1, 10),if random(21) rem 10 rem 2 == 0 then st('S2, 7 + random(21) rem 10),up
dP(3, 7 + 1, empty) else st('S2, 7 + - rndDelta(21)),updP(3, 7 + 1, empty) fi

35 |rnd-delta st('S1, 10),if random(21) rem 10 rem 2 == 0 then st('S2, 7 + random(21) rem 10),up | +,if random(21) rem 10 rem 2 == 0 then - else st(+, 7 + - (random(21) rem 10
dP(3, 7 + 1, empty) else st('S2, 7 + - (random(21) rem 10)),updP(3, 7 + 1, empty) fi), fi

36 |buitin st('S1, 10),if 3488238119 rem 10 rem 2 == 0 then st('S2, 7 + random(21) rem 10),up
dP(3, 7 + 1, empty) else st('S2, 7 + - (random(21) rem 10)),updP(3, 7 + 1, empty) fi

50 |builtin St('S1, 10),st('S2, -2),updP(3, 8, empty)

51 updP-owise st('S1, 10),st('S2, -2),(empty).Set{Stock}

52 [toBnf st('S1, 10),st('S2, -2)

Total size: 4340 bytes 279 bytes

Reduction Rate: 94%

Figure 7.1: Computed trace slice after refuting the assertion of Example 9.

Trusted/Untrusted Modes

ABETS encompasses two slicing modes: trusted and untrusted. In trusted mode,
Maude built-in operators are considered to be trusted (i.e., not to have bugs) and are
therefore ignored in the trace slice (See Figure 7.1), which further reduces its size.
In untrusted mode, all relevant operators are traced. The trusted mode is set to true
by default and can be switched to untrusted mode by choosing the Trace information
option in the main menu and then clicking the Trusted/Untrusted mode button. To help
the user compare the original, extended trace and the trace slice when they are shown
side-by-side (e.g., in the table view), trusted reduction steps (as well as duplicate states
modulo axioms) are not omitted but depicted in light gray.

110 7. The ABETS System

pu-jxau

pus-3xou

o
&
&
§795,5852
$009,5071

Figure 7.2: Computation graph generated from s, of Example 16.

Computation Graph Exploration

To help identify traces of interest for asynchronous checking, ABETS supports two
different representations of the computation space for a given initial term: the (stan-
dard) tree representation that is provided by default and a novel graph representation
of the state space that can improve user’s understanding of the program behavior (see
Figure 7.2). It is possible to switch between the two representations by left-clicking
on any node of the tree or graph. In the case when the user left-clicks on a node in
the graph, the topmost leftmost node in the tree that is associated with the considered
graph node is highlighted.

Trace querying and manipulation

This feature allows information of interest to be searched in huge execution traces
by undertaking a query that specifies a template for the search (see Figure 7.3). The
query is a filtering pattern with wildcards that define irrelevant terms by means of the
underscore character (_) and relevant terms by means of the question mark character
(?). In addition, traces and trace slices can be manipulated using their meta-level rep-

7. The ABETS System 111

Query information X

States where the query st(_,- ?) was satisfied:

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

19 (| 20 || 21 22 || 23 || 24 || 25 26 27 28 || 29 30 || 31 32 || 33 || 34 (| 35 || 36

37 38 || 39 (| 40 || 41 42 || 43 || 44 || 45 || 46 || 47 48 || 49 || 50 |[51 52

Once selected a state, you can refine the retrieved data below:

st('Sl, 10),st('sS2, -2)

Figure 7.3: Result of the trace query st(_, - ?).

resentation to be exported to other Maude tools. The meta-representation of terms can
be visually displayed, which is particularly useful for the analysis of object-oriented
computations where some object attributes can only be unambiguously visualized in
the meta-level (desugared) states.

1.2 ABETS at Work

Maude programs can be uploaded in ABETS as simple . maude or . fm files. Some
predefined specifications are provided with the tool for demonstration purposes, in-
cluding the car rental system of Section 4.1.2, and an assertional specification Ayent
that contains the system assertion ® of Example 8 and the functional assertion ® of
Example 11. Let us consider the synchronous checking modality that (non-determinis-
tically) expands all Maude steps that originate from the initial state:

sg = < 'Al1 : EconomyCar | available : true , rate : 30 >

< 'A3 : MidSizeCar | available : true , rate : 45 >

< 'A5 : FullSizeCar | available : true , rate : 70 >

< 'C1 : Customer | credit : 50 , suspended : false >

< 'C2 : PreferredCustomer | credit : 100 , suspended : false >
< 'RG : Register | date : @ , rentals : @ >

This is achieved in ABETS by calling analyze(R ent, Arent, 1), where R rent is the
rewrite theory specified by the RENT-A-CAR object module. The screenshots shown
in Figure 7.4 and Figure 7.5 illustrate the initial, input phase for the parameters R rent
and Apent, respectively.

112

7. The ABETS System

PROVIDE THE MAUDE INPUT PROGRAM AND INPUT STATE OR TRACE ?

Uplozd

1 (omod RENT-A-CAR-ONLINE-STORE is

2 pr CONVERSION .

3 pr QID .

4

8 subsort Qid < 0id .

6

7 class Register | rentals : Nat , date : Nat .

8 class Customer | credit : Int, suspended : Bool .
9 class Car | available : Bool, rate : Nat .

10 class Rental | deposit : Nat, dueDate : Nat, pickUpDate : Nat, customer : 0id, c
11 class PreferredCustomer .

12 subclass PreferredCustomer < Customer .

13

14 class EconomyCar .

15 class MidsizeCar .

16 class FullsizeCar .

17 subclasses EconomyCar MidSizeCar FullSizeCar < Car .
18

g vars U C R RG : 0id .
20 vars CREDIT AMNT : Int .
21 vars TODAY PDATE DDATE RATE DPST RNTLS : Nat .

22
23 rl [new-day] : < RG : Register | date : TODAY >
24 => < RG : Register | date : TODAY + 1 > .

26 crl [3-day-rental] :

Synchronous checking ~

< 'Al : EconomyCar | available : true , rate : 30 > < 'A3 : MidSizeCar | available :
true , rate : 45 > < 'A5 : FullSizeCar | available : true , rate : 70 > < 'Cl : Cust
omer | credit : 50 , suspended : false > < 'C2 : PreferredCustomer | credit : 100 ,

suspended : false > < 'RG : Register | rentals : 0 , date : 0 >

Figure 7.4: Input Phase I.

mediately discovers that © is not satisfied in the following Maude step M

So

3-day-rental
—

"A1 : EconomyCar | available : false , rate
'A3 : MidSizeCar | available : true , rate
"A5 : FullSizeCar | available : true , rate
'"Cl : Customer | credit : - 40 , suspended
'"C2 : PreferredCustomer | credit : 100 , susp
false >

< 'R@ : Rental | car : A1 , customer : 'Cl1 , de
90 , dueDate : 3 , pickUpDate : @ , rate : 30 >
< 'RG : Register | date : @ , rentals : 1 >

AN N N AN A

By pressing the CHECK button, the assertion checking algorithm starts and im-

30 >
45 >

70 >
false >
ended

posit

7. The ABETS System 113

PROVIDE THE EXTRA PREDICATES AND SET OF ASSERTIONS TO CHECK ?

Add the extra predicates used in your assertions:

(mod RENT-A-CAR-ONLINE-STORE-PRED is
inc RENT-A-CAR-ONLINE-STORE .
sorts sAssertion fAssertion Assertion .
subsorts sAssertion fAssertion < Assertion .

op _/_ : Bool Bool -> Bool [ctor assoc prec 125 gather (e e)] .
op _“{_"} : Universal Bool -> sAssertion [ctor poly (1)] .
op _“{_"}->_"{_"} : Universal Bool Universal Bool -> fAssertion [ctor poly (1 3)] .

op isPreferredCustomer : Cid -> Bool .
eq isPreferredCustomer(PreferredCustomer) = true .
eq isPreferredCustomer(U:Cid) = false [owise] .

endm)

Based on your program and predicates, specify your assertions:

< 0:0id : C:Cid | credit : B:Int , suspended : S:Bool > { not(isPreferredCustome
r(C:Cid)) implies B:Int >= 0 }

updateSuspension(< U:0id : PreferredCustomer | credit : B:Int , suspended : false >)
{ B:Int < 0 } -> < U:0id : PreferredCustomer | credit : B:Int , suspended : false >
{ true }

Starting from the provided input state, check your assertions in the dynamically computed:

execution tree, up to the following tree depth (in Maude steps): v
=

Figure 7.5: Input Phase II.

since 'C1’s credit becomes negative after the application of the 3-day-rental rule
in se that allows 'C1 to rent car 'A1. Then, a system error symptom is automatically
computed by the tool, which unambiguously signals the anomalous subterm

< 'C1 : Customer | credit : - 4@ , suspended : false >
of the last state of M, and produces the associated term slice
[*= o7 0, o3 < o1 : o5 | credit : - 40 , o5 > e; e3 e

Finally, the algorithm automatically generates the backward trace slice of M with
respect to 1°, that is,

< o190 : e | available : true , rate : 30 > ej5 o4 < e; : g
| credit : 50 , suspended : false > o3 e

—

o] o) o3 < o5 : o5 | credit : - 40 , e; > e; e3 e

114 7. The ABETS System

which suggests an erroneous implementation of the 3-day-rental rule. Indeed,
3-day-rental authorizes any car rental to all customers, even when the requested
deposit exceeds the residual customer credit, which contradicts the property asserted
by the system constraint ©.

Falsified assertion information X

Assertion

updateSuspension(< U : PreferredCustomer | credit : B , suspended :
false >) { B < 0 } -> < U : PreferredCustomer | credit : B , suspen
ded : false > { true }

Type

Functional

Input Substitution (as obtained from input/pre)

B/ 90 + 10 - 126
U/ 'c2

Input Substitution (normalized, as applied to output/post)

B/ - 26
u/ 'c2

Figure 7.6: Description of the falsified assertion O.

If we re-execute the analysis after correcting the buggy 3-day-rental rule in
the RENT-A-CAR module, we can also discover a violation of the functional asser-
tion @ that detects an anomalous behavior of function updateSuspension: in fact,
updateSuspension suspends every customer with debts (i.e., a negative credit), while
preferred customers should never be suspended. Details of the refuted assertion are
attained by selecting the falsified assertion option from the tool menu, as shown in
Figure 7.6.

The delivered trace slice is shown in Figure 7.7, which displays a tabular view of
the trace (also provided by our tool), where the achieved reduction is shown (97%). In
order to simplify the displayed view of the trace, we note that subindices of e-variables
are hidden in our implementation; they can be shown by selecting the detailed trace
view. After the diagnosis, runtime checks can be turned off to avoid any execution
overheads.

Finally, by running the program slice option of ABETS, all program statements
that can (potentially) cause the erroneous program behavior are automatically identi-
fied (see Figure 7.8).

