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Solving random homogeneous linear second-
order differential equations: A full proba-
bilistic description

M.-C. Casabán, J.-C. Cortés, J.-V. Romero and M.-D. Roselló

Abstract. In this paper a complete probabilistic description for the so-
lution of random homogeneous linear second-order differential equations
via the computation of its two first probability density functions is given.
As a consequence, all unidimensional and two-dimensional statistical
moments can be straightforwardly determined, in particular, mean, vari-
ance and covariance functions, as well as the first-order conditional law.
With the aim of providing more generality, in a first step, all involved
input parameters are assumed to be statistically dependent random vari-
ables having an arbitrary joint probability density function. Secondly,
the particular case that just initial conditions are random variables
is also analysed. Both problems have common and distinctive feature
which are highlighted in our analysis. The study is based on Random
Variable Transformation method. As a consequence of our study, the
well-known deterministic results are nicely generalized. Several illustra-
tive examples are included.
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Keywords. Random Variable Transformation method, first and second
probability density functions, random homogeneous linear second-order
differential equations.

1. Motivation

The quantification of uncertainty in dynamic models is currently playing
an important role in many applied areas. Classical deterministic differen-
tial equations, which have demonstrated to be powerful tools for analysing
problems that appear in areas such as Physics, Engineering, Chemistry, Epi-
demiology, etc., need to consider randomness in their formulation in order to
account for measurement errors and inherent complexity of problems under
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study. It has motivated the development of two main classes of differential
equations dealing with uncertainty, namely, random differential equations
(r.d.e.’s) and stochastic differential equations (s.d.e.’s). In the latter case,
differential equations are forced by an irregular stochastic process, typically
driven by a Wiener process. Solving s.d.e.’s requires the use of a special sto-
chastic calculus, usually referred to as Itô Calculus, whose cornerstone is the
Itô Lemma [1]. Whereas r.d.e.’s are those in which random effects are directly
manifested in its inputs parameters (initial/boundary conditions, source term
and coefficients). These inputs are assumed to satisfy regularity properties
such as continuity, differentiability, etc., in some adequate stochastic sense
such as mean square calculus [2, 3]. In [3] one can find an updated overview
of the state of the art of r.d.e.’s. A major advantage of considering r.d.e.’s is
that a wide range of probabilistic distributions can be assigned to its inputs
including Exponential, Gaussian, Beta, etc, distributions. As a consequence,
r.d.e.’s provide great flexibility in dealing with real models. In dealing with
r.d.e.’s the main efforts have focussed on extending the deterministic theory
to the random framework. This includes both the development of analytic
and numerical methods for solving r.d.e.’s [4–6]. However, it is important to
point out that in the random context besides computing the solution sto-
chastic process (s.p.), say Z(t), it is also of great interest the determination
of its main statistical properties. Most of the contributions focus on the com-
putation of the mean, µZ(t) = E[Z(t)], and the variance, σ2

Z(t) = V[Z(t)],
functions of the solution s.p. However, a more convenient goal is the determi-
nation of its first probability density function (1-p.d.f.), f1(z, t), since from
it one can easily compute not just these two first statistical moments,

E[Z(t)] =

∫ ∞
−∞

zf1(z, t) dz, V[Z(t)] =

∫ ∞
−∞

(z − E[Z(t)])2f1(z, t) dz, (1.1)

but also the one-dimensional statistical moment of any order

E[(Z(t))k] =

∫ ∞
−∞

zkf1(z, t) dz, k = 0, 1, 2, 3, . . .

The 1-p.d.f. characterizes, from a probabilistic point of view, the so-
lution s.p. Z(t) at every time instant t. In general, more challenging is the
determination of the rest of the so-called fidis (finite dimensional distribu-
tions), i.e., the n-dimensional p.d.f.’s of the solution s.p. for n ≥ 2, because
it usually involves complex developments and computations. These higher
p.d.f.’s account for important probabilistic information. For instance, the 2-
p.d.f., f2(z1, t1; z2, t2), provides a complete probabilistic description of the
solution s.p. at every arbitrary pair of times, say t1 and t2. In particular, the
2-p.d.f. allows us to compute the correlation function

ΓZ(t1, t2) = E[Z(t1)Z(t2)] =

∫ ∞
−∞

∫ ∞
−∞

z1z2f2(z1, t1; z2, t2) dz1dz2, (1.2)

which is an important measure of linear statistical interdependence between
Z(t1) and Z(t2). It is straightforward the determination of covariance func-
tion, CZ(t1, t2), from correlation. All these deterministic functions play an
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important role in the theory of s.p.’s. In addition, from the two first p.d.f.’s,
one can easily compute the conditional p.d.f. as well

f(z2, t2|z1, t1) =
f2(z1, t1; z2, t2)

f1(z1, t1)
. (1.3)

It is important to stress that in the relevant case where the solution s.p. is
Gaussian, the two first p.d.f.’s fully characterize the solution from a proba-
bilistic standpoint.
The aim of this paper is the computation of the two first p.d.f.’s of the solu-
tion s.p. to an important class of r.d.e.’s under very general assumptions.

