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Gracias a los datos experimentales obtenidos en el presente proyecto se ha
conseguido realizar una publicacion cientifica en la prestigiosa revista: “IEEE
TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY”.
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Output feedback linearization of turbidostats after
time scaling

Hernan De Battista , Member, IEEE, Enric Pic6-Marco, Fernando N. Santos-Navarro, and Jesus Pico
, Senior Member, IEEE

Abstract—Bioreactors are the workhorses where characteriza-
tion, scaling-up, and production take place in the biotech and
pharma industries. Therefore, feedback control of bioreactors
has received much attention in the last years. However, control
of bioreactors is difficult due to the uncertain, time-varying and
nonlinear nature of the processes involved. In the last years,
turbidostats are gaining interest due to the availability of micro-
and small-scale devices becoming available for characterization
and scaling-up of systems without nutrient limitation. The goal
in turbidostats is to keep cell density constant in continuous
operation. Thus the control law, i.e. the substrate feeding strategy,
must guarantee global o semiglobal convergence to an equilib-
rium point. In this paper we propose an adaptive control law
that globally stabilizes the desired biomass set-point. Further,
in some region of the state space the controller linearizes the
dynamic behavior after some time scaling. This way, the orbits
of the closed loop system are imposed by the designer. The
controller implementation only assumes biomass concentration
to be measured. Moreover, the intrinsic integral action of the
gain adaptation rejects parameter uncertainties. We present both
simulated and experimental results showing the performance of
the controller as compared with alternative approaches.

Index Terms—Bioreactors; Nonlinear control systems; Output
feedback; Adaptive control.

I. INTRODUCTION

NDUSTRIAL biotechnology has traditionally used enhan-

ced and/or genetically modified microorganisms as cell
factories to produce specialty metabolites (e.g. amino acids,
vitamins, food additives, biofuels,...) of importance for the
health, chemical, food and energy sectors among others.
Bioreactors of different sizes are the workhorses where char-
acterization, scaling-up, and production take place. Therefore,
feedback control of bioreactors has received much attention
in the last years. However, control of bioreactors, specially in
industrial environments, is difficult due to some characteristics
of the processes to be controlled: (i) lack of knowledge on
the key variables of the system representing the physiolog-
ical state of the culture, (ii) high complexity derived from
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multi-component non-linear process dynamics, and (iii) large
variability. Two key ideas to address model-based design of
controllers in this context are the use of simple models based
on mass-balances [1], and the development of generic and
robust controllers based on the minimal model concept [2].
On the one hand, mass-balance based models constrain the
uncertainty in specific terms; the bioreaction kinetics, and the
bioreaction yields. On the other, robust controllers based on
the minimal model concept use the mass-balance structure and
rough information on the kinetics structure and bounds.

Bioreactions can be performed in either batch, fedbatch,
or continuous mode. In the later case, the volume of culture
inside the bioreactor is kept constant by setting the inlet flow
rate equal to the outlet one. The higher risk of contamination
and cell mutation in continuous bioreactions have favoured
batch and fedbatch ones, leaving continuous ones for processes
involving microorganisms with high mutation-stability. Yet
continuous bioreactions have some advantages, like increased
productivity for biomass and growth associated products, or
the possibility to analyze cultures under sets of steady state
conditions. Two main classes of continuous bioreactors are
mostly used. In chemostats the rate at which fresh medium
is continuously added is controlled so as to keep a desired
specific growth rate of the microorganism. In the last years,
micro- and small-scale turbidostats using a feedback control
loop to keep cell density constant are becoming available for
characterization and scaling-up of systems without nutrient
limitation, and are a promising tool to be used as intermediate
step between the lab and the industrial bioreactor [3], [4].