7. The ABETS System 115

Trace information

State Label Trace Trace Slice

< 'Al : EconomyCar | available: true , rate: 30 > < 'A3: MidSize
Car | available: true , rate: 45 > < 'A5 : FullSizeCar | available: t
1 'Start rue , rate: 70 > < 'Cl : Customer | credit: 50 , suspended: fals
e > < 'C2: PreferredCustomer | credit: 100 , suspended: fals

e > < 'RG: Register | rentals: 0 , date: 0 >

< 'A3 : MidSizeCar | available: true , rate: 45 > < 'AS5 : FullSizeC
ar | available: true , rate: 70 > < 'C1: Customer | credit: 50 , s
uspended: false > < 'C2: PreferredCustomer | credit: 100 - 9

0 , suspended: false , none > < 'Al: EconomyCar | available: fa
Ise , rate: 30 , none > < 'RG : Register | rentals: 0 + 1 , dat

e: 0 , none > < gid("R" + string(0,10)) : Rental | pickUpDat

e: 0 , dueDate: 0 + 3 , car: 'Al , deposit: 90 , customer: 'C2 , r
ate: 30 >

4 3-day-rental

< 'Al : EconomyCar | available: false , rate: 30 > < 'A3 : MidSiz
eCar | available: true , rate: 45 > < 'A5 : FullSizeCar | availabl
e: true , rate: 70 > < 'C1 : Customer | credit: 50 , suspended: f
19 new-day alse > < 'C2: PreferredCustomer | credit: 10 , suspended: fals
e > < 'RO: Rental | car: 'A1 , customer: 'C2 , deposit: 90 , due
Date: 3 , pickUpDate: 0 , rate: 30 > < 'RG : Register | dat

e: 0+ 1 ,rentals: 1 , none >

< 'Al : EconomyCar | available: false , rate: 30 > < 'A3: MidSiz
eCar | available: true , rate: 45 > < 'A5 : FullSizeCar | availabl
e: true , rate: 70 > < 'C1 : Customer | credit: 50 , suspended: f
23 new-day alse > < 'C2: PreferredCustomer | credit: 10 , suspended: fals
e > < 'RO: Rental | car: 'A1 , customer: 'C2 , deposit: 90 , due
Date: 3 , pickUpDate: 0 , rate: 30 > < 'RG : Register | dat
e:1+1 ,rentals: 1 , none >

< 'Al : EconomyCar | available: false , rate: 30 > < 'A3 : MidSiz
eCar | available: true , rate: 45 > < 'A5 : FullSizeCar | availabl
e: true , rate: 70 > < 'C1 : Customer | credit: 50 , suspended: f
27 new-day alse > < 'C2: PreferredCustomer | credit: 10 , suspended: fals
e > < 'RO: Rental | car: 'A1 , customer: 'C2 , deposit: 90 , due
Date: 3 , pickUpDate: 0 , rate: 30 > < 'RG : Register | dat
e:2+1 ,rentals: 1 , none >

< 'Al : EconomyCar | available: false , rate: 30 > < 'A3 : MidSiz
eCar | available: true , rate: 45 > < 'A5 : FullSizeCar | availabl
e: true , rate: 70 > < 'Cl : Customer | credit: 50 , suspended: f
33 new-day alse > < 'C2: PreferredCustomer | credit: 10 , suspended: fals
e > < 'RO: Rental | car: 'A1 , customer: 'C2 , deposit: 90 , due
Date: 3 , pickUpDate: 0 , rate: 30 > < 'RG : Register | dat

e: 3+ 1 ,rentals: 1 , none >

< 'A3 : MidSizeCar | available: true , rate: 45 > < 'AS5 : FullSizeC
ar | available: true , rate: 70 > < 'C1 : Customer | credit: 50 , s
uspended: false > updateSuspension(< 'C2 : PreferredCustome updateSuspension(< ¢ : « | credit: 10 - 126 + 90 , suspe
r | credit: 10 - 126 + 90 , suspended: false , none >) < 'Al: E [nded: false , « >)

conomyCar | available: true , rate: 30 , none > < 'RG : Registe
r | date: 4 , rentals: 1 , none >

39 late-return

< 'A3 : MidSizeCar | available: true , rate: 45 > < 'AS5 : FullSizeC
ar | available: true , rate: 70 > < 'C1: Customer | credit: 50 , s
44 suspend uspended: false > < 'C2 : PreferredCustomer | credit: - 26 , non <o ; * , suspended: true >
e, suspended: true > < 'Al: EconomyCar | available: true , rat
e: 30 , none > < 'RG : Register | date: 4 , rentals: 1 , none >

Total size: 2410 76

Reduction Rate: 97%

Figure 7.7: Computed Trace Slice after refuting the functional assertion @.

1.3 Implementation Details

The ABETS tool contains about 3500 lines of Maude code, 1000 lines of C++ code,
1000 lines of Java code, and 3000 lines of JavaScript code. In the following some
relevant details about the system implementation, including both the architecture of
ABETS and its most relevant features are described.

116 7. The ABETS System

Program slice o

op updateSuspension : Object -> Object .

ceq [suspend] : updateSuspension(
< U : Customer | credit : CREDIT , suspended : false >) =
< U : Customer | credit : CREDIT , suspended : true >
if (CREDIT < 0) .

endom)

Figure 7.8: Computed Program Slice.

1.3.1 The System Architecture

The architecture of ABETS is depicted in Figure 7.9 and consists of the following
components:

(i) a Maude-based slicer and constraint-checker core that consists of about 400
Maude function definitions (approximately 3500 lines of source code) that can
run at both Core Maude and Full Maude levels interchangeably;

(ii) a scalable, high-performance NoSQL database powered by MongoDB that en-
dows the tool with memoization capabilities in order to improve the response
time for complex and recurrent executions;

(i) a RESTful Web service written in Java that is executed by means of the Jersey
JAX-RS APJ;

(iv) an intuitive user interface that is based on AJAX technology and written in
HTML5 canvas and Javascript.

7. The ABETS System 117

Rewriting Logic Trace Slice
Specification Initial State
Assertions Bound
ABETS Client
|
JAX-RS API
ABETS Web Service
|
MongoDB ABETS Core

Figure 7.9: ABETS architecture.

1.3.2 Optimizations of the System

The system has been implemented by primarily focusing on its performance, in-
cluding improvements for both the analysis and for the input and output operations.
This section explains some relevant optimizations of the ABETS implementation and
their impact on the performance of the system.

Analysis Optimizations

As already mentioned, one of the many features of ABETS is its ability to ma-
nipulate all the relevant information regarding the application of equations, algebraic
axioms, and built-in operators at the meta-level, which is a feature that is not sup-
ported by Maude. In this regard, a new developer version of the Maude system
called Mau-Dev has been implemented, which extends the capabilities of the latest
distribution of Maude without affecting its efficiency. Moreover, to boost the sys-
tem performance, the functions that are more frequently used in ABETS have been
reimplemented in C++ as new, highly efficient, built-in Mau-Dev (meta-level) op-
erations. All these new extensions are available at Mau-Dev’s website at http:
//safe-tools.dsic.upv.es/maudev and explained in Chapter 8 of this thesis.

http://safe-tools.dsic.upv.es/maudev
http://safe-tools.dsic.upv.es/maudev

118 7. The ABETS System

|/0 Optimizations

Maude’s efficient parser allows very large initial calls to be efficiently parsed
in just a few milliseconds. In contrast, Full Maude’s parser is entirely developed
in Maude itself; hence, its efficiency can be seriously penalized when dealing with
mixfix operator definitions due to extensive backtracking. As a result, ABETS initial
calls that contain large and complex execution traces as arguments typically took some
minutes to be loaded into previous versions of the system [Alpuente et al., 2016a].

To overcome this drawback, one can dynamically create a devoted module that
defines unique placeholder terms that are subsequently reduced to the actual argu-
ments of the initial (Full Maude) call. For example, to encode a Full-Maude, source-
level representation of the state s, of Example 16, ABETS defines the 0-ary operator
abState:

op abState : -> String .
eq abState = "< 'Al1 : EconomyCar | available : false , rate : 30 >
< 'A5 : FullSizeCar | available : false , rate : 70 >
< 'C1 : Customer | credit : - 160 , suspended : false >
< 'C2 : PreferredCustomer | credit : 10 , suspended : false >
< 'RO : Rental | car : 'A1 , customer : 'C2 , deposit : 90 ,
dueDate : 3 , pickUpDate : @ , rate : 30 >
< 'R1T : Rental | car : 'A5 , customer : 'C1 , deposit : 210 ,
dueDate : 3 , pickUpDate : @ , rate : 70 >
< 'RG : Register | date : @ , rentals : 2 >" .

This greatly reduces the size of the initial Full-Maude call since it only contains the
abState placeholder but not the actual state data. These data are later brought back by
applying the abState equation. A similar encoding is used for user-defined assertions
and execution traces that are to be asynchronously checked.

The added module is loaded prior to starting the Full Maude’s execution loop
[Clavel et al., 2007]. Thus, by taking advantage of the ability of Full Maude to access
previously loaded Maude modules, the entire call can be parsed directly in Maude,
except for its top-most operator.

The output of ABETS executions typically consists of a Maude term of sort String,
represented in JSON (JavaScript Object Notation) format, that collects all the com-
puted information (e.g., the source-level and meta-level representation of the original
trace and the trace slice, the associated program slice that can be computed as de-
scribed in [Alpuente et al., 2016a], and transition information between subsequent
trace states). This output string is later processed by the ABETS front-end to offer a
more friendly, visual representation. Since efficient output handling is crucial not to
penalize the overall performance of the system, (meta) string conversion of the com-
puted output has also been implemented in C++ as part of the Mau-Dev distribution.

7. The ABETS System 119

(I Tiotal (I Ttotal (w/o optimizations)

Bank Model | [|
Blocks World | [|
BRP |

Dekker |
Maze [|
Philosophers | | |
|

|

|

|

1

Rent-a-car (fm) | |
Stock Ex.
Stock Ex. (fm) - |

Webmail app |
T T T T T T T T T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 7.10: Total speedup of ABETS after optimizations.

The total speedups achieved with respect to preliminary implementations (includ-
ing checking, slicing, and I/O costs) are represented in Figure 7.10, with an average
speedup of 9.66 with respect to [Alpuente et al., 2016a]. The experiments that high-
light the efficiency gain of the optimized system are shown in detail in Section 7.4.

1.4 Experimental Evaluation

To evaluate the performance of ABETS, the system has been benchmarked on
the following collection of (Core and Full) Maude programs, which are all available
within the ABETS Web platform (each program has been coupled with a suitable as-
sertional specification, which is also available at the system’s website):

= Bank model, a conditional Maude specification that models a faulty, distributed
banking system.

= Blocks World, the typical Al planning problem, which consists of producing
one or more vertical stacks of blocks (placed on a table) that can be moved by
means of a robot arm.

= BRP, the Bounded Retransmission Protocol (BRP) [Helmink et al., 1994],
which is a data link protocol developed and used by Philips Electronics that
can be thought of as a variant of the alternating bit protocol.

= Dekker, a Maude specification that models a faulty version of Dekker’s al-
gorithm, one of the earliest solutions to the mutual exclusion problem which
appeared in [Clavel et al., 2003].

120

7. The ABETS System

Maze, a non-deterministic Maude specification that defines a maze game in
which multiple players must reach a given exit point by walking or jumping,
where colliding players are eliminated from the game [Alpuente et al., 2015a].

Philosophers, the classical Dijkstra dining philosophers concurrency example
that deals with resource access synchronization.

Rent-a-car (fm), a Full Maude object-oriented system that models the logic of
the faulty, distributed, object-oriented, online car-rental store of Section 4.1.2.

Stock Exchange, a rewrite theory that specifies the simplified stock exchange
concurrent system of Section 4.1.1.

Stock Exchange (fm), a Full Maude, object-oriented version of the Stock Ex-
change example.

Webmail, a Maude specification borrowed from [Alpuente et al., 2014c] that
models a webmail application that provides typical login/logout functionality,
email management, system administration capabilities, etc.

In the experiments, both the effectiveness and the performance of ABETS have

been evaluated by (synchronously) checking each program against an assertional spec-
ification that contains at least one failing assertion. This way, an erroneous execution
trace 7 is delivered and subsequently simplified into a trace slice 7.°* with regard
to slicing criteria that are automatically inferred. The experiments were conducted
on a PC with 3.3GHz Intel Xeon E5-1660 CPU with 64GB RAM by applying the
following modus operandi.

1. For each program, by using the metaRewrite operation, Maude was forced

to generate four execution traces of increasing length (k = 10,50, 100,500
rewrite steps) using its internal, default rewrite strategy, and the corresponding
computation times were recorded.

For each execution trace, the number of assertion checks performed by the
ABETS assertion-checking engine when synchronously checking the assertional
specification of the corresponding program (the column checks in Table 7.1)
were also recorded.

The average slowdown (in seconds) of five independent measurements of the
execution time (in seconds) required for Point 2 with respect to Maude’s com-
putation times of Point 1 was computed.

Obviously, the slowdown of the entire checking process depends on the number

of assertions that are contained in the specification and particularly on the degree

7. The ABETS System 121

of instantiation of their associated patterns. Patterns that are too general can result
in a large number of (often) unprofitable evaluations of the logic formulas involved
since the number of possible matchings (modulo axioms) with the system’s states can
grow quickly. The slowdown can also be affected by the complexity of the predicates
involved in the functional and system assertions to be checked.

Table 7.1 summarizes our results. The Tgy and Tgxchx columns measure the ex-
ecution times (in ms) with and without assertion checking for traces that apply 500
rewrite rules, which expands to 8292 rewrites (i.e., rule, equation, built-in operator,
and axiom applications) on average. #Chk represents the total number of assertion
checks performed when assertion checking was enabled. OV is the overhead, i.e., the
ratio = (Tgexchk — Tex)/TEx Which indicates the relative slowdown due to assertion-
checking. The results obtained are quite satisfactory and comparable with similar
logic assertion checking frameworks such as [Mera et al., 2009]. The average over-
head is 1.92, which is 69% of the average value (2.78) of the overhead of [Alpuente
et al., 2016a] that are shown in column OVjiqm; for the very same benchmark pro-
grams.

