Document downloaded from:

http://hdl.handle.net/10251/94456
This paper must be cited as:

Marin-Martinez, S.; Martinez Pérez, JD.; Valero, Cl.; Boria Esbert, VE. (2017). Microstrip
Filters with Enhanced Stopband Based on Lumped Bisected Pi-Sections with Parasitics.
IEEE Microwave and Wireless Components Letters. 27(1):19-21.
doi:10.1109/LMWC.2016.2630841

The final publication is available at

http://doi.org/10.1109/LMWC.2016.2630841

Copyright |nstitute of Electrical and Electronics Engineers

Additional Information



Microstrip Filters With Enhanced Stopband Based
on Lumped Bisected Pi-Sections With Parasitics

Sandra Marin, Jorge D. Martinez, Member, IEEE, Clara 1. Valero, and Vicente E. Boria, Senior Member, IEEE

Abstract— A procedure for improving the stopband response of
planar bandpass filters is presented in this letter. The technique is
based on the introduction of transmission zeros by using lumped-
element bisected-pi sections at the filter input/output. As an
example, a 3—pole 10% FBW bandpass filter with Chebyshev
response centered at 1 GHz, based on strongly loaded combline
microstrip resonators has been designed, manufactured and
measured. The proposed solution can be used on any planar
topology in order to improve the stopband performance with a
negligible additional footprint.

Index Terms— Lumped elements, microstrip filter, transmis-
sion zeros, ultra-wide stopband.

I. INTRODUCTION

WIDE spurious-free band is a common requirement in

bandpass filters to be used for suppression of spurious
outputs and image rejection in up/down-conversion applica-
tions. A high rejection level up to 3 — 7 times the passband
center frequency fy is usually required in filters operating at
intermediate frequencies (IFs) between 1-4 GHz.

Unfortunately, microstrip filters generally present spurious
passbands at multiples of the design frequency. Even if some
well-known topologies can help to improve the out-of-band
response (e.g., interdigital or combline filters) it is still com-
plicated to meet the former requirements. Therefore, several
methods have been proposed in the literature to address this
issue, e.g., by modifying the filter structure for integrating low-
pass [1] or bandstop [2] responses, by loading coupled-line [3]
and open-loop [4] filters with open-stubs, by controlling the
resonator couplings to achieve multi-spurious rejection [5], or
by introducing TZs within the filter stopband [6], [7].

In this letter, a simple but general technique for the intro-
duction of TZs in a microstrip filter stopband is proposed by
introducing lumped bisected 7 —sections (BPS) at the filter
input and output. Each section will generate 2 independently-
adjustable TZs due to the shunt and parasitic self-resonance
frequency (SRF) of the lumped components, while present-
ing a good match within the filter passband. The additional
footprint of these sections is almost negligible, and the
technique is of broad application independently of the filter
topology.
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Fig. 1. Circuit schematic of the ideal bisected 7 —section and S-parameters
response for frz = 3 GHz, fo = 1 GHz, Zrp = 50 Q and Zp = 60 Q.
(L=3.6nH, C; =1 pF and Ly =2.7 nH).

II. THEORY
A. Ideal Bisected m — Section (BPS)

The circuit scheme of the proposed BPS cell is shown
in Fig. 1. This network presents a low-pass response due to the
series inductor L while introducing an adjustable transmission
zero at the upper stopband of the filter.

The cascaded connection of this cell with the filter has to
be done under certain matching conditions to keep the filter
in-band return losses, but placing at the same time the TZ at
the desired frequency.

Forcing the matching condition between the port
impedance Z p and the cell load (i.e., the filter impedance Zr)
at some frequency wp, and applying the series-parallel
transformation to the BPS network, we can obtain the values
of L, Cq and L from the following expressions:

ZpJ2E —1
L= wO e))
€= Yz =% L @
e e (1))
Li=— 3)
w7 7C1

As the series matching element must be placed next to
the termination with smallest resistance, we shall assume that
Zp > ZF in (1) without loss of generality.

This set of equations establishes the circuit values in terms
of wrz, wop, Zr and Zp. The theoretical response of the
proposed network with frz = 3 GHz, fo = 1 GHz,
Zr =50 Q and Zp = 60 Q can be seen in Fig. 1.

B. Lumped Bisected T — Section With Parasitics

Lumped and/or quasi-lumped elements can be good candi-
dates for implementing the proposed cell. Regarding lumped



Fig. 2. Lumped bisected 7 - section. (a) Equivalent circuit of the real lumped
elements of the network. (b) Modified lumped bisected 7 - section.
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Fig. 3. Transmission and reflection characteristics of the lumped bisected
7 - sections with parasitics. (a) Real lumped elements cell. (b) Tunability of
the second TZ vs different values of C,qy.

components, they allow further miniaturization, do not show
periodicity within the operating frequency range, and as will
be demonstrated they enable us to introduce additional TZs
due to the series self-resonance of the inductor L. Thus, it
would be interesting to consider the real equivalent model
where parasitics are included, as illustrated in Fig. 2 (a).