In the case of turbidostats, the control law, i.e. the substrate
feeding strategy, must guarantee global o semiglobal conver-
gence to an equilibrium point. To this respect, it can be shown
that feeding strategies that are proportional to the reaction rate
avoid washout whereas under some extra conditions avoid
falling in batch operation. So as to make this control law
robust with respect to process uncertainties and variations,
and to improve transients, some control strategies discussed
in the literature modify it by adapting the controller gain
[5], [6] or including error feedback [2], [7]. In the first
case, the authors propose adaptive control laws that in the
end are integral control ones. Indeed the error appears in
the derivative of the feedback gain. A controller that can be
applied to regulate biomass, substrate or product concentration
in continuous bioprocesses is proposed in [5], whereas a
growth rate controller for fedbatch processes is proposed
in [6]. These controllers eliminate steady state errors, but
they do not improve, even they are prone to deteriorate, the
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transient response. To speed up the transient, a nonlinear
proportional controller for the growth rate that results in
nonlinear stable dynamics is proposed in [7], but parameter
uncertainties cannot be completely rejected and a trade-off
appears between robustness and noise. On the other hand, [2]
presents a nonlinear proportional control with adaptive gain,
leading to a class of nonlinear PI controller. Although this
controller exhibits fast convergence properties and robustness,
it is not clear how to impose the desired dynamics and care
should be taken to avoid controller saturation.

In this paper we propose an adaptive control law that
globally stabilizes the desired biomass set-point. Further, in
some region of the state space the controller linearizes the
dynamic behavior after some time scaling. This way, the
orbits of the closed loop system are imposed by the designer.
The controller implementation assumes biomass concentration
is measured. From this measurement, the reaction rate can
be estimated using high-gain or sliding observers [8], [9].
The intrinsic integral action of the gain adaptation rejects
parameter uncertainties. If, conversely, the reaction rate is
indirectly measured or calculated and some error appears, then
the controller is not completely capable of rejecting the steady
state error. In that case, the error is bounded.

The paper is organized as follows. In Section II the problem
is formulated. The proposed control law and its analysis is
considered in Section III and Section IV respectively. Some
simulations highlighting the performance of the devised con-
troller are shown in Section V. The experimental validation
is shown in Section VI. Finally, Section VII outlines the
conclusions of the work.

II. PROBLEM STATEMENT

Let consider the mass balance equation of a pure culture
growing under a single carbon and energy source (CES) being
continuously fed to the reactor.

& = p(z,s)z — D(t)z
$ = —yu(z,s)x + D(t)(s; — s)

where # € R, is the biomass concentration, s € R,
the substrate concentration (CES), s; € R, the substrate
concentration in the inlet flow, p(x, s) the specific growth rate,
y the substrate-biomass conversion yield, and D(t) the dilution
rate, i.e. the ratio between the flow rate and the culture volume,
that will be used as control input.

Assumption 2.1: We will assume that the specific growth
rate is continuously differentiable (u(z,s) € C'), vanishes
if there is no substrate (p(z,0) = 0), it is strictly positive
whenever there is available substrate (p(z,s) >0 Vs > 0),
and it is bounded (p(z,s) < pmm  Va,s > 0).

These are sensible assumptions fulfilled by all standard spe-
cific growth rate models [1].

Assumption 2.2: We will assume that the dilution rate is
nonnegative and bounded so that 0 < D(t) < D Vt.

Note that unbounded dilution rates make no sense from a
bioprocess physical viewpoint. Negative dilution rates would
imply emptying the bioreactor.

Assumption 2.3: Assume biomass concentration x is avail-
able for measurement.

(e))

(5]

Definition 2.1: A bioprocess operates in continuous mode
when there exists 7'c > 0 such that D(t) > d > 0Vt > Tk,
for some sufficiently small d.

The goal is to design a control law D(¢) that globally
stabilizes system (1) at the specified biomass set-point z*.

III. PROPOSED CONTROL LAW
A. Growth rate proportional feeding laws

As mentioned in section I, a family of controllers of the
form
D(z,p) = ypa ()

have been proposed in the literature, mainly for substrate
or growth regulation. Although many of them have been
originally devised for fed-batch processes, they can also be
applied to continuous ones.

Using (2), the closed loop dynamics can be expressed as:

&= D(z,p)(y"! —2)
$=D(z,p)(si —yy " —3)
Let us consider the simplest case in which v = 1/2*, and «*
is the set-point for biomass. Then:
i = D(x, p)(a" — )
6= D@, u)(s" — )
where s* = s; — ya* is the substrate equilibrium point.

It is clear that for a continuous bioreaction as stated in
Definition 2.1, this controller locally stabilizes the equilibrium
P* = (a*, s*). The controller decouples the dynamics of both
concentrations, which converge to their steady state values at
the same rate.

The idea now is to semiglobally stabilize the biomass
concentration preserving the control law structure (2), i.e. to
feed the reactor in proportion to growth rate, but changing the
feedback gain ~ so as to improve the transient dynamics. The
ultimate objective is to linearize, at least locally, the output
dynamics, thus providing some tools to tune the controller in
terms of the desired response shape.