The figures in the Tgynin and Tgi, columns respectively measure the times for
synthesizing the slicing criterion and for inferring the program repairs (in ms). Our
experiments show very small synthesis times for the slicing criteria that grow linearly
with the size of the erroneous state. This is particularly evident in the case of Webmail
App, whose states are quite large (about 2.5Kb, which is 20 times the size of the
Stock Ex. states). The time for inferring the repairs is also a small portion of the total
execution time.

The trace slices that are automatically delivered by ABETS are evaluated by com-
paring the size of the detected erroneous execution trace 7 (in kilobytes); the size of
the sliced execution trace 7.° (in kilobytes); and the derived reduction rate achieved
(%Red.), which ranges from 98% to 62% with an average reduction rate of 85%.
With regard to the time required to perform the slicing, our implementation is quite
time efficient despite the complex analyses and reasoning modulo axioms performed
underneath; the elapsed times are small even for very complex traces and also scale
linearly.

Finally, the generation, parsing, and input/output of traces (and trace slices) have
been greatly improved in the current version of ABETS. The input/output (I/O) times
are shown in column T;,o of Table 7.1 (in ms) for I/O data sizes that range from
15 Kb (in the case of the Blocks program) to 7 Mb (in the case of the Stock Ex. (fm)
program). This gives an average 1/O cost of 0.6 s, whereas in our previous tool the
I/O operations took minutes.

Program Tex Texce #Chk OV OVjiamp Tynn Trix Tio Size T, Size T % Red.
Bank Model 17 101 2,004 4.94 5.76 2 2 10 9.536 1.236 87%
Blocks World 19 37 509 0.95 2.16 1 1 2 0.279 0.046 84%
BRP 5 23 1,002 3.6 4.6 1 2 9 0.792 0.269 67%

Dekker 40 98 1,002 1.45 2.5 2 14 55 8.268 0.286 97%

Maze 128 409 7,437 2.2 3 1 3 13 2.747 0.423 85%
Philosophers 12 36 811 2 2.92 1 3 47 5.244 1.99 62%
Rent-a-car (fm) 178 263 1,503 0.48 0.52 5 9 247 5.507 0.115 98%
Stock Ex. 36 103 1,503 1.86 2.58 3 12 263 46.423 4.153 91%
Stock Ex. (fm) 726 1,310 2,004 0.8 1.72 5 43 4688 195.397 20.862 89%
Webmail app 138 271 1,002 0.96 1.99 9 20 541 133.46 7.823 94%

Table 7.1: Synchronous assertion-checking performance analysis

Chapter 8

Mau-Dev:
A Developer Extension of Maude

One of the pillars on which the implementation of Maude is based is its ever-
lasting search for extreme performance, which becomes evident from the first time
one inspects the source code of Maude. This focus on efficiency has its obvious ad-
vantages when running programs or performing program analysis, but it comes at the
expense of losing program execution details that, at some point, are considered ex-
pendable and thus discarded. However, information that is usually considered less
relevant when performing some classical reachability-based analyses may be of ex-
treme importance for other specialized analyses that involve the deep inspection of
traces (e.g., for program debugging). For instance, the equational and axiomatic sim-
plifications performed by Maude are not accessible at the meta level and can only be
accessed as a mere textual annotation to the output of the default Maude debugger.
Mau-Dev [Mau-Dev, 2016] is a developer extension of Maude that endows the offi-
cial Maude distribution with new, useful developer (meta-level) operations that aim
to overcome this drawback without sacrificing Maude’s high performance.

This chapter presents Mau-Dev, which is a developer extension of Maude that
endows the official Maude release with new meta-level operations that are natively
implemented in C++ and are useful for the development of Maude applications. The
chapter is organized as follows. Section 8.1 summarizes the novel native (meta) op-
erations provided by Mau-Dev together with some examples. Section 8.2 gives some
remarks on the compatibility of Mau-Dev with respect to the official Maude distri-
bution. Finally, Section 8.3 presents some experiments that benchmark two complex
yet very efficient operations available in Mau-Dev that are key for many sophisticated
applications.

8.1 Novel Operations

This section summarizes the novel meta-operations provided by Mau-Dev to-
gether with some illustrative examples.

124 8. Mau-Dev: A Developer Extension of Maude

8.1.1 metaReducePath

One of the main challenges in the implementation of a Maude tool that manip-
ulates computation traces is to make explicit the concrete sequence of internal term
transformations occurring in the trace, which is generally hidden and inaccessible
within Maude’s rewrite machinery. For the case of rule applications, this sequence
can be easily retrieved by means of the Maude metaSearchPath operation, but a
similar operation does not exist for the sequence of built-in operators and equations
applied. These are only recorded in a raw text output trace, which cannot be manipu-
lated as a meta-level expression by Maude. In order to fill this gap, Mau-Dev supports
a new meta-operation named metaReducePath, which returns the detailed sequence
of transformations (by using equations and built-in operators) applied to a term until
its canonical form is reached.

Specifically, given a Maude module M, a term t, and a Boolean expression b,
the metaReducePath operation delivers an instrumented trace of sort ITrace that
contains the precise equational simplification sequence for t in M augmented with
the computed substitutions and contexts. For the case when b is true, the applied
membership axioms are also included in the trace.

The formal definition of metaReducePath, which is part of the prelude of Mau-
Dev, is as follows.

sorts ITraceStep ITrace ITrace? .
subsort ITraceStep < ITrace < ITrace? .

op {_,_,_} : Equation Substitution Context -> ITraceStep

[ctor format(h nd ndnnn)] .
op {_,_,_} : MembAx Substitution Context -> ITraceStep

[ctor format(h ndndnnn)] .
op nil : -> ITrace? [ctor]
op __ : ITrace? ITrace? -> ITrace?

[ctor assoc id: nil format (d d d)]

op metaReducePath : Module Term Bool -> ITrace? [special (...)]

Example 20. Consider the following Maude specification from [Clavel et al., 2016]
that computes the Fibonacci sequence for the input term fibo(2).

fmod FIBONACCI is
protecting NAT .

op fibo : Nat -> Nat .
var N : Nat .

8. Mau-Dev: A Developer Extension of Maude 125

eq LEQ1] : fibo(@)

eq [EQ2] : fibo(1)

eq [EQ3] : fibo(s s N
endm

0 .
1.
) = fibo(N) + fibo(s N) .

The simplification chain that leads to the result 1 (i.e., the canonical form of

fibo(2)), is delivered as follows:

reduce in META-LEVEL : metaReducePath(upModule('FIBONACCI,false),

"fibo['s_*2['0.Zero]l], false) .

result ITrace:

{

eq 'fibo['s_*2['N:Nat]] = '_+_['fibo['N:Nat], 'fibo['s_['N:Nat]]]
[label('EQ3)] .,

'N:Nat <- '0.Zero,

]

eq 'fibo['0.Zero] = '0.Zero [label('EQ1)] .,
(none) .Substitution,
'_+_[[], 'fibo['s_['@.Zero]1]

eq 'fibo['s_['@.Zerol]l = 's_['@.Zero] [label('EQ2)] .
(none) .Substitution,
'_+_['0.Zero,[]]

eq '_t_['0Q.Zero,'s_['0.Zero]] = 's_['@.Zero] [none] .
(none) .Substitution,

L]

Note that the above outcome consists of a simplification trace of four steps, where

the first three steps apply, in this order, the equations labelled EQ3, EQ1, and EQ2,
whereas the last step simplifies the resulting term by using the built-in operation _+_
that computes the summation of 0 and 1.

126 8. Mau-Dev: A Developer Extension of Maude

8.1.2 metaGetVariantExt and metaGetlrredundantVariantExt

For the case of variant narrowing computation traces, the basic information that
is necessary to visually deploy the variant narrowing trees can be essentially ob-
tained by invoking the new meta-operations of Maude, namely metaGetVariant and
metaGetIrredundantVariant. That is the only way to retrieve the precise informa-
tion that makes the structure of the tree explicit. Specifically, what Maude outputs is
the following (in this order): (i) the computed variant term, (ii) the computed variant
substitution, (iii) the largest index n of any fresh variable appearing in the solutions,
(iv) the identifier of the parent variant, and (v) a Boolean flag that indicates whether
or not there are more variants in the current tree level.

Mau-Dev provides two new meta-operations, namely metaGetVariantExt and
metaGetIrredundantVariantExt, which further extend the corresponding Maude
meta-operations by delivering a much more informed version of the variant narrow-
ing tree. Specifically, the new operations augment the standard output with: (i) the
context in which the unification of the narrowing step has taken place, (ii) the variant
equation used for the unification, (iii) the equational unifier, and (iv) the substitution
that binds the computed variant with the variables of its antecedent in the narrowing
tree.

Formally, the two new meta-operations and the constructor operator for the new
VariantExt sort are defined as follows:

sort Equation? .
subsort Equation < Equation? .

sort VariantExt .
subsort Variant < VariantExt < Variant? .

op {_,_,_,_y_y_y_y_,_Y : Term Substitution Nat Parent Bool Context
Equation? Substitution Substitution
-> VariantExt [ctor]

op {_,_,_} : Equation Substitution Context -> ITraceStep
[ctor format(h nd ndnnn)]
op {_,_,_} : MembAx Substitution Context -> ITraceStep

[ctor format(n n d nd nn n)]
op noEquation : -> Equation? [ctor]

op metaGetVariantExt : Module Term TermList Nat Nat ~> Variant?
[special (...)]

8. Mau-Dev: A Developer Extension of Maude 127

op metaGetlIrredundantVariantExt : Module Term TermList Nat Nat ~>
Variant? [special (...)] .

Example 21. Consider the following equational theory from [Clavel et al., 2016] for
the exclusive-or symbol _x_', where mt is the (empty set) identity element. Note that
the notation [NatSet] denotes the kind of sort NatSet that, in addition to normal
data of sort NatSet, can also contain “error expressions”.

fmod EXCLUSIVE-OR-NOFVP is

sorts Nat NatSet .
subsort Nat < NatSet .

op s : Nat -> Nat .
ops @ mt : -> Nat .
op _*_ : NatSet NatSet -> NatSet [assoc comm] .

var X : Nat .
var Z : [NatSet] .

eq [idem] : X * X = mt [variant] .
eq [idem-Coh] : X x X * Z = Z [variant]
eq [id] : X * mt = X [variant] .

endm

The execution of the default metaGetVariant meta-operation of Maude asking
for the first possible variant (i.e., solution number zero) of the term X:[NatSet]x
Y: [NatSet] yields the following result:

reduce in META-LEVEL : metaGetVariant(upModule('EXCLUSIVE-OR-NOFVP,
false),'_*_['X:“[NatSet'], 'Y:'[NatSet'1]1],
empty, 0, 9) .

result Variant: {'_*_['#1:'[NatSet'], '#2:‘'[NatSet‘']],
'X:*[NatSet'] <- "#1:'[NatSet'] ;
"Y:'[NatSet'] <- '#2:'[NatSet'],2,none,false}

whereas the extended metaGetVariantExt meta-operation of Mau-Dev delivers the
following augmented outcome:

! An exclusive union operator _*_ for sets of natural numbers, NatSet, such that X1x X2
is the set of natural numbers appearing in X1 or X2, but not both.