In [7], the 1-p.d.f. of the solution s.p. of random homogeneous linear
second-order difference equations was determined by taking advantage of
Random Variable Transformation (RVT) method. The aim of contribution [7]
is twofold, first, providing a complete probabilistic description of the solu-
tion of that simple but significant class of dynamic discrete problems and,
secondly, generalizing their deterministic counterpart. Motivated by the im-
portant role that ordinary differential equations play both in theory and in
applications (Chemistry, Economics, Engineering, Epidemiology, etc.), our
goal in this paper is extending the analysis provided in [7] to random homo-
geneous linear second-order differential equations. As a significant difference
with respect to the study presented in [7], it is important to underline that
now the 2-p.d.f. of the solution s.p. will be computed as well. In addition, the
two first p.d.f.’s will be fully specified in a particular case where the solution
s.p. can become Gaussian. In this manner a probabilistic description of the
solution of these two important classes of discrete and continuous dynamical
models will be completed. We point out that on purpose, hereinafter we will
follow a similar structure in the presentation given in [7] in order to facilitate
the comparison of results established regarding the 1-p.d.f. in both papers.

Let us consider the random homogeneous linear second-order differential
equation

Z̈(t) +A1Ż(t) +A2Z(t) = 0, t > 0, Z(0) = X0, Ż(0) = X1, (1.4)

where input parameters X0, X1, A1 and A2 are assumed to be dependent
absolutely continuous random variables (r.v.’s) defined on a common proba-
bility space (Ω,F,P). In the following,

DX0 = { x0 = X0(ω), ω ∈ Ω : x0,1 ≤ x0 ≤ x0,2} ,
DX1

= { x1 = X1(ω), ω ∈ Ω : x1,1 ≤ x1 ≤ x1,2} ,
DA1

= { a1 = A1(ω), ω ∈ Ω : a1,1 ≤ a1 ≤ a1,2} ,
DA2

= { a2 = A2(ω), ω ∈ Ω : a2,1 ≤ a2 ≤ a2,2} ,

will denote the domains of X0, X1, A1 and A2, respectively, where the joint
p.d.f., fX0,X1,A1,A2

(x0, x1, a1, a2), is defined. As we have indicated previ-
ously our main goal is to determine the 1-p.d.f., f1(z, t), and the 2-p.d.f.,
f2(z1, t1; z2, t2), of the solution s.p. Z(t) of the initial value problem (IVP)
(1.4). As we shall see later, this will be done by applying RVT technique.
In dealing with the computation of the 1-p.d.f. via RVT method within the
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context of r.d.e.’s, it is worth pointing out that some significant contributions
are [8–14]. Most of these contributions usually assume that uncertainty enters
via a single r.v. having a specific probability distribution which facilitates the
corresponding analysis. Regarding the application of RVT method to account
for the 2-p.d.f., to the best of our knowledge, it is has only been addressed
by assuming specific standard distributions for random inputs. Some inter-
esting contributions dealing with random differential equations include [15].
RVT technique has also been applied in combination with other techniques
like Taylor series expansion to compute approximations to the p.d.f.’s of the
reliability and performability indices in the context of Markov reliability and
reward models [16]. Additionally to RVT method, over the last few years poly-
nomial chaos technique has demonstrated to be a very powerful approach to
deal with a wide range of randomness in differential equations [17, 18]. This
approach concentrates on computing the main statistical moments associated
to the solution s.p., namely the expectation and the variance, instead of the
1 and 2-p.d.f.’s.

This paper is organized as follows. In Section 2 the 1-p.d.f. and 2-p.d.f.
of the solution of IVP (1.4) is determined. This is done assuming that all co-
efficients and initial conditions are absolutely continuous r.v.’s with arbitrary
joint p.d.f. For convenience, the study is split in two steps by considering the
real or complex character of the so-called characteristic roots. In Section 3,
the particular case where just initial conditions are r.v.’s with a joint p.d.f. is
addressed. In Section 4 some illustrative examples are exhibited. The closing
section contains our main conclusions.

2. Computing the 1-p.d.f. and 2-p.d.f. of the solution
stochastic process

This section is addressed to determine both, the 1-p.d.f., f1(z, t), and the
2-p.d.f., f2(z1, t1; z2, t2), of the solution to the IVP (1.4) using the RVT tech-
nique. This technique has numerous versions which are adapted to different
contexts [2, 19]. Throughout the exposition we will apply the version stated
in Th.1 of [7] including its notation.