Analyzing the influence of the SRF of each lumped compo-
nent, it is obvious that the series inductance L and the shunt
capacitor Cp are the elements that can introduce additional
TZs in the response due to each component self-resonance.
Thus, the series inductor L would generate an additional TZ
at a finite frequency depending on its parasitic capacitance
value Cp. On the contrary, no additional TZ would be pro-
duced by the shunt capacitor, due to the absorption of the
parasitic inductance Lg into the shunt inductor Lj.

Therefore, even if the self-resonance phenomenon of
lumped elements is usually a drawback in most RF and
microwave circuits, it can be used in BPS cells to improve
the filter stopband. In order to control the location of this TZ,
an additional capacitor C,qg is added in parallel with the
inductance as shown in Fig. 2 (b). The SRF of the series
inductor L can be shifted to lower frequencies by increasing
Cuqq value. A first value of the required capacitance can be
obtained from the desired TZ frequency by taking into account
the parasitic contribution Cp of the real inductor and the stray
capacitance from the SMD assembly pads.

Finally, the shunt inductor L; can be easily implemented
using a quasi-lumped short-circuited stub with / << g. This
is due to the low values required for this parameter when the
TZ is located far from wy.

To demonstrate all the described effects, the ideal network
of Fig. 1 has been simulated using commercial SMD compo-
nents (Coilcraft - 0402 HP L = 3.6 nH and L1 = 2.7 nH,
and AVX-Accu-P 0402 C;=1 pF), and the results are presented
in Fig. 3 (a). The response is similar to the theoretical one,
since the matching and the TZ are maintained at 1 GHz and
3 GHz respectively, but a second TZ appears at 18 GHz
originated from the SRF of the real inductance L. In this

TABLE I
FILTER SYNTHESIS AND LAYOUT VALUES

Parameter Result Layout Value
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Fig. 4. (a) Simulation results of the microstrip bandpass filter. (b) Layout
of the microstrip combline filter with two lumped bisected 7 - network.

TABLE 11
FREQUENCY DISTRIBUTION OF TZs AND CELLS PARAMETERS RESULTS

Freq. Method Param. Values
L =36 nH
frz1 =3 GHz Input section L-L1-C1 Cy =1.1pF
L1 =2.7nH
L =3.6 nH
frz2 = 3.85 GHz Output section L-L1-C1 C1 =1pF
Ly =1.5nH
frzs =7 GHz SRF of L of Input section | Cggqq = 150 IF
frz4 = 9.5 GHz SRF of L of Output section Clrdd = 80 IF

context, the tuning of this second TZ with different values of
Cadq can also be observed in Fig. 3 (b), where small values
of Cyqq are needed to shift this TZ in a wide range.

III. FILTER DESIGN

A. Strongly-Loaded Microstrip Combline Filter

The design goal is to implement a bandpass filter with a
wide spurious-free band. It is well-known that in combline
filters the frequency of the first spurious band can be controlled
by a proper resonator design. Thereby, it is proposed a three-
pole Chebyshev bandpass filter with 0.1 dB passband ripple
and 10% FBW at a design frequency fy = 1 GHz, where its
first spurious response should appear above f > 2 x fy in
order to have a moderately wide stopband.

The lowpass prototype coefficients of the former response
are go = g4 = 1, g1 = g3 = 1.0136 and g = 1.1474.
Resonator and input/output port impedances are chosen as
Z, =65 Q and Z4 = 50 Q respectively. Then, the resonator
length is set slightly below Ag,/8 by strongly loading the
microstrip line using discrete capacitors, thus moving the first
spurious band up to 4 x fy. The required parameters of the filter
(i.e., slope parameter b, lumped capacitance C4 and admittance
inverter values J; ;1) can be obtained from the corresponding
expressions shown in Table I.