128 8. Mau-Dev: A Developer Extension of Maude

reduce in META-LEVEL :
metaGetVariantExt (upModule ('EXCLUSIVE-OR-NOFVP, false),
"_x_['X:'[NatSet'], 'Y:'[NatSet']], empty, 0, 0) .

result VariantExt: {'_*_['#1:'[NatSet'], '#2:"'[NatSet']],
'X:'[NatSet'] <- '#1:'[NatSet'] ;
'Y:*[NatSet'] <- '#2:'[NatSet'],2,none,false,[],
noEquation,none,none?}

Note that the first possible variant always consists of a simplified, renamed ver-
sion of the input term, hence there is no actual narrowing step with additional in-
formation. Nevertheless, if we ask for the variant number five, we originally get the
following result:

reduce in META-LEVEL : metaGetVariant(upModule('EXCLUSIVE-OR-NOFVP,
false),'_*_['X:'[NatSet'],'Y: '[NatSet']],
empty, @, 5) .

result Variant: {'%2:'[NatSet'],
"X:'[NatSet'] <- '_*_['%1:Nat, '%2: ' [NatSet']1] ;
"Y:'[NatSet'] <- '%1:Nat,2,0,true}

whereas the metaGetVariantExt delivers:

reduce in META-LEVEL :
metaGetVariantExt (upModule ('EXCLUSIVE-OR-NOFVP, false),
"_x_['X:'[NatSet'], 'Y: '[NatSet']], empty, 0, 5) .

result VariantExt: {'%2:'[NatSet'],
"X:'[NatSet'] <- '_*x_['%1:Nat, '%2: " [NatSet']1] ;
'Y:'[NatSet'] <- '%1:Nat, 2,0,true,[],
eq '_*_['X:Nat,'X:Nat,'Z:'[NatSet*']] =

'Z:'[NatSet'] [variant label('idem-Coh)] .,

'X:Nat <- '%1:Nat ;
'Z:"[NatSet'] <- '%2:'[NatSet"'],
"#1: [NatSet'] <- '_x_['%1:Nat, '%2: " [NatSet']1] ;
"#2: ' [NatSet'] <- '%1:Nat}

Note that a meaningful variant narrowing step has been performed, hence the
precise information related to that step is fully delivered.

8. Mau-Dev: A Developer Extension of Maude 129

8.1.3 metaAssociative and metaCommutative

Given a Maude module M and a term ¢, metaAssociative returns true if the
topmost operator of t is associative or false otherwise. This operation improves the
isAssociative function defined in Full Maude by directly inspecting a specific flag
in the C++ term representation of ¢ (while i sAssociative matches t with the possibly
large list of operator definitions in M). The meta-operation metaCommutative is the
analogous of the metaAssociative operation for the comm attribute.

Example 22. Consider the default module NAT included in the prelude of Maude to-
gether with the summation operator _+_, which is both associative and commutative,
the symmetric difference operator sd, which is commutative but not associative, and
the quotient operator quo, which is neither associative nor commutative. Then, if
we ask for the axiomatic properties of terms constructed by using one of the above

operators as the root symbol, we get the following results in zero time.

reduce in META-LEVEL : metaAssociative(upModule('NAT,false),
' +_['s_*2['0.Zero]l,'s_"2['0.Zerol]) .
result Bool: true
reduce in META-LEVEL : metaAssociative(upModule('NAT, false),
'sd['s_*2['0@.Zero], 's_*2['0.Zero]l]) .
result Bool: false
reduce in META-LEVEL : metaCommutative(upModule('NAT, false),
' +_['s_*2['@.Zero],'s_*2['0.Zerol]) .
result Bool: true
reduce in META-LEVEL : metaCommutative(upModule('NAT,false),
'_quo_['s_"2['@.Zero], 's_*2['0.Zero]l])
result Bool: false

8.1.4 metaOutermost

Given a Maude module and a term t, metaOutermost delivers the list of outermost
redexes of t. Note that this operation requires all constructor non-reducible operators
occurring in the program to be explicitly identified with the ctor attribute.

Example 23. Consider the following, simple Maude specification.

mod OUTERMOST is
protecting NAT .

130 8. Mau-Dev: A Developer Extension of Maude

op a : —-> Nat [ctor]
op b : ->Nat .
op f : Nat Nat -> Nat [ctor assoc comm]

eq b=a.
endm

Then, the outermost redex of term f(a,a,b) is b, as shown below:

reduce in META-LEVEL : metaOutermost(upModule('OUTERMOST, false),
"f['a.Nat, 'a.Nat, 'b.Nat])
result Constant: 'b.Nat

Moreover, term f(a,a) has no outermost redexes, since both its root operator f
and constant arguments a are constructors. Hence, the execution of metaOutermost
delivers the empty list as shown below:

reduce in META-LEVEL : metaOutermost(upModule('OUTERMOST, false),
"f['a.Nat, 'a.Nat])
result EmptyCommalList: empty

Finally, for input term f (b, b), the execution of metaOutermost yields a list with
the two occurrences of constant b, which indeed are the two outermost redexes of the
term:

reduce in META-LEVEL : metaOutermost(upModule('OUTERMOST, false),
"f['b.Nat, 'b.Nat])
result NeGroundTermList: 'b.Nat, 'b.Nat

8.1.5 metaConstructor

Given a Maude module M and a term t, metaConstructor returns true if the top-
most operator of ¢ is a constructor symbol of M. Similarly to operation metaOutermost,
this operation expects constructor operators to be properly identified by means of the
ctor attribute.

Example 24. Consider the following, simple Maude specification.

mod CONSTRUCTOR is
protecting NAT .

8. Mau-Dev: A Developer Extension of Maude 131

op f : Nat -> Nat [ctor] .
op g : Nat -> Nat .
endm

Then, the root operator of f(#0:Nat) is correctly identified to be a constructor:

reduce in META-LEVEL : metaConstructor(upModule('CONSTRUCTOR, false),
"fL'#0:Nat]) .
result Bool: true

whereas a similar call for term g(#0:Nat) returns false, since g is not a constructor
operator of the given theory:

reduce in META-LEVEL : metaConstructor(upModule('CONSTRUCTOR, false),
'g['#0:Nat]) .
result Bool: false

8.1.6 metaldentity, metaRightldentity, and metaleftldentity

Given a Maude module M and a term t, metaldentity delivers the identity ele-
ment of the topmost symbol of t or noIdentity if no such term exists. Analogously,
the associated right (resp. left) identity element can be obtained by means of the
metaRightIdentity (resp. metalLeftIdentity) operation. For terms with symbols
obeying both left and right identity, all three operations deliver the same result.

Example 25. Consider the following, simple Maude specification.

mod IDENTITY is
sorts mySort mySortList .
subsort mySort < mySortList .

op nil : -> mySortList [ctor] .
op _i_ : mySortList mySortList -> mySortList
[ctor assoc id: nil] .
op _1_ : mySortList mySortList -> mySortList
[ctor assoc left id: nil] .
op _r_ : mySortList mySortList -> mySortList
[ctor assoc right id: nil] .
endm

Then, we can ask for the identity element of terms constructed by using one of the
above operators as the root symbol as follows:

132 8. Mau-Dev: A Developer Extension of Maude

reduce in META-LEVEL : metaldentity(upModule('IDENTITY,false),
'_i_['#0:mySort, '#1:mySort]) .

result Constant: 'nil.mySortlList

reduce in META-LEVEL : metalLeftIdentity(upModule('IDENTITY,false),
'"_i_['#0:mySort, '#1:mySort]) .

result Constant: 'nil.mySortList

reduce in META-LEVEL : metaRightIdentity(upModule('IDENTITY,false),
'_i_['#0:mySort, '#1:mySort]) .

result Constant: 'nil.mySortList

reduce in META-LEVEL : metaldentity(upModule('IDENTITY,false),
'"_1_['#0@:mySort, '#1:mySort]) .

result Term?: noldentity

reduce in META-LEVEL : metalLeftIdentity(upModule('IDENTITY,false),
"_1_['#0:mySort, "#1:mySort]) .

result Constant: 'nil.mySortlList

reduce in META-LEVEL : metaRightIdentity(upModule('IDENTITY,false),
'_1_['#0@:mySort, "#1:mySort])

reduce in META-LEVEL : metaldentity(upModule('IDENTITY,false),
'_r_['#0@:mySort, "#1:mySort])

result Term?: noldentity

reduce in META-LEVEL : metalLeftIdentity(upModule('IDENTITY,false),
'"_r_['#0:mySort, '#1:mySort])

result Term?: noldentity

reduce in META-LEVEL : metaRightIdentity(upModule('IDENTITY, false),
'"_r_['#0:mySort, '#1:mySort])

result Constant: 'nil.mySortList

Note that, for the case of the mixfix operator i, which has both left and right
identity, all three results are the same, whereas for the 1 and r operators, only the
corresponding call returns the identity term nil while all other calls return the con-
stant noIdentity.

8. Mau-Dev: A Developer Extension of Maude 133

8.1.7 metaString

Given a Maude module M, a term t, and a Boolean expression b, the meta-operation
metaString returns a term of sort String that provides the source-level (resp. meta-
level) representation of t for the case when b is true (resp. false), which highly out-
speeds any possible (user-defined) Maude counterpart.

Example 26. Consider the (non-simplified) term 2 + 3. Then, if we ask for the
source-level (respectively meta-level) representation of the term, we get the following
results:

reduce in META-LEVEL : metaString(upModule('NAT,false),
'_+_['s_*2['@.Zero],'s_*3['0.Zerol],true) .
result String: "2 + 3"
reduce in META-LEVEL : metaString(upModule('NAT,false),
'_+_['s_"2['@.Zero], 's_"3['0.Zero]l],false) .
result String: "'_+_['s_*2['0.Zero], 's_*3['0.Zero]]"

Note that, in the second case, the input term and the result seem to be the very
same term, but they are not. Actually, the input term is of sort Term, whereas the result
is of sort String.

8.1.8 metaMap

Given a Maude module M and a term t, metaMap delivers a sophisticated string
representation of the term ¢t where each string character in the representation has a
shortcut to the corresponding subterm of t.

The returned string is map of positions, a sequence of elements of the form cNpP
where ¢ stands for chars, N is a natural number that specifies a length (of chars to be
consumed from the source-level representation of the input term), p stands for position
and P is either empty (meaning that the associated position is A), a single position
(e.g., 2.1), or a set of positions separated by the X char (e.g., 1X1.1).

Example 27. Consider again the (non-simplified) term 2 + 3. Then, if we ask for
the map associated with its source-level representation, we get the following result:

reduce in META-LEVEL : metaMap(upModule('NAT,false),
'+ ['s_72['0.Zero],'s_73['0.Zerol]) .
result String: "clp1X1.1clpclpclpcip2X2.1”

which can be explained as follows:

134 8. Mau-Dev: A Developer Extension of Maude

» The first component of the map c1p1X1.1clpcipcipclp2X2.1 indicates that
the first character of string “2 + 3” (i.e., 2) is associated with positions 1 and
1.1 (c1p1X1.1clpcipclpcip2X2.1).

= The following component of map c1p1X1.1c1pclpclpcip2X2.1 indicates that
the next character of “2 + 37, i.e., a blank space, is associated with position
A (c1p1X1.1clpclpclpcip2X2.1).

= The next component c1p1X1.1cIpclpcipcip2X2.1 (i.e., +) is also associated
with position /A (c1p1X1.1c1pclpclpcip2X2.1), and so on.

Note that, by means of this new meta-operation, developers can easily and un-
ambiguously locate all the positions of a term in their respectively source-level rep-
resentations without having access to the semantic properties of the theory.

8.2 (ompatibility

Mau-Dev is fully compatible with its corresponding official Maude release and
preserves its original behavior and efficiency. Moreover, Mau-Dev assumes that vari-
ables whose quoted identifier starts with “#!” (e.g., #!1:Nat) are variables of no in-
terest (called bullets) and therefore their source-level representation will always be
the token DEV-BULLET, regardless of their actual internal (meta-level) representation,
which is always preserved. Note that this is just a cosmetic restriction, since bullets
are internally handled as simple variables. Moreover, since “DEV-BULLET” is a spe-
cial token representing the e character, its length (in chars) is considered to be 1 with
respect to the metaMap operation.

Example 28. Consider two variables, namely #1:Nat and #!2:Nat. Then, #!2:Nat
is interpreted as a bullet because its quoted identifier starts with “#!”, as shown
below:

Mau-Dev> red #1:Nat .

reduce in CONVERSION : #1:Nat .

result Nat: #1:Nat

Mau-Dev> red metaReduce(upModule('NAT,false), '#1:Nat) .

reduce in META-LEVEL : metaReduce(upModule(’'NAT,false), '#1:Nat) .
result ResultPair: {'#1:Nat, 'Nat}

Mau-Dev> red #!2:Nat .

reduce in CONVERSION : DEV-BULLET .

8. Mau-Dev: A Developer Extension of Maude 135

result Nat: DEV-BULLET

Mau-Dev> red metaReduce(upModule('NAT,false), '#!2:Nat) .

reduce in META-LEVEL : metaReduce(upModule('NAT,false), '#!2:Nat) .
result ResultPair: {'#!2:Nat, 'Nat}

8.3 Experimental Evaluation

This section presents the experiments performed in order to evaluate the effi-
ciency of the two most complex meta-operations provided by Mau-Dev (i.e., the
metaReducePath and the metaGetVariantExt meta-operations) and measure them
against the current distribution of Maude. Note that the remaining meta-operations
provided by Mau-Dev deliver their results almost instantly.