3)

“

B. Adaptive shaping of ~
Recall that v = 1/2* will locally stabilize the equilibrium
P* = (a*,s*). The goal now is to shape v so as to improve
convergence of « towards the desired set-point z*. To this end,
we propose the following control adaptive control law.
Theorem 3.1: Let the system (1), and «* the desired set-
point for biomass concentration. Let f be a function satisfying

fec®
_ 1 o
f(v) >0 Vye(y,3) %<1<'y <7
f(a)=0 )
=30
f(7) =1 V’Y el'= ["/7711’\/1\[] C (1’7) ’)’* el
with v* = -L-. Then, the controller

D(p, ) = yux
4= —v*[(u — D)z(1 — a) — Db(z — z*)] f(v) (6)
Yo € (:Y_a '7)
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with b > (a—1) > 0:
a) globally stabilizes biomass at 2*, and
b) linearizes the biomass dynamics in a transformed time
scale when the controller enters the set I'.

C. Time scaling

In order to prove Theorem 3.1, it is convenient to express
the closed loop dynamics in a new time scale 7. To that end,
consider the time scaling given by:

dr = D(z, p)dt (7

Now, defining the time derivative w.r.t. the new time variable

as (+) = %), the closed loop dynamics (3) become:
2 =y1l—g
' -1 ()
8§ =8—yy —8

Notice that the system in the transformed time scale has its
eigenvalues at —1. One can also see that  can be shaped
to improve convergence of one variable, say z, relative to the
other. Notice again that the dynamics of biomass and substrate
are also decoupled in the transformed time-scale. Therefore,
one may analyze partial stability of the system with respect to
one of the states independently of the other.

Theorem 3.2: The time scaling (7) defines a stability pre-
serving map.
Proof Taking into account Assumption 2.2, and assuming
continuous mode operation, the time-scaling (7) defines a
strictly increasing and onto function & : t — 7. Thus,
the homomorphism given by the identity transformation for
the coordinates and the time-scaling defined by (7) preserves
stability. See Th. 7 and Coroll. 8 in [8]. d

D. Proof of Theorem 3.1

Assume for the time being that the control law (6) induces
a well defined time scaling (7).

Applying the time scale transformation, and taking into ac-
count the dynamics (8), the control law (6) in the transformed
T-time scale becomes:

D(p,z) = ypa
7 == [ ~2)(1 - @) ~ bz~ 2")] £(3)
First we prove partial global stability of the closed loop
system corresponding to the biomass dynamics. Recall that

(©))

v* = (*)~!. Define the errors:
T=x—2a*
= —1 x—1 (10)
SEaS S ¢

Taking derivative w.r.t. 7 we obtain the error dynamics
¥ =5-2
¥ =f([H—2)(1 - a) - bi]
Let us now define the following positive definite radially
unbounded function:

Wi = /
(g

b—a+1._
W, = TQ

W =W; + W,

(an

12)

with b —a+ 1 > 0. Using the Leibnitz Integral Rule for W,
the 7-time derivative of (12) along the state trajectory is:

W{ )——(a—l)’yz—(b—a-i-l)fyi:
b—a+1)@*+ (b—a+ 1)@
(L—l)'y —(b—a+1)z?

which is negative definite for a > 1. Therefore, the equilib-
rium (2,5) = (0,0) of the error dynamics (11) is globally
asymptotically stable.

From Theorem 3.2, the time scaling (7) defines a stability
preserving map. Consequently, the closed loop defined by the
biomass dynamics in (1) and the controller (5)-(6) in the (z, t)-
coordinates is asymptotically stable if and only if the closed
loop biomass dynamics (8)-(5)-(9) in the («, 7)-coordinates is.

(13)

Next we show that, after some finite time 7'c, the control law
(6) linearizes the biomass dynamics in the transformed time
scale, within a set I' = [v,,,vas]. To this end, differentiating
2 in (8) twice w.r.t. 7, one gets

"

- _7—2,7/ _ J"/
=f['(1—-a) - bz —a*)] -

Since 7 asymptotically converges to zero, there will exist some
finite time 7, such that v € T for all 7 > T, where, from (5),
f(v) = 1. Therefore, once ~ enters the set I' the system will
behave according to the linearised dynamics:

(14)

2 +ax' + bz —a*)=0 (15)

a

Remark 3.1: Notice that although in this linear region in
the transformed 7 time scale it suffices to choose a,b > 0
to ensure asymptotic stability, the Lyapunov function (12) we
found is more restrictive.