Fig. 4 (a) shows the full-wave simulated filter performance.
As expected, the first and second spurious band responses are



TABLE III
COMPARISON OF SOME ULTRA-WIDE STOP-BAND FILTERS IN PLANAR TECHNOLOGY

Order | fo(GHz) | FBW | IL(dB) Harmonic Suppresion Size()\g) Topology Technology
[1] 2nd 2.0 16% 1.1 dB 2fo — 11.5fp (—20 dB) 0.23 x 0.13 Shunt-Stubs Multi-Layer Al2O3
[2] 7th 2.5 10% 2 dB 1.1fo — 7fo (—28 dB) ~2 x0.58 Parallel-Coupled Lines PCB Single-Layer
[3] Tth 1.0 20% 5.1 dB 1.2f0 — 10fo (—35 dB) 1.70 x 0.70 | Parallel-Coupled Lines PCB Single-Layer
[4] 4th 1.0 4.8% | 2.8dB | 1.1fog —12.2fo (=30 dB) | 0.47 x 0.15 Loaded Stubs PCB Single-Layer
[5] 5th 2.0 10% 2.2 dB 1.3f0 — 7fo (—25 dB) 0.15 x 0.45 | Parallel-Coupled Lines PCB Single-Layer
[6] — 0.89 7% 0.7dB | 1.6fo0 — 13.2fp (—20 dB) | 0.12 x 0.07 Cascaded LPF-HPF PCB Single-Layer
71 4th 0.5 20% | 3.5dB 1.2fo — 7fo (—30 dB) 0.03 x 0.06 Lumped Element Multi-Layer LCP
This work 3rd 1.0 10% 1.2 dB 1.1fo — 10fo (—22 dB) 0.18 x 0.16 Combline PCB Single-Layer
approximately located at 4 and 7 GHz, providing a rejection Op—prs- e ) A ——
. -4-Meas. S
higher than 25 dB up to 3.5 x fj. -10¢ o Meas. S,
-20t Sim. .,
. . - @3 /vt | B
B. Filter With Four Transmission Zeros 3
-401
Two lumped BPS cells are added to the designed filter 5_507
structure, one at the input and the other at the ouput. In this % 60
manner, it is possible the introduction of four TZs at different E
frequencies to suppress the two additional undesirable spurious 570

bands. To reach a rejection better than 30 dB until 10 x fp,
the frequency distribution of TZs has to be done adequately.
Therefore, an optimization procedure combining the 3D EM
simulation of the filter with the circuital models of the BPS
cells has been performed. The proper location of the TZs and
the corresponding element values are shown in Table II.

As the filter impedance Zr = Z4 is 50 Q, the input/output
port impedance Zp is chosen as 60 Q. The ratio % must
be a trade-off between matching bandwidth and practical
implementation of filter and port impedances, as well as
lumped-element values obtained. The BPS series inductors L
are implemented by short-circuited stubs of Zp = 80.5Q and
via diameter of 0.5 mm. The stub lengths are 4.4 mm and
1.65 mm for the input and output BPS cell, respectively. The
TZs originated by the SRF of L are also influenced by the
SMD package stray capacitance that has been estimated in
70 — 80 fF using 3D EM simulations. Thus, no additional
capacitance is needed at the output BPS cell, while a Cyqq =
70 fF is required at the input. An interdigital capacitor
structure consisting on 3 fingers of 1.5 mm of length and equal
0.25 mm width and gap are used to reach this capacitance
value. The layout of the complete filter is depicted in Fig. 4 (b).
The occupied area is only 43x33 mm? for a 1 GHz filter.
It should be remarked the negligible size increment ought to
the insertion of both BPS cells.

IV. EXPERIMENTAL RESULTS

The filter has been fabricated in a 1.524 mm-thick Rogers
RO4003C substrate (¢, = 3.55, tand = 2.7 - 10_3). A pho-
tography of the device is shown in Fig. 5. S-parameters
results can be seen in Fig. 5, and are in very good agreement
with the simulated values. The mid-band insertion losses
are 1.2 dB, with return losses better than 13 dB within a
3-dB bandwidth of 12%. A rejection higher than 22 dB is
obtained up to 10 GHz, providing an ultra-wide stopband
even if a slight frequency shift of some TZs can be observed,
due to the fabrication tolerances regarding the interdigital
capacitor. A comparison with other ultra-wide stop-band filters
is shown in Table III. As can be seen, the proposed solution
achieves state-of-the art performance while being completely
independent of the filter topology, with a minimal footprint on
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Fig. 5. Photography, measurements and simulation of the fabricated filter.

the design, and introducing up to 4 independently adjustable
TZs for suppresing the first spurious bands.

V. CONCLUSION

A general technique for implementing bandpass filters with
ultra-wide stopband has been proposed in this letter, based
on the introduction of TZs using lumped bisected 7= —sections
and including the intrinsic parasitic elements of the discrete
components. A filter example obtaining more than 22 dB of
rejection up to 10 x fy has been designed and manufactured,
showing an excellent agreement with the simulated results.
This technique is general and can be applied to any filter in
planar technology for improving the out-of-band response.
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