8.3.1 metaReducePath

Technically, the execution of metaReducePath can be split into two phases: equa-
tional simplification and lifting to the meta-level. In the simplification phase, the input
term is reduced to its canonical form by using Maude’s equational simplification. For
each applied equation and internal normalization transformation, metaReducePath
additionally collects all the relevant information that is needed to subsequently re-
construct the performed steps. This includes not only built-in evaluations but also
memoizations and other internal manipulations such as iter transformations, which
replace chains of iterations of a unary operator by a single instance of the iterated
function, raised to the number of iterations, e.g., s(s(s(@))) as s*(@). Once the term
has reached its canonical form, the lifting phase consists of raising to the meta-level
all the collected information and assembling the resulting instrumented computation
in one single piece.

Table 8.1 provides some figures regarding the execution of the new
metaReducePath operation. The metaReducePath operation has been tested on a
3.3GHz Intel Xeon E5-1660 with 64GB of RAM by reducing different calls to the
fibo function of the Fibonacci specification of Example 20. In Table 8.1, the two
phases mentioned above are distinguished, namely equational simplification and lift-
ing. For the equational simplification phase, the number of rewrites and the reduction
times are provided. For the lifting phase, the problem size, the length of the resulting
instrumented computation, and the processing times are shown instead. The prob-
lem size (column f size) is measured as the number of expressions (applied equation,
substitution, and context for each step) that are manipulated. The length of the re-
sulting instrumented computation (column |7) is measured as the number of rewrite

136 8. Mau-Dev: A Developer Extension of Maude

equational simplification meta-level lifting
n rewrites time (s) h size |T| time (s)
5 22 0 78 26 0
10 265 0 957 319 0
15 2,959 0.02 10,704 3,568 0.04
20 32,836 0.24 118,800 39,600 0.73
25 364,177 3.41 1,317,603 439,201 10.18

Table 8.1: Execution results of the metaReducePath operation for fibo(n).

steps. Note that for extremely huge computations such as the trace of fibo(25),
which consists of 439,201 rewrite steps, the number of manipulated terms can be very
high (more than 1,300,000), yet the execution time is reasonable (a few seconds) and
comparable to existing Maude meta-operations that process millions of terms [Eker,
2003].

Finally, it is worth mentioning that the metaReducePath meta-operation takes
into account the Church-Rosser and termination properties of functional modules as-
sumed by Maude. Therefore, it returns just one possible simplification sequence that
perfectly reproduces the normalization carried out by Maude following its internal
strategy while ignoring the rest of the alternative normalizations.

8.3.2 metaGetVariant vs metaGetVariantExt

As for the variant-narrowing related meta-operations, Table 8.2 provides some
figures regarding the execution of the new metaGetVariantExt operation in com-
parison with the standard metaGetVariant operation. The two implementations have
been tested on a 3.3GHz Intel Xeon E5-1660 with 64 GB of RAM by generating a
number of variants for a collection of Maude programs: Exclusive-or, the classical
specification of the boolean XOR; Fibonacci (see Example 20), a Maude specifica-
tion that computes the Fibonacci sequence; Flip-graph, a variant of the classical flip
function for binary graphs (instead of trees) taken from [Alpuente et al., 2016c]; and
Parser, a generic parser for languages generated by simple, right regular grammars
also from [Alpuente et al., 2016c]. Specifically, for each Maude program, Mau-Dev
has computed three different numbers of variants, which takes from a few seconds
to a few minutes to be generated. The metaGetVariant invocations have been mea-
sured on a statically compiled version of the last alpha release of Maude (alpha 113),
whereas the metaGetVariantExt invocations have been benchmarked on a Mau-Dev
executable that is based on the same alpha version.

8. Mau-Dev: A Developer Extension of Maude 137

metaGetVariant metaGetVariantExt
variants size (kB) time (s) size (kB) time (s)
40 7.37 2.49 12.34 2.48
Exclusive-or 45 8.81 24.82 14.42 24.56
50 10.37 302.18 16.62 299.29
40 520.23 3.51 1,417.26 3.59
Fibonacci 45 2,198.07 20.52 5,151.39 20.94
50 5,751.55 406.59 15,675.13 415.14
500 4,804.66 3.05 7,259.92 3.09
Flip-graph 1,000 19,520.91 30.33 29,387.01 30.93
2,000 80,372.41 360.29 120,769.01 361.54
2,500 1,961.51 3.91 3,067.46 3.92
Parser 5,000 5,027.82 16.88 7,238.53 17.37
10,000 13,178.03 81.64 17,598.87 81.99

Table 8.2: Execution results of the metaGetVariant operation and its
metaGetVariantExt extension.

The two size columns correspond to the size (in kilobytes) of the generated nar-
rowing tree (up to the requested variant), whereas the two time columns show the
average of five different measures of the computation time (in seconds). As the ex-
periments show, the incurred overheads w.r.t. the original meta-operation are almost
negligible. Note that even for extremely huge narrowing trees, the amount of data
handled is much higher w.r.t. the original meta-operation (with an average increase-
ment factor of 1.8) yet the execution times are practically identical. Actually, some
executions are even faster in the extended version (e.g., computing the fiftieth variant
of the exclusive-or example), which can be explained by the side-effects of Maude’s
garbage collector and cache memory hits and misses.

Chapter 9

Conclusion

This chapter briefly describes in Section 9.1 those strands of research that have
influenced this work the most. Section 9.2 summarizes the thesis results, followed by
some conclusions and directions for future work in Section 9.3.

9.1 Related Work

Tools that are useful for mechanically checking that annotated programs meet
their specifications fall into two main, complementary categories: runtime assertion
checking (i.e., the testing of specifications during program execution, with any vio-
lation resulting in special errors being reported) and static verification (where logical
techniques are used to prove, before execution time, that no violations of specifica-
tions will take place at runtime). It was by the mid ’70s when researchers realized that
monitoring assertions during program execution offers a simple and practical counter-
part to formal proofs of correction. Assertion checking cannot prove that a program is
correct but it does support a greater degree of automation than deductive verification,
i.e., static verification of the assertions using a theorem prover, which furthermore
requires the user to have broad mathematical skills and provide fairly precise and
complete specifications [Din et al., 2014]. Runtime assertion checking does not face
the same difficult challenges as, say, model-checking and theorem proving and is
likely closer to becoming part of mainstream software development environments.
The gist of runtime verification and its convenience as a partner of model-checking,
theorem proving, and program testing is discussed in, e.g., [Leucker, 2012, Leucker
and Schallhart, 2009].

Initially developed as a means of stating expected or desired program properties as
a necessary step in constructing formal, deductive proofs of program correctness, the
key role of assertions in software engineering applications has witnessed the growth
of assertion notations, such as JML, OCL, Spec#, and Z, and assertion capabilities in
widely used programming languages such as C#, C++, Eiffel, and Java (see [Clarke
and Rosenblum, 2006, Burdy et al., 2005, Barnett et al., 2011] and further references
therein). In general, assertions are supported in programming languages in one of two
ways —either incorporating assertion constructs into the design of the language, or

140 9. Conclusion

by using an external assertion language that is injected into the target programming
language through suitable software wrappers. Assertions are embedded in the type
systems of many programming languages that support strong typing via type declara-
tions, where a type restriction on arguments can be considered a precondition. Some
languages support even stronger typing and subtyping assertions (e.g., Maude’s mem-
bership axioms, which are used to automatically ‘narrow’ the type T of a value into
a subtype of T). Assertions may be used statically to support program analysis and
also for secondary purposes, such as documentation and to provide information to an
optimizer during code generation. The most obvious way to dynamically use asser-
tions is to test them at runtime and report any detected violations. Yet assertions may
be applied for automated error detection during any activity in which a program is
executed, including debugging, testing, and operation.

Runtime verification (RV) is a light-weight formal technique that allows check-
ing whether a run of a system under scrutiny satisfies or violates a given property
[Leucker and Schallhart, 2009], or more precisely, a(n) (informative) finite prefix of
a run, i.e., a finite execution trace. Common properties include state-based proper-
ties such as preconditions, normal and exceptional post-conditions, invariants, and
history constraints. One prominent feature of RV is its being performed at runtime,
which opens up the possibility to act whenever incorrect software behavior is de-
tected. Its distinguishing research effort lies in synthesizing (on-line/off-line) mon-
itors from high-level specifications, where a monitor is a device that reads a finite
trace and efficiently yields a certain verdict, typically a truth value from some truth
domain. Closely related, online monitors incrementally check the current execution
of the system, while offline monitors work on a (finite set of) recorded execution(s).
The problem of generating monitors can be compared to the generation of automata
in model-checking, where it finds its origins.

The use of contracts or assertions to obtain more reliable programs has been pro-
posed for many programming languages and paradigms. This is a field that has a
great amount of related work; here we can only summarize a small part that is most
closely related to this thesis. A runtime checker written in Maude for the executable
modeling language ABS is described in [Din et al., 2014]. In functional program-
ming, a semantics for dynamically checking contracts was first formalized in [Blume
and McAllester, 2006]. Hybrid (mixed static/dynamic) contract checking for func-
tional languages has received increasing research attention, as recently discussed in
[Xu, 2012]. The notion of specifications and contracts for lazy functional (logic) pro-
grams is introduced in [Antoy and Hanus, 2012], where Curry is used as a single
language for efficient implementations, executable specifications (describing the in-
tended meaning of an operation as required for program verification), and contracts
(run-time checked assertions consisting of both a pre- and a post-condition given as
Boolean functions that can be weaker than a precise specification). In [Antoy and
Hanus, 2012], post-conditions can be derived from existing program specifications

9. Conclusion 141

in order to (hopefully) detect incorrect implementations. In contrast to our work,
dynamic assertion checking is achieved by integrating the contract into the imple-
mentation, that is, all existing pre- and post-conditions are translated into correlated
function conditions. Also different from our work, any result that a function produces
must satisfy the function’s (Boolean) post-condition, while we are able to discriminate
among cases by specifying different state templates I and conditions @;;, in functional
assertions {@in} = O{@out}

The Maude Formal Environment (MFE) is a recent effort to integrate and inter-
operate most of the available Maude analysis and verification tools [Marti-Oliet et al.,
2012]. It includes several program analyzers and theorem provers, which are all ac-
cessible in [Maude-Tools, 2010]. Other available tools in [Maude-Tools, 2010] are
not yet integrated, such as the declarative debugger of Maude [Riesco et al., 2012] and
Maude’s model checkers [Clavel et al., 2007, Bae and Meseguer, 2015]. The declar-
ative debugger is based on the algorithmic debugging technique of [Shapiro, 1982]
and supports the debugging of wrong results (erroneous reductions, sort inferences,
and rewrites) and incomplete results (not completely reduced normal forms, greater
than expected least sorts, and incomplete sets of reachable terms) in object-oriented,
parameterized modules written in (Full) Maude. The declarative debugging process
starts from a computation that is considered incorrect by the user (unexpected out-
come) and tries to locate a program fragment that is responsible for that error symp-
tom. The tool builds a debugging tree that represents the anomalous computation and
guides the user while he/she explores the tree to find the bug. Moreover, the debugger
offers the user several options to prune and traverse the tree. During the process, the
system asks questions to an external oracle (typically the user) until a so-called buggy
node is found (i.e., a node that contains an erroneous result but whose children have
all correct results). Since a buggy node produces an erroneous output from correct
inputs, it corresponds to an erroneous fragment of code that is pointed out as an error.
Typical questions to the user have the form “Is it correct that term t rewrites (or fully
reduces) to t'?” When the debugging tree is large, a main drawback is the frequency,
size, and complexity of the questions to the oracle; hence, the tool allows some state-
ments (and even whole modules) to simply be trusted in order to alleviate the process.
We believe the slicing capabilities described in this thesis could be of great help to
further shorten the declarative debugging process, avoiding unnecessary questions to
the user while allowing her to identify the very buggy components within relatively
large nodes. To the best of our knowledge, no general built-in support is provided
in the MFE for runtime assertion checking or related disciplines such as contract en-
forcement in order to monitor contract fulfillment or enforce some penalty when a
contract violation is observed.