Now we are in position to see that the time scaling (7) is
well defined. To this end, it suffices to see that the dilution
rate D(p,«) in (6) is bounded and strictly positive, so that
Theorem 3.2 can be invoked. That is, we must prove that the
control law (5)-(6) induces continuous mode operation.

From Theorem 3.1, the adaptation gain - will be bounded,
with y(t) € (y,7) Vt > to. Also biomass « will be bounded.
Finally, Assumption 2.1 ensures that the specific growth rate
w1 is bounded. Thus, from boundedness of ~, x and = we
conclude that of the dilution rate D(u, ).

Next we will prove that D(yu, ) does no vanish. To this
end, recalling that v(t) € (v,75) Vt > to, it will suffice to
prove that both the biomass 2 and the specific growth rate
w1 are bounded away from zero. That is, we must prove that
the control law avoids both washout of biomass and batch
operation with substrate depletion.

The point # = 0 is a stable fixed point of system (1)
which corresponds to biomass washout. We can assume initial
conditions satisfying z, > 0, i.e. there is some initial biomass
concentration in the bioreactor. From Theorem 3.1, z* is an
asymptotically stable equilibrium point for biomass. There-
fore, there will exist some sufficiently small 0 < 2 < 2* such
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that the region Ry = {(z,s)|z > z} is positively invariant.
That is, the control law (5)-(6) avoids washout.

Now, given the properties for the specific growth rate in
Assumption 2.1 and the result above, to prove that the specific
growth rate y(z,s) does not vanish it suffices to prove that
the substrate concentration s so does not. Notice that every
point in § = {(z, s)|s = 0} is a marginally stable fixed point
of the autonomous system resulting from setting D(¢) = 0 in
(1). So, we must require S not to be locally attractive.

Lemma 3.1: S is not locally attractive iff

lim D(z,s) > yz lim @ 3)

s—0t s—=0t 8; — 8

Va € [z, 7] (16)
Proof By continuity, if D(z, s) fulfills (16), then there exists
s sufficiently small such that Yz € [x,Z] the dilution rate
verifies D(z,s) > v2u(:8) gpg, consequently, the substrate

8i—8

concentration in system (1) will increase. Therefore, the region
Rs = {(z,5)|s > s} (17)

is positively invariant. On the other hand, if S is not locally
attractive then from the second equation in (1) the inequality
(16) holds.

That is, if we do not want to converge to S, then D cannot
go to zero faster than the reaction rate pa. Now, notice the
control law (6) fulfills Lemma 3.1 provided v > ;1’- Therefore,
the specific growth rate p(x, s) is bounded away from zero.

Remark 3.2: Notice that the inequality v > % implies
that the desired set-point for biomass concentration must be
bounded by «* < 2t This is sensible, as it simply says that at
equilibrium the amount of CES converted into biomass (yx*)
must be less than the one in the input flow (s;).

Thus, we have proved that both the biomass = and the
specific growth rate p(z,s) are bounded from above, and
bounded away from zero. Therefore, the time scaling (7) is
well defined.

On the other hand, D vanishes on S. Therefore, this class
of controller is not able to start the process from s = 0.
Anyway, the non-attractiveness condition (16) is always
satisfied since z* < %}L Thus, this controller (semi)globally
stabilizes the equilibrium.

This completes the proof of Theorem 3.1.

IV. CONTROLLER PERFORMANCE
A. Closed loop poles in the T time-scale

Recall that after some finite time, the biomass error in the
transformed time-scale 7 will follow the linear dynamics (15).
By choosing a, b in the control law (6), and using b—a+1 >
0, we can place the corresponding eigenvalues A;, Ay of the
closed-loop system with:

(J.)O:\/)\ll\Q:\/l_)
f_/\14-/\2 _a
2vb

1 1 .
Ew"l <é< §(w0+w01)

20 (8)

45+

351 |

w25k |
2|
15}
1}
05

0 L I s L L L 1 )
0 05 1 15 2 25 3 35 4

“o
Figure 1. Region of admissible values for wp, £ to ensure global stability

where wy is the natural frequency, £ the damping coefficient.
The values (wo, &) should be selected to fall within the region
shown in figure Fig. IV-A.

B. Effects of the growth rate observer

Any measurement error in 2 will produce an error in the
steady state. Yet, the proposed controller can be tuned so
as to significantly reduce the error. To analyze the controller
performance, we consider the case that estimation of . does
introduce an error, so that the estimated specific growth rate /:
is it = pu+ 9y, with 6, = ("—;ﬂ Now consider the controller
(6) using the estimated value /. Replacing /i for p in (6) gives:

§ = —73(~é(a—1)+@Fupa(a—1)) - Db(e—2"))f(7) (19)

that in the transformed time scale results in:
"E, = ((1 - 5”)7)“1 -z

; dula—1), (20)
/ 2 / * M
=—7f(y)(2'(l —a) - bz — 2" — —+=
y (7)(@'(1 = a) = b R
At steady state, (1 — 6,)vesss = 1, and 2,y = 2* —
H'ii—é%) Therefore:
a’,*
Tss = ————v (21)
1-— (5,u—("‘;l)
Defining 0.« = % leads to:
§pe = 5H$ 22)
We can define the error gain as:
_ox*  (a—1)
Dggp 5= R (23)

Recall that b > a — 1 > 0. Notice A,/, — 0 as a — 1.
Therefore, there is a compromise between transient response
(speed and overshoot) and steady state error. If we design a, b
to have a given £ and damping factor o = a/2 (notice o will
define the settling time), then

Ay o (20 — 1)¢

&T = T
/1 02

(24)

For a given damping coefficient &, the error has a single local
maximum A/, max = & at 0 = 1 (a = 2) and goes to zero
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0 2 4 6 8 10

a
Figure 2. Ratio of steady state regulation error to p estimation error of the
proposed algorithm (normalised w.r.t. &)

as a — 1 or a — oo (see figure 2). Also, the smaller &, the
smaller the error will be.

The steady state error of the classical algorithm (2) is very
similar to the error in the estimation of p: A,,, = 1. If
well designed, the proposed controller will significantly reduce
the error. Anyway, to avoid this source of error one can
estimate p using a supertwisting observer that gives finite time
convergence with zero steady state estimation error.

V. SIMULATED RESULTS

Since the time scaling (7) is a regular transformation, the
relationship between ¢ and 7 is monotonous. This means that
all properties independent of time, e.g. overshoot, will be pre-
served by the time scaling, and those depending on time will
preserve order, provided the initial conditions are the same.
Preservation of magnitude and order is a key characteristic
that makes tuning of the proposed algorithm more simple
than existing alternatives. There is a direct mapping between
changes in the controller parameters a, b, and its effect on the
closed loop time response.

Figure 3 shows the biomass concentration « in the original
time scale ¢t and modified one 7 for different values of the
parameters a, b in the proposed algorithm, chosen so that the
damping factor keeps the same. Notice all three solutions
in figure 3 have the same settling time, for they share the
same damping factor o. Figure 4 shows how time scaling
preserves order. That is, slower time responses in the 7 scale
will correspond to slower ones in the ¢ time-scale. Notice the
overshoot is conserved in the transformation, but it is not
exactly the same in all cases, in spite of having a common
damping coefficient £ = 0.5. The small differences are due
to the fact that linearizarion in the 7 time-scale is achieved
after a transient, that may be slightly different in each case.
On the other hand, the controller performance is very robust
with respect to variability in the substrate initial conditions,
as shown in Figure 5. This is due to the fact that the transient
response of the linearised dynamics in the transformed time
scale does not depend on the initial substrate conditions. Only
the nonlinear short transient to reach the linearised region
affects. Therefore, only the dependence of the time-scaling
on the substrate s—via the specific growth rate pu(z, s)- to get
back into the original time scale ¢ will induce differences. In

6
t (hours)

7 (hours)

e

0 2 4 3 8 10 12
t (hours)

Figure 3. Biomass concentration @ in the original time scale ¢ (top) and

modified one 7 (middle), and adaptation gain « (bottom) for the proposed

algorithm and values of &: 1 (blue), 0.75 (red), 0.5 (yellow). In all cases
o = 2. Initial conditions: (zg, sp) = (0.05,0.001), set-point z* = 0.3.