Related to this thesis, a generic strategy is defined in [Roldan et al., 2009] to

guarantee in Maude that a set of invariants (that can be expressed in different log-
ics) are satisfied at every computed state. This is achieved by avoiding the execution

142 9. Conclusion

of actions that otherwise would conduct the system to states that do not satisfy the
constraints. This is in contrast to our approach in two ways. On the one hand, our
assertions are external and evaluated at runtime, whereas driving the system’s execu-
tion in such a way that every computation state complies with the constraints makes
the assertions internal to the programmed strategy. On the other hand, the strategy
of [Roldan et al., 2009] never results in violated assertions, which is essential in our
approach for automated trace slicing to be fired. As another difference, we are able to
check assertions that regard the normalizations carried out by using the equational part
of the rewrite theory. In [Roldan and Duran, 2011], a dynamic validator of OCL con-
straints (class invariants and method pre/post-conditions) is proposed that evaluates
Maude prototypes of UML models where both, UML models and OCL expressions,
are represented as Maude specifications. OCL is specially tailored to specify con-
straints or queries over UML model objects; that is, the constraints are used to give
an exact description of the information contained in the UML models and the queries
are used to analyze these models and to validate them. Although OCL is not specific
to any programming language, it explicitly targets UML in the same way that JML
is tied to Java. In contrast, our notation is independent from the target programming
language or modeling language so that, by keeping our syntax close to Maude, asser-
tions can be easily specified by any Maude developer who wants to analyze a Maude
representation of any programs or models of interest.

Finally, a parametric trace slicing and monitoring methodology is formalized in
[Chen and Rosu, 2009]. This technique allows parametric execution traces (i.e., traces
which contain events with parameter bindings) to be sliced and subsequently checked
online with respect to parametric properties. It is worth noting that both the notion
of execution trace of [Chen and Rosu, 2009] and the accompanying slicing algorithm
differ from ours. In our framework, an execution trace is a Maude computation con-
sisting of a rich combination of rule, equation, membership and axiom applications
that is sliced by tracking backwards the relevant symbols of an automatically synthe-
sized slicing criterion, whereas [Chen and Rosu, 2009] defines traces as sequences of
parametric events that are distributed into the corresponding trace slices by analyzing
their associated parameter values.

9.2 Discussion of Results

Checking assertions is a popular approach to program error discovery, debugging,
and optimization. In this thesis, we have formalized a framework that integrates dy-
namic slicing and runtime assertion checking to help diagnose programming errors
in rewrite theories and to suggest possible program repairs that remove erroneous
computations.

The proposed methodology smoothly blends in with the general slicing frame-

9. Conclusion 143

work of [Alpuente et al., 2014a] and the framework for the analysis and exploration
of rewriting logic computations of [Alpuente et al., 2015a]. The main improvement
obtained is that no error symptom must be separately identified because the assertions
(or more precisely, their runtime checks) are used to synthesize deft slicing criteria.
In other words, false assertions not only flag error symptoms, but, more importantly,
they are used as the starting point for automated backward slicing transformation.

Assertions are usually specified either manually by the developers or automati-
cally as a result of requirement or code analysis techniques. In our framework, (sys-
tem and functional) assertions are constructed by using a simple language based on
logic formulas and state patterns, which are both encoded in the same language as
the target program. Hence, manual specification of assertions requires no additional
learning effort to the developer, since it is assumed that he/she has is skilled at that
language, and the possible intricacy of encoding automatically generated assertions
is in line with the language complexity.

The proposed framework has been implemented in the ABETS prototype tool,
which provides a highly dynamic environment for the runtime assertion-checking of
rewriting logic theories. Our preliminary experience has shown that the synergistic
capabilities of ABETS can provide a very powerful Swiss Army knife in error diag-
nosis and debugging by abetting the analyst’s attention to suspicious (but otherwise
possibly overlooked) aspects of the code.

The techniques we have developed are adequately fast and usable, with a per-
formance that is comparable to Maude itself when applied to programs of several
hundred lines. Yet, we have improved our prototype implementation in several ways.
For instance, in order to access undisclosed critical information concerning equational
and axiomatic simplifications in a controlled manner, ABETS relies on a custom ver-
sion of Maude, called Mau-Dev, which offers a new, fast native C++ implementation
of several commonly used Maude operations, thereby providing remarkable time op-
timizations to our developed tools. We have also included a facility to refine the
inferred slicing criteria by enhancing the processing of postconditions to reduce the
number of variables that are worth observing and also to add further flexibility to the
selection of the violated assertion(s) to consider.

Our methodology can be straightforwardly adapted to infer slicing criteria for all
failing assertions. However, from our own experience we find it is overwhelming
for the user to receive all (alternative) criteria together at once. Furthermore, once
an erroneous state is discovered, the execution traces that originate from it become
tainted in the sense that they can not be trusted anymore, since they usually contain
an arbitrary number of errors that are rooted in the first anomalous behavior exposed.
Even if no additional errors are discovered, these tainted execution traces are not
worth checking, since they would most likely change or even disappear as a result
of fixing the current program error. So, we would better think of a kind of ‘best fit’
notion that allows us to prioritize the criterion (or criteria a) that will most likely lead

144 9. Conclusion

to fixing a given error with less effort.

Finally, it is worth noting that the proposed framework can be easily adapted to
check abstract computations such as trace slices in both an asynchronous way (i.e.,
by providing an input trace slice) or a synchronous way (i.e., by tuning the expand
algorithm of Figure 4.5 and forwardly generating sliced execution steps). However,
if an error is hidden within the sliced part of the computation, the analysis may not
be able to reach it. Still, this approach can be useful to swiftly analyze more general
properties of a program, since the state space to be cheked can be greatly reduced.

Although from a practical point of view this thesis specifically endows the Maude
language with assertion checking capabilities, the proposed theoretical framework is
general enough to serve other languages with minor adjustments. Even if functional
assertions might seem at first sight strongly tied to Maude’s equational reduction
traces, they can be naturally used to check any confluent rule-based system or even
non-confluent systems by exploring all possible derivations up to a certain depth to en-
sure termination. Adapting this framework to other programming languages is hence
possible, although it technically depends on the characteristics of the target language.

9.3 Future Work

Assertion-driven computations can be easily accomplished by means of either
assertion-guided execution strategies or assertion-based transformation techniques
that essentially embed an assertional specification into the (potentially faulty) pro-
gram so that any undesired behavior of the program is avoided. As a natural contin-
uation of the work described in this thesis, a call-independent (static) transformation
approach for assertion-driven computations in Maude is currently under investiga-
tion. It essentially consists of a transformation technique that fixes the program with
respect to an assertional specification. Roughly speaking, the program fix is achieved
by blending the assertions within the source code of the program. This is achieved
by first transforming the assertions into suitable equations that are included into the
program. Then, the newly introduced equations are used to strengthen the rules by
imposing appropriate conditions that are checked by the new assertion-based equa-
tions. Among other advantages, the transformed programs can be executed without
the need for external monitors that may burden their efficiency, and, moreover, their
properties can be easily analyzed by existing tools that use the internal (rewriting and
narrowing) execution strategies defined in the Maude system.

Bibliography

[Alba-Castro et al., 2010] Alba-Castro, M., Alpuente, M., and Escobar, S. (2010).
Abstract Certification of Global Non-Interference in Rewriting Logic. In Pro-
ceedings of the 8th International Symposium on Formal Methods for Components
and Objects (FMCO 2009), volume 6286 of Lecture Notes in Computer Science,
pages 105-124. Springer.

[Alpuente et al., 2008] Alpuente, M., Escobar, S., Meseguer, J.,, and Ojeda, P.
(2008). A Modular Equational Generalization Algorithm. In Proceedings of
the 18th International Symposium on Logic-Based Program Synthesis and Trans-
formation (LOPSTR 2008), volume 5438 of Lecture Notes in Computer Science,
pages 24-39. Springer.

[Alpuente et al., 2009a] Alpuente, M., Ballis, D., and Romero, D. (2009a). Specifi-
cation and Verification of Web Applications in Rewriting Logic. In Proceedings of
the 16th International Symposium on Formal Methods (FM 2009), volume 5850
of Lecture Notes in Computer Science, pages 790-805. Springer.

[Alpuente et al., 2009b] Alpuente, M., Escobar, S., Meseguer, J., and Ojeda, P.
(2009b). Order—Sorted Generalization. Electronic Notes in Theoretical Computer
Science, 246:27-38.

[Alpuente et al., 2010a] Alpuente, M., Ballis, D., Baggi, M., and Falaschi, M.
(2010a). A Fold/Unfold Transformation Framework for Rewrite Theories ex-
tended to CCT. In Proceedings of the 19th ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation (PEPM 2010), pages 43-52. Association
for Computing Machinery.

[Alpuente et al., 2010b] Alpuente, M., Ballis, D., Espert, J., and Romero, D.
(2010b). Model-checking Web Applications with Web-TLR. In Proceedings of
the 8th International Symposium on Automated Technology for Verification and
Analysis (ATVA 2010), volume 6252 of Lecture Notes in Computer Science, pages
341-346. Springer.

[Alpuente et al., 2011] Alpuente, M., Ballis, D., Espert, J., and Romero, D. (2011).
Backward Trace Slicing for Rewriting Logic Theories. In Proceedings of the 23rd
International Conference on Automated Deduction (CADE 2011), volume 6803 of
Lecture Notes in Computer Science, pages 34—48. Springer.

146 Bibliography

[Alpuente et al., 2012] Alpuente, M., Ballis, D., Frechina, F., and Romero, D.
(2012). Backward Trace Slicing for Conditional Rewrite Theories. In Proceedings
of the 18th International Conference on Logic for Programming, Artificial Intel-
ligence and Reasoning (LPAR 2012), volume 7180 of Lecture Notes in Computer
Science, pages 62—76. Springer.

[Alpuente et al., 2013a] Alpuente, M., Ballis, D., Frechina, F., and Sapifia, J.
(2013a). Slicing-Based Trace Analysis of Rewriting Logic Specifications with
iJulienne. In Proceedings of the 22nd European Symposium on Programming
(ESOP 2013), volume 7792 of Lecture Notes in Computer Science, pages 121—
124. Springer.

[Alpuente et al., 2013b] Alpuente, M., Ballis, D., Frechina, F., and Sapifia, J.
(2013b). Parametric Exploration of Rewriting Logic Computations. In Proceed-
ings of the 5th International Symposium on Symbolic Computation in Software
Science (SCSS 2013), volume 15 of EasyChair Proceedings in Computing (EPiC),
pages 4—18. EasyChair.

[Alpuente et al., 2014a] Alpuente, M., Ballis, D., Frechina, F., and Romero, D.
(2014a). Using Conditional Trace Slicing for improving Maude Programs. Science
of Computer Programming, 80, Part B:385 — 415.

[Alpuente et al., 2014b] Alpuente, M., Ballis, D., Frechina, F., and Sapifia, J.
(2014b). Inspecting Rewriting Logic Computations (in a Parametric and Step-
wise Way). In Specification, Algebra, and Software - Essays Dedicated to Kokichi
Futatsugi (SAS 2014), volume 8373 of Lecture Notes in Computer Science, pages
229-255. Springer.

[Alpuente et al., 2014c] Alpuente, M., Ballis, D., and Romero, D. (2014c). A Rewrit-
ing Logic Approach to the Formal Specification and Verification of Web Applica-
tions. Science of Computer Programming, 81:79-107.

[Alpuente et al., 2014d] Alpuente, M., Escobar, S., Espert, J., and Meseguer, J.
(2014d). A Modular Order-Sorted Equational Generalization Algorithm. Infor-
mation and Computation, 235:98—136.

[Alpuente et al., 2014e] Alpuente, M., Escobar, S., Espert, J., and Meseguer, J.
(2014e). ACUOQOS: A System for Modular ACU Generalization with Subtyping
and Inheritance. In Proceedings of the 14th European Conference on Logics in
Artificial Intelligence (JELIA 2014), volume 8761 of Lecture Notes in Computer
Science, pages 573-581. Springer.

[Alpuente et al., 2015a] Alpuente, M., Ballis, D., Frechina, F., and Sapifia, J.
(2015a). Exploring Conditional Rewriting Logic Computations. Journal of Sym-
bolic Computation, 69:3-39.

Bibliography 147

[Alpuente et al., 2015b] Alpuente, M., Ballis, D., Frechina, F., and Sapifia, J.
(2015b). Combining Runtime Checking and Slicing to improve Maude Error Diag-
nosis. In Logic, Rewriting, and Concurrency - Festschrift Symposium in Honor of
José Meseguer, volume 9200 of Lecture Notes in Computer Science, pages 72-96.
Springer.

[Alpuente et al., 2016a] Alpuente, M., Ballis, D., Frechina, F., and Sapifia, J.
(2016a). Debugging Maude Programs via Runtime Assertion Checking and Trace
Slicing. Journal of Logical and Algebraic Methods in Programming, 85:707-736.

[Alpuente et al., 2016b] Alpuente, M., Ballis, D., Frechina, F., and Sapifia, J.
(2016b). Assertion-based Analysis via Slicing with ABETS. Theory and Practice
of Logic Programming, 16(5-6):515-532.

[Alpuente et al., 2016c] Alpuente, M., Cuenca-Ortega, A., Escobar, S., and
Meseguer, J. (2016c). Partial Evaluation of Order-sorted Equational Programs
modulo Axioms. In Proceedings of the 26th International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR 2016), volume 10184 of
Lecture Notes in Computer Science, pages 3—20. Springer.

[Alpuente et al., 2017] Alpuente, M., Cuenca-Ortega, A., Escobar, S., and Sapifia, J.
(2017). Inspecting Maude Variants with GLINTS. Theory and Practice of Logic
Programming, 17(5-6):689-707.

[Antoy and Hanus, 2012] Antoy, S. and Hanus, M. (2012). Contracts and Specifica-
tions for Functional Logic Programming. In Proceedings of the 14th International
Symposium on Practical Aspects of Declarative Languages (PADL 2012), volume
7149 of Lecture Notes in Computer Science, pages 33—47. Springer.

[Baader and Nipkow, 1998] Baader, F. and Nipkow, T. (1998). Term Rewriting and
All That. Cambridge University Press.

[Bae and Meseguer, 2015] Bae, K. and Meseguer, J. (2015). Model Checking Lin-
ear Temporal Logic of Rewriting Formulas under Localized Fairness. Science of
Computer Programming, 99:193-234.

[Barnett et al., 2004] Barnett, M., Rustan, K., Leino, M., and Schulte, W. (2004).
The Spec# Programming System: An Overview. In Proceedings of the 1st Inter-
national Workshop on Construction and Analysis of Safe, Secure, and Interoper-
able Smart Devices (CASSIS 2004), volume 3362 of Lecture Notes in Computer
Science, pages 49—69. Springer.

[Barnett et al., 2011] Barnett, M., Fahndrich, M., Leino, K. R. M., Miiller, P,
Schulte, W., and Venter, H. (2011). Specification and verification: the Spec#
experience. Communications of the ACM, 54(6):81-91.

148 Bibliography

[Barrett et al., 2011] Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanovi¢,
D., King, T., Reynolds, A., and Tinelli, C. (2011). CVC4. In Proceedings of
the 23rd International Conference on Computer Aided Verification (CAV 2011),
volume 6806 of Lecture Notes in Computer Science, pages 171-177. Springer.

[Blume and McAllester, 2006] Blume, M. and McAllester, D. (2006). Sound and
Complete Models of Contracts. Journal of Functional Programming, 16(4—
5):375-414.

[Bruni and Meseguer, 2006] Bruni, R. and Meseguer, J. (2006). Semantic Founda-
tions for Generalized Rewrite Theories. Theoretical Computer Science, 360(1—
3):386—414.

[Burdy et al., 2003] Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D., Kiniry, J., Leav-
ens, G. T., Leino, K. R. M., and Poll, E. (2003). An Overview of JML Tools and
Applications. Electronic Notes in Theoretical Computer Science, 80:75-91.

[Burdy et al., 2005] Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D., Kiniry, J. R,
Leavens, G. T., Leino, K. R. M., and Poll, E. (2005). An Overview of JML Tools
and Applications. International Journal on Software Tools for Technology Trans-
fer, 7(3):212-232.

[Chen and Rosu, 2009] Chen, F. and Rosu, G. (2009). Parametric Trace Slicing and
Monitoring. In Proceedings of the 15th International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS 2009), volume 5505
of Lecture Notes in Computer Science, pages 246-261. Springer.

[Church and Rosser, 1936] Church, A. and Rosser, J. B. (1936). A Relational Model
of Data for Large Shared Data Banks. Transactions of the American Mathematical
Society, 39(3):472-482.

[Clarke and Rosenblum, 2006] Clarke, L. and Rosenblum, D. (2006). A Historical
Perspective on Runtime Assertion Checking in Software Development. ACM SIG-
SOFT Software Engineering Notes, 31(3):25-37.

[Clavel et al., 1996] Clavel, M., Eker, S., Lincoln, P., and Meseguer, J. (1996). Prin-
ciples of Maude. In Proceedings of the 1st International Workshop on Rewriting
Logic and its Applications (WRLA 1996), volume 4 of Electronic Notes in Theo-
retical Computer Science, pages 65—89. Elsevier Science.

[Clavel et al., 1999] Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N.,
Meseguer, J., and Quesada, J. F. (1999). The Maude System. In Proceedings
of the 10th International Conference on Rewriting Techniques and Applications
(RTA 1999), volume 1631 of Lecture Notes in Computer Science, pages 240-243.
Springer.

Bibliography 149

[Clavel et al., 2003] Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N.,
Meseguer, J., and Talcott, C. (2003). The Maude 2.0 System. In Proceedings
of the 14th International Conference on Rewriting Techniques and Applications
(RTA 2003), volume 2706 of Lecture Notes in Computer Science, pages 76-87.
Springer.

[Clavel et al., 2007] Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N.,
Meseguer, J., and Talcott, C. (2007). All About Maude: A High-Performance
Logical Framework. Springer.

[Clavel et al., 2015] Clavel, M., Duran, F., Eker, S., Escobar, S., Lincoln, P., Marti-
Oliet, N., and Talcott, C. (2015). Two Decades of Maude. In Logic, Rewriting, and
Concurrency - Festschrift Symposium in Honor of José Meseguer, volume 9200
of Lecture Notes in Computer Science, pages 232—254. Springer.

[Clavel et al., 2016] Clavel, M., Duran, F., Eker, S., Escobar, S., Lincoln, P., Marti-
Oliet, N., Meseguer, J., and Talcott, C. (2016). Maude Manual (Version 2.7.1).
Technical report, SRI International Computer Science Laboratory. Available at:
http://maude.cs.uiuc.edu/maude2-manual/.

[Dershowitz, 1987] Dershowitz, N. (1987). Termination of Rewriting. Journal of
Symbolic Computation, 3(1/2):69-116.

[Din et al., 2014] Din, C. C., Owe, O., and Bubel, R. (2014). Runtime Assertion
Checking and Theorem Proving for Concurrent and Distributed Systems. In Pro-
ceedings of the 2nd International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2014), pages 480—487. IEEE Computer
Society Press.

[Duran, 1999] Duran, F. (1999). A Reflective Module Algebra with Applications to
the Maude Language. Ph.D. thesis, University of Malaga.

[Duran and Meseguer, 2012] Duran, F. and Meseguer, J. (2012). On the Church-
Rosser and Coherence Properties of Conditional Order-sorted Rewrite Theories.
The Journal of Logic and Algebraic Programming, 81(7-8):816-850.

[Duran et al., 2016] Duran, F., Eker, S., Escobar, S., Marti-Oliet, N., Meseguer, J.,
and Talcott, C. (2016). Built-in Variant Generation and Unification, and their Ap-
plications in Maude 2.7. In Proceedings of the 8th International Joint Conference
on Automated Reasoning (IJCAR 2016), volume 9706 of Lecture Notes in Com-
puter Science, pages 183—192. Springer.

[Eker, 1995] Eker, S. (1995). Associative-Commutative Matching via Bipartite
Graph Matching. The Computer Journal, 38(5):381-399.

http://maude.cs.uiuc.edu/maude2-manual/

150 Bibliography

[Eker, 2003] Eker, S. (2003). Associative-Commutative Rewriting on Large Terms.
In Proceedings of the 14th International Conference on Rewriting Techniques and
Applications (RTA 2003), volume 2706 of Lecture Notes in Computer Science,
pages 14-29. Springer.

[Frechina, 2014] Frechina, F. (2014). A Rewriting-based, Parameterized Exploration
Scheme for the Dynamic Analysis of Complex Software Systems. Ph.D. thesis,
Universitat Politécnica de Valéncia.

[Goguen et al., 1988] Goguen, J., Kirchner, C., Kirchner, H., Mégrelis, A.,
Meseguer, J., and Winkler, T. (1988). An Introduction to OBJ 3. In Proceed-
ings of the 1st International Workshop on Conditional Term Rewriting Systems
(CTRS 1988), volume 308 of Lecture Notes in Computer Science, pages 258-263.
Springer.

[Goguen and Meseguer, 1992] Goguen, J. A. and Meseguer, J. (1992). Order-sorted
Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Excep-
tions and Partial Operations. Theoretical Computer Science, 105:217-273.

[Helmink et al., 1994] Helmink, L., Sellink, M. P. A., and Vaandrager, F. W. (1994).
Proof-Checking a Data Link Protocol. In Proceedings of the 4th International
Workshop on Types for Proofs and Programs (TYPES 1993), volume 806 of Lec-
ture Notes in Computer Science, pages 127-165. Springer.

[Hendrix et al., 2005] Hendrix, J., Clavel, M., and Meseguer, J. (2005). A Suffi-
cient Completeness Reasoning Tool for Partial Specifications. In Proceedings
of the 16th International Conference on Rewriting Techniques and Applications
(RTA 2005), volume 3467 of Lecture Notes in Computer Science, pages 165—174.
Springer.

[Klop, 1992] Klop, J. (1992). Term Rewriting Systems. In Abramsky, S., Gabbay,
D., and Maibaum, T., editors, Handbook of Logic in Computer Science, volume I,
pages 1-112. Oxford University Press.

[Korel and Laski, 1988] Korel, B. and Laski, J. (1988). Dynamic Program Slicing.
Information Processing Letters, 29(3):155-163.

[Korel and Rilling, 1997] Korel, B. and Rilling, J. (1997). Application of Dynamic
Slicing in Program Debugging. In Proceedings of the 3rd International Workshop
on Automated Debugging (AADEBUG 1997), pages 43-58. Link&ping University
Electronic Press.

[Lassez et al., 1988] Lassez, J. L., Maher, M. J., and Marriott, K. (1988). Unification
Revisited. In Minker, J., editor, Foundations of Deductive Databases and Logic
Programming, pages 587-625. Morgan Kaufmann, Los Altos, California.

Bibliography 151

[Leavens and Cheon, 2005] Leavens, G. T. and Cheon, Y. (2005). Design by
Contract with JML. Available at: http://www.eecs.ucf.edu/~leavens/JML/
jmldbc. pdf.

[Leucker and Schallhart, 2009] Leucker, M. and Schallhart, C. (2009). A Brief Ac-
count of Runtime Verification. The Journal of Logic and Algebraic Programming,
78(5):293-303.

[Leucker, 2012] Leucker, M. (2012). Teaching Runtime Verification. In Proceedings
of the 2nd International Conference on Runtime Verification (RV 2011), volume
7186 of Lecture Notes in Computer Science, pages 34-48. Springer.

[Logozzo and Ball, 2012] Logozzo, F. and Ball, T. (2012). Modular and Verified
Automatic Program Repair. In Proceedings of the 27th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2012), pages 133-146. Association for Computing Machinery.

[Martelli and Montanari, 1982] Martelli, A. and Montanari, U. (1982). An Efficient
Unification Algorithm. ACM Transactions on Programming Languages and Sys-
tems, 4(2):258-282.

[Marti-Oliet et al., 2012] Marti-Oliet, N., Palomino, M., and Verdejo, A. (2012).
Rewriting Logic Bibliography by Topic: 1990-2011. The Journal of Logic and
Algebraic Programming, 81(7-8):782-815.

[Mau-Dev, 2016] Mau-Dev (2016). The Mau-Dev Website. Available at: http:
//safe-tools.dsic.upv.es/maudev.

[Maude-Tools, 2010] Maude-Tools (2010). Maude Tools Website. Available at:
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools.

[Mera et al., 2009] Mera, E., Lopez-Garcia, P., and Hermenegildo, M. V. (2009). In-
tegrating software testing and run-time checking in an assertion verification frame-
work. In Proceedings of the 25th International Conference on Logic Programming
(ICLP 2009), volume 5649 of Lecture Notes in Computer Science, pages 281-295.
Springer.