03 e — -
x 0.2
0.1 ”
% 2 4 6 8 10 12
t (hours)
04
03 N —— ———— —
x 0.2
0.1
0 L L s | L
0 1 2 3 4 5 6
r (hours)

Figure 4. Biomass concentration @ in the original time scale ¢ (top) and
modified one 7 (bottom) for the proposed algorithm and common damping
coefficient £ = 0.5. The damping factors are o = 8 (blue), o = 4 (red), o =
2 (yellow), and o = 1 (cyan). Initial conditions: (zo,so) = (0.05,0.001),
set-point z* = 0.3.

practice, the biorreaction operates most of the time at values
of substrate driving u(z,s) close to saturation. Under this
situation, the sensitivity of p(x,s) wrt. s is very small for
the standard specific growth rate functions —e.g. Monod. This
explains the robustness with respect to the substrate initial
conditions observed in Figure 5.

Next we compare the proposed controller both with the
baseline controller (2) and with the one proposed in [5]:

¥=Kupe(z—2*)(y—-9)F -9 %€ (@7

D(p, ) = ypx )

Notice the controller (25) consists basically of the baseline
controller where the gain ~ is adapted, introducing an integral
compensation. Differing from our proposal, the controller
developed in [5] does not include proportional action, thus
limiting the achievable controller performance. Additionally,
it does not exhibit a linear region in any time scale, so it is
not so easy to tune the gain K.

Figure 6 shows the time ¢ evolution of the biomass con-
centration, dilution rate, and adaptation gain for the proposed
controller and the baseline controller (2). Notice with the
proposed controller one can achieve better settling time, and
can easily set the desired transient specifications.
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Figure 5. Biomass concentration @ in the original time scale ¢ (top)
and modified one 7 (bottom) for the proposed algorithm for different
substrate initial conditions. Initial conditions: (x0,s0) = (0.05,0.001)
(blue), (@0, so) = (0.05,0.001) (red), (xo,so) = (0.05,0.001) (yellow).
Parameters: (a,b) = (2,4). Set-point 2* = 0.3.
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3
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Figure 6. Biomass concentration = (top) dilution rate D (middle) and gain
~ (bottom) for the proposed algorithm and the base one. Initial conditions:
(@o,s0) = (0.1,1.0). Set-point z* = 0.3. Parameters: (a,b) = (2,4)
(blue), (a,b) = (2,1.78) (red), (a,b) = (4,7.11) (yellow), baseline
controller (cyan).

On the other hand, the controller (25) does not improve
the transient response of the classical controller, as shown in
Figure 7. Its inherent integral action can be useful to reject
uncertainties in the calculation/measurement of x or pz. Note
that for small values of gain k& the nominal response of this
controller is practically not altered with respect to that of the
baseline controller. However, as k increases, the gain ~ is
adapted as response to the error and then it takes a long time
to recover its steady state value. For even higher values of k,
the nominal response is seriously degraded by the presence of
large overshoots that can be attributed to a too strong integral
action.

Finally, let us compare the response of the controllers in
the presence of j estimation error. The problem of pure
integral adaptive controllers, as (25), is that a large integral
action that drives the error to zero reasonably fast deteriorates
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Figure 7. Biomass concentration & (top) dilution rate D (middle) and gain
~ (bottom). Initial conditions: (zg, sp) = (0.1, 1.0). Set-point z* = 0.3.
Proposed controller: (a,b) = (4,7.11) (blue). Controller (25): K = 0.5
(red), K =1 (yellow), K = 5 (cyan). Baseline controller (black).
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Figure 8. Steady state error. iomass concentration = (top) dilution rate D
(middle) and gain ~ (bottom). Initial conditions: (zg,sg) = (0.1,1.0). Set-
point z* = 0.3. Proposed controller: (a,b) = (4,7.11) (blue). Controller
(25): K = 0.5 (red), K = 1 (yellow), K = 5 (cyan). Baseline controller
(black).

significantly the transient response. In figure 8 we show the
response when the growth rate is estimated with a —10%
error. The classical controller, the proposed controller for a
pair of settings and the controller (25) for its optimal gain are
compared. Although controller (25) response in the large tends
to the desired value, the transient is much longer (12 hours)
than the one obtained with our controller (5 hours).

VI. EXPERIMENTAL RESULTS

We used the experimental setup shown in Fig. 9. It consists
of a 16ml turbidostat adapted from [4] and fed by a syringe
pump (NE-1000, New Era Pump Systems, Inc.). Volume was
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Figure 9. Experimental turbidostat setup.

kept constant by injecting pressurized air using a small pump.
Optical density at 650 nm (ODgs59) was measured using an
absorbance custom-made sensor using a fotodiode converting
light intensity to frequency (TSL235-LF, Farnell). In our
working range there is a linear relationship between ODgs0
and biomass concentration, so we controlled optical density.
We grew E. coli transformed cells containing the blue-purple
chromoprotein amilCP using SOB medium as substrate with
20mM glucose (3.603 g/L).

To estimate the specific growth rate ;o from biomass mea-
surements we used the super-twisting based observer for
continuous bioreactions in [10] tuned using the methodology
in [8]. This observer converges in finite time. In all cases we
set the same initial condition (0) = 0.25 for the estimated
specific growth rate. We did not allow for an initial open loop
period for the observer to converge before closing the loop.
In all cases the observer converged in less than one hour.

Fig. 10 and Fig. 11 show the experimental results obtained
fit well with the theoretical predictions considering the noisy,
uncertain and time-varying context. We used the parameters
(a,b) = (4,7.11) corresponding to a peak time of ¢, = 1.8
hours, settling time of £, = 4 hours (98% criterium) and
overshoot ¢ = 0.16, and (a,b) = (2,4) yielding ¢, ~ 1.8
hours, ¢, = 2 hours and J = 0.03. The proposed control law
achieves faster convergence to the set point than the baseline
controller with the specified transient characteristics (Fig. 10).
Notice the controller is robust with respect to uncertain factors
that affect the specific growth rate and may differ from one
experiment to another (e.g. substrate initial concentration,
oxygen diffusion, cells metabolic state, etc.) As showed in
Fig. 10 (bottom) the time responses in the 7 and ¢ time scales
preserve order and magnitude.

VII. CONCLUSION

In this work we have proposed an adaptive control law that
globally stabilizes the desired biomass set-point in continuous
bioreactions. Using time scaling we render the system linear
in the transformed time scale, where analysis and tuning of the
controller becomes extremely simple. Stability is preserved in
the original time domain, along with important time-response
characteristics as order and magnitude relationships. Further-
more, our controller only assumes biomass concentration is

mOD, a=2, b=4
mOD, =

mOD. a=4, b=7.11
SpOD

r(h)

Figure 10. Biomass concentration z (top), estimated specific growth rate p
(mid), and biomass concentration « in the transformed 7-time (bottom). Initial
conditions: g =~ 0.12,. Set-point z* = 0.2. Proposed controller: (a,b) =
(4,7.11) (yellow), (a,b) = (2,4) (blue). Baseline controller (orange).
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Figure 11. Dillution D (top) and controller gain ~ (bottom). Initial conditions:
xo ~ 0.12,. Set-point 2* = 0.2. Proposed controller: (a,b) = (4,7.11)
(yellow), (a,b) = (2,4) (blue). Baseline controller (orange).

measured, and does not require a detailed model of the growth
kinetics or knowledge of the bioreaction yields. The intrinsic
integral action of the gain adaptation rejects parameter uncer-
tainties. If, conversely, the reaction rate is indirectly measured
or calculated and some error appears, then the controller is not
completely capable of rejecting the steady state error. In that
case, the error is bounded. Yet, the proposed controller can be
tuned so as to significantly reduce the error.

Notice alternative stability preserving maps could have been
used including both time scaling and coordinates transforma-
tion (e.g. d7 = pdt with = 1/z). This opens the possibility
to design controllers with slightly different transient time-
deformation characteristics when changing between the time
domains.

The simulation and experimental results validate the easi-
ness to tune the controller to achieve desired time response
patterns, and its robustness in face of noisy uncertain bioreac-
tion environments.
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2 MODULO EQEP. MEDICION DE FRECUENCIA

Para medir la frecuencia se ha utilizado el médulo eQEP de la BeagleBone Black.
Este modulo es usado tipicamente para medir la posicién de encoders, llegando a medir
frecuencias de 4MHz.

El mé6dulo eQEP se carga con los siguientes comandos en la BeagleBone Black:

export SLOTS=/sys/devices/platform/bone_capemgr/slots
echo bone_eqep0 > $SLOTS

De esta forma se carga el eqep0. Los pines son asociados al eqep0O son los
siguientes:

eQEPO Pins
eQEPOA_in P9_42B
eQEPOB_in P9_27
eQEPO_index P9_41B
eQEPO_strobe P9_25

El tinico que se utilizara es el eQEPOA_in (P9_42), es al que se conectara la sefial de
frecuencia del sensor.