[Meseguer, 1992] Meseguer, J. (1992). Conditional Rewriting Logic as a Unified
Model of Concurrency. Theoretical Computer Science, 96(1):73-155.

[Meseguer, 1998] Meseguer, J. (1998). Membership Algebra as a Logical Frame-
work for Equational Specification. In Proceedings of the 12th International Work-
shop on Algebraic Development Techniques (WADT 1997), volume 1376 of Lec-
ture Notes in Computer Science, pages 18-61. Springer.

http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf
http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf
http://safe-tools.dsic.upv.es/maudev
http://safe-tools.dsic.upv.es/maudev
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools

152 Bibliography

[Meseguer, 2012] Meseguer, J. (2012). Twenty Years of Rewriting Logic. The Jour-
nal of Logic and Algebraic Programming, 81(7-8):721-781.

[Meyer, 1997] Meyer, B. (1997). Object-Oriented Software Construction, 2nd Edi-
tion. Prentice-Hall.

[Ohlebusch, 2002] Ohlebusch, E. (2002). Advanced Topics in Term Rewriting.
Springer.

[Palamidessi, 1990] Palamidessi, C. (1990). Algebraic Properties of Idempotent
Substitutions. In Proceedings of the 17th International Colloquium on Automata,
Languages and Programming (ICALP 1990), volume 443 of Lecture Notes in
Computer Science, pages 386—399. Springer.

[Plotkin, 1970] Plotkin, G. D. (1970). A Note on Inductive Generalization. Machine
Intelligence, 5:153—-163.

[Quesada, 1997] Quesada, J. F. (1997). The SCP parsing algorithm based on syn-
tactic constraint propagation. Ph.D. thesis, University of Seville.

[Riesco et al., 2012] Riesco, A., Verdejo, A., Marti-Oliet, N., and Caballero, R.
(2012). Declarative Debugging of Rewriting Logic Specifications. The Journal of
Logic and Algebraic Programming, 81(7-8):851-897.

[Rocha et al., 2014] Rocha, C., Meseguer, J., and Mufioz, C. (2014). Rewriting Mod-
ulo SMT and Open System Analysis. In Proceedings of the 10th International
Workshop on Rewriting Logic and its Applications (WRLA 2014), volume 8663 of
Lecture Notes in Computer Science, pages 247—-262. Springer.

[Rosu, 2015] Rosu, G. (2015). From Rewriting Logic, to Programming Language
Semantics, to Program Verification. In Logic, Rewriting, and Concurrency -
Festschrift Symposium in Honor of José Meseguer, volume 9200 of Lecture Notes
in Computer Science, pages 598—616. Springer.

[Roldan et al., 2009] Roldan, M., Duran, F., and Vallecillo, A. (2009). Invariant-
driven Specifications in Maude. Science of Computer Programming, 74(10):812—
835.

[Roldan and Duran, 2011] Roldan, M. and Duréan, F. (2011). Dynamic Validation of
OCL Constraints with mOdCL. Electronic Communications of the EASST, 44.

[Sapifia, 2013] Sapifia, J. (2013). Slicing Slices, an Incremental Backward Trace
Slicing Methodology for RWL Computations. M.Sc. thesis, Universitat Politéc-
nica de Valéncia.

Bibliography 153

[Shapiro, 1982] Shapiro, E. Y. (1982). Algorithmic Program Diagnosis. In Proceed-
ings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 1982), pages 299-308. Association for Computing Machinery.

[TeReSe, 2003] TeReSe (2003). Term Rewriting Systems. Cambridge University
Press.

[Turing, 1937] Turing, A. M. (1937). On Computable Numbers, with an Application
to the Entscheidungsproblem. Proceedings of the London Mathematical Society,
42(1):230-265.

[Viry, 2002] Viry, P. (2002). Equational Rules for Rewriting Logic. Theoretical
Computer Science, 285(2):487-517.

[Weiser, 1981] Weiser, M. (1981). Program Slicing. In Proceedings of the 5th Inter-
national Conference on Software Engineering (ICSE 1981), pages 439-449. IEEE
Computer Society Press.

[Xu, 2012] Xu, D. N. (2012). Hybrid Contract Checking via Symbolic Simplifica-
tion. In Proceedings of the 21st ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation (PEPM 2012), pages 107-116. Association for Com-
puting Machinery.

Appendix A

A Stock Exchange System

fmod STOCK-EXCHANGE-SORTS is
pr INT + QID .

sorts Stock Trader Order Id Market PremiumTrader
StockID TraderID OrderID Set .
subsorts Qid < StockID TraderID OrderID < Id .
subsorts PremiumTrader < Trader .
endfm

view Stock from TRIV to STOCK-EXCHANGE-SORTS is
sort E1t to Stock .
endv

view Trader from TRIV to STOCK-EXCHANGE-SORTS is
sort E1t to Trader .
endv

view Order from TRIV to STOCK-EXCHANGE-SORTS is
sort E1t to Order .
endv

view StockID from TRIV to STOCK-EXCHANGE-SORTS is
sort E1t to StockID .
endv

mod RANDOMIZER 1is
pr RANDOM .

var X : Nat .
op rndDelta : Nat -> Nat .
eq [rnd-delta] : rndDelta(X) = random(X) rem 10 .

156

A Stock Exchange System

op reSeed : Nat -> Nat .

eq [re
endm

-seed] : reSeed(X) = X + 3 .

mod STOCK-EXCHANGE 1is
pr STOCK-EXCHANGE-SORTS + RANDOMIZER .
pr SET{Stock} + SET{Trader} + SET{Order} + SET{StockID} .

--- Round StockSet TraderSet OrderSet

op _:_

|_]_ : Nat Set{Stock} Set{Trader} Set{Order} ->
Market [ctor] .

--- TraderID capital

op tr :

TraderID Int -> Trader [ctor] .

--- StockID price

op st :

--- or

StockID Int -> Stock [ctor] .

derID TraderID StockID

--- limit profit-target stop-loss active

op ord :

--- Ro
op upd

OrderID TraderID StockID Int Int Int Bool ->
Order [ctor] .

und Seed StockSet
P : Nat Nat Set{Stock} -> Set{Stock} .

ops open closed : -> Bool .

vars T

var SS :
var TS :
var 0S :

var R
vars P

eq [up

ID SID OID : Id .
Set{Stock} .
Set{Trader} .
Set{Order} .

S : Nat .
CLPTSL : Int.

dP] : updP(R,S, (st(SID,P),SS)) =

if (rndDelta(R * S) rem 2) ==

then st(SID,S + rndDelta(R * S)),updP(R,S + 1,SS)
else st(SID,S + (- rndDelta(R * S))),updP(R,S + 1,SS)
fi .

A Stock Exchange System 157

eq [updP-owise] : updP(R,S,empty) = empty [owise] .

cmb [premT] : tr(TID,C) : PremiumTrader if TID
in PreferredTraders .

op PreferredTraders : -> Set{StockID} .
eq [prefT] : PreferredTraders = 'T2 .

rl [next-rnd] : R : SS | TS | 0S =>
R+ 1 : updP(R + 1,reSeed(R + 1),SS) | TS | 0OS .

crl [open-ord] :
R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(OID,TID,SID,
L,PT,SL,closed),0S)
=>
R : (st(SIiD,P),SS) | (tr(TID,C - P),TS) | (ord(OID,TID,
SID,L,PT,SL,open),0S)
if P<=1L .

crl [close-ord-SL] :
R : (st(SIiD,P),SS) | (tr(TID,C),TS) | (ord(OID,TID,SID,
L,PT,SL,open),0S)
=>
R : (st(SID,P),SS) | (tr(TID,C + L + (- SL)),TS) | OS
if P<=L -SL .

crl [close-ord-PT] :
R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(0ID,TID,SID,
L,PT,SL,open),0S)
=>
R : (st(SID,P),SS) | (tr(TID,C + L + PT),TS) | OS
if P> L + PT .
endm

Appendix B

An Object-oriented Car Rental Store

(omod RENT-A-CAR-ONLINE-STORE is
pr CONVERSION .
pr QID .

subsort Qid < 0id .

class Register | rentals : Nat ,
date : Nat .

class Customer | credit : Int,
suspended : Bool .

class Car | available : Bool,
rate : Nat .

class Rental | deposit : Nat,
dueDate : Nat,
pickUpDate : Nat,
customer : 0id,
car : 0id .

class PreferredCustomer .
class EconomyCar .
class MidSizeCar .
class FullSizeCar .

subclass PreferredCustomer < Customer .
subclasses EconomyCar MidSizeCar FullSizeCar < Car .

var B : Bool .
vars U C R RG : 0id .
vars CREDIT AMNT : Int .

160 An Object-oriented Car Rental Store

vars TODAY PDATE DDATE RATE DPST RNTLS : Nat .

rl [new-day] : < RG : Register | date : TODAY >
=> < RG : Register | date : TODAY + 1 > .

crl [3-day-rentall]

< U : Customer | credit : CREDIT, suspended : false >

< C : Car | available : true, rate : RATE >

< RG : Register | rentals : RNTLS, date : TODAY >

=>

< U : Customer | credit : CREDIT - AMNT >

< C : Car | available : false >

< RG : Register | rentals : RNTLS + 1 >

< qid("R" + string(RNTLS,1@)) : Rental | pickUpDate :
TODAY, dueDate : TODAY + 3, car : C, deposit : AMNT,
customer : U, rate : RATE >

if AMNT := 3 x RATE .

crl [on-date-return] :
< U : Customer | credit : CREDIT >
< C : Car | rate : RATE >
< R : Rental | customer : U, car : C, pickUpDate : PDATE,
dueDate : DDATE, deposit : DPST >
< RG : Register | date : TODAY >
=>
< U : Customer | credit : (CREDIT + DPST) - AMNT >
< C : Car | available : true >
< RG : Register | >
if (TODAY <= DDATE) / AMNT := RATE % (TODAY - PDATE) .

crl [late-return]

< U : Customer | credit : CREDIT >

< C : Car | rate : RATE >

< R : Rental | customer : U, car : C, pickUpDate : PDATE,
dueDate : DDATE, deposit : DPST >

< RG : Register | date : TODAY >

=>

updateSuspension(< U : Customer | credit : (CREDIT - AMNT)

+ DPST >) < C : Car | available : true > < RG : Register

| >

if DDATE < TODAY / AMNT := RATE * (DDATE - PDATE) + (120

An Object-oriented Car Rental Store

161

* RATE % (TODAY - DDATE)) quo 100 .

op updateSuspension : Object -> Object .
ceq [suspend] : updateSuspension(

< U : Customer | credit : CREDIT , suspended

< U : Customer | credit : CREDIT , suspended :

if (CREDIT < @) .

eq [maintainSuspension] : updateSuspension(

endom)

< U : Customer | suspended : B >)

< U : Customer | suspended : B > [owise] .

. false >)

true >

UNIVERSITAT
POLITECNICA
DE VALENCIA

DS

DEPARTAMENTO DE SISTEMAS
INFORMATICOS Y COMPUTACION

	Introduction
	Motivation
	Contributions of the Thesis
	Plan of the Thesis
	Bibliographic Remarks

	Preliminaries
	Basic Concepts of Rewriting Logic
	Rewriting in Rewriting Logic
	Generalization modulo Equational Theories

	The Maude System and Language
	Origins of Maude
	Core Maude
	Full Maude

	Inspection of Rewriting Logic Computations
	The Running Examples
	Instrumented Computations
	The Exploration Technique
	An Animated Debugging Session

	Runtime Verification of Maude Programs
	The Assertion Language
	Satisfaction of Assertions
	Uncovering Error Symptoms
	Dynamic Assertion-Checking

	Automated Debugging of Maude Programs
	Slicing of Execution Traces and Programs
	Improving the Inference of the Slicing Criteria
	Integration of Assertion-Checking and Trace Slicing
	Automated Repair of Faulty Rules

	The ABETS System
	ABETS in a Nutshell
	ABETS at Work
	Implementation Details
	Experimental Evaluation

	Mau-Dev: A Developer Extension of Maude
	Novel Operations
	Compatibility
	Experimental Evaluation

	Conclusion
	Related Work
	Discussion of Results
	Future Work

	Bibliography
	Appendix A: A Stock Exchange System
	Appendix B: An Object-oriented Car Rental Store