Es modulo esta configurado para encoders, por tanto es necesario cambiar el modo
de funcionamiento del médulo eQEP para poder medir frecuencia. Se muestra su
configuraciéon y como se realizan las medidas en el siguiente c6digo de ejemplo.

#include "bbb-eqep.h”

int main (int argc, char const *argv[])

{

struct timeval tv1, tv2;
int eqep_num;
uint32_t eqep_pos;

eQEP eqep(0);
eqep.positionCounterSourceSelection(2); // Cambio a modo leer frecuencia

eqep.resetPositionCounter(); // Resetar el contador a 0
usleep(1000000); // Esperar 1 sequndo
eqep_pos = eqep.getPosition()/2; // Por cada flanco se produce 1 tick. Hz

return 0;




3 PROTOCOLO DE COMUNICACION TCP CLIENTE-SERVIDOR

En el presente proyecto se ha implementado un protocolo de comunicacién tipo
cliente-servidor mediante TCP-IP.

Los mensajes se encuentran delimitados por saltos de linea (“\n’), y para indicar el
fin de la transmisién de un fichero se utiliza el caracter ‘@’. Los mensajes pueden ser
arbitrariamente grandes, pero se aconseja no superar los 1024 bytes por mensaje.

Se indicara a continuacién los comandos implementados, los argumentos que se
utilizan con ellos y la respuesta que devuelven.

- help
Devuelve un mensaje de bienvenida. En el futuro se implementara la ayuda
- exit
Cierra la comunicacidn con el servidor.
- getState
Devuelve el estado de la maquina de estados del turbidostato.
- changeState (int) newState
Cambia el estado de la maquina de estados del turbidostato al estado
proporcionado. Devuelve el estado final del turbidostato, para comprobar que se ha
realizado exitosamente el cambio.
- getDt
Devuelve el tiempo de muestreo en minutos.
- setDt (float) newDt
Fija el tiempo de muestreo al nuevo valor y después devuelve el tiempo de
muetreo actual para comprobar que se ha realizado exitosamente el cambio.
- getAlITSid
Devuelve el id de todas las cAmaras del turbidostato.
- getODrefTS (int) id
Devuelve la referencia de OD de la cAmara de turbidostato de ese id.
- setODrefTS (int) id (float) newODref
Fija la referencia de OD de la cAmara de turbidostato de ese id y después devuelve
su valor para comprobar que se ha realizado exitosamente el cambio.
- getSimTS (int) id
Devuelve si se encuentra en estado simulaciéon la cAmara de turbidostato de ese id.
- setSimTS (int) id (int) sim
Cambia el estado simulacién de la cdmara de turbidostato de ese id y después
devuelve el valor para comprobar que se ha realizado exitosamente el cambio.
- getlsRunningTs$ (int) id
Devuelve si se encuentra en marcha la cAmara de turbidostato de ese id.
- setlsRunningTsS (int) id (int) sim
Cambia el estado de funcionamiento de la camara de turbidostato de ese id y
después devuelve el valor para comprobar que se ha realizado exitosamente el cambio.
- getDataTs (int) id
Devuelve todos los datos del experimento asociado a la camara de ese id como un
fichero.
- getControlNameTS (int) id
Devuelve el nombre del controlador que se estd usando en la camara de ese id.
- setControlNameTsS (int) id (str)nameC
Cambia el controlador que se estd usando en la camara de ese id y devuelve el
nombre del controlador para comprobar que se ha realizado exitosamente el cambio.



- getAllControlNameTS (int) id
Devuelve una lista con el nombre de todos los controladores posibles para la
camara con ese id.
- getAllParameterNameTS (int) id
Devuelve una lista con el nombre de todos los parametros modificables del
controlador actual de ese id de cdmara.
- getAllParameterValuesTsS (int) id
Devuelve una lista con el valor de todos los parametros modificables del
controlador actual de ese id de cdmara.
- setAllParameterValuesT (int) id (double) valuel (double) valueZ2 ...
Cambia el valor de los parametros del controlador de la camara de ese id, y
después devuelve una lista con todos los valores para comprobar que se ha realizado
exitosamente el cambio.