Analogously as it also happens in the deterministic theory, a closed-form
representation to the solution s.p. Z(t) of IVP (1.4) can be given depending
of the real or complex nature of the expressions

α1(ω) =
−A1(ω) +

√
∆(ω)

2
, α2(ω) =

−A1(ω)−
√

∆(ω)

2
, ω ∈ Ω, (2.1)

where

∆(ω) = (A1(ω))2 − 4A2(ω). (2.2)

α1(ω) and α2(ω) are the zeros of the so-called characteristic equation

α2 +A1(ω)α+A2(ω) = 0, (2.3)
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associated to r.d.e. of IVP (1.4). The real or complex character of these
random roots is obviously delineated by the following events Ei, 1 ≤ i ≤ 3, p1 = P [E1 = {ω ∈ Ω : ∆(ω) > 0}] ,

p2 = P [E2 = {ω ∈ Ω : ∆(ω) < 0}] ,
p3 = P [E3 = {ω ∈ Ω : ∆(ω) = 0}] ,

(2.4)

where ∆(ω) is defined in (2.2) and pi, 1 ≤ i ≤ 3, denote their likelihoods,
respectively. Notice that these key events play here the same role they play in
dealing with the random discrete counterpart of problem (1.4) (see expression
(4) in [7]). Since A1 = A1(ω) and A2 = A2(ω) are assumed to be absolutely
continuous r.v.’s, notice that p3 = 0. Notice that the case where 0 < p1, p2 < 1
with p1 + p2 = 1 constitutes the genuine random analysis, otherwise our
approach leads to classical results. Based on the same arguments exhibited
in [7], the computation of the 1-p.d.f. f1(z, t) will be split in two pieces,
f1R(z, t) and f1C(z, t). Once the pieces f1R(z, t) and f1C(z, t), corresponding
to the contributions of real and imaginary roots, have been computed (see
subsequent expressions (2.10) and (2.15), respectively), the complete 1-p.d.f.,
f1(z, t), of the solution s.p. of IVP (1.4) will be determined as follows

f1(z, t) = f1R(z, t) + f1C(z, t). (2.5)

Notice that, f1R(z, t) and f1C(z, t), are assumed to be non-null for every z
such that z = Z(t)(ω), with ω ∈ Ei, i = 1, 2, respectively. Moreover,∫

R
f1(z, t) dz =

∫
R
f1R(z, t) dz +

∫
R
f1C(z, t) dz = p1 + p2 = 1.

Analogously, the 2-p.d.f. can be expressed as

f2(z1, t1; z2, t2) = f2R(z1, t1; z2, t2) + f2C(z1, t1; z2, t2), (2.6)

where f2R(z1, t1; z2, t2) and f2C(z1, t1; z2, t2) are given by (2.12) and (2.17),
respectively.

Remark 2.1. Despite the notation adopted for f1R(z, t) and f1C(z, t) in (2.5),
notice that they are not p.d.f.’s because they are not normalized (their inte-
grals are, respectively, p1 and p2).

2.1. Real and distinct random roots

Throughout this section the probability p1 defined in (2.4) will be assumed to
be positive in order to guarantee the existence of characteristic roots with real
realizations. When the characteristic roots are real and distinct, the solution
of the IVP (1.4) can be written as follows

Z(t) = hR(t)X0 + gR(t)X1,


gR(t) =

eα1t − eα2t

α1 − α2
,

hR(t) =
α1eα2t − α2eα1t

α1 − α2
,

(2.7)

being α1 = α1(ω) and α2 = α2(ω) the expressions defined by (2.1).
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2.1.1. Computing the piece f1R(z, t) of the 1-p.d.f. Let us fix t and let us
apply Th.1 of [7] with n = 4 in order to determine the piece f1R(z, t) of the
total p.d.f. f1(z, t) of r.v. Z = Z(t) using the following identification

V = (X0, X1, A1, A2), fV(v) = fX0,X1,A1,A2
(x0, x1, a1, a2),

W = (W1,W2,W3,W4) = r(V), s(W) = r−1(V),


W1 = r1(V) = hR(t)X0 + gR(t)X1,
W2 = r2(V) = X1,
W3 = r3(V) = A1,
W4 = r4(V) = A2,

⇒


X0 = s1(W) =

W1 − g̃R(t)W2

h̃R(t)
,

X1 = s2(W) = W2,
A1 = s3(W) = W3,
A2 = s4(W) = W4,

(2.8)

being

g̃R(t) =
eα̃1t − eα̃2t

α̃1 − α̃2
, h̃R(t) =

α̃1eα̃2t − α̃2eα̃1t

α̃1 − α̃2
,

and

α̃1 = α̃1(ω) =
−W3 +

√
(W3)2 − 4W4

2
,

α̃2 = α̃2(ω) =
−W3 −

√
(W3)2 − 4W4

2
.

(2.9)

Taking into account that α̃1(ω) 6= α̃2(ω) with probability 1 (w.p. 1), it
is easy to check that the Jacobian is nonzero

J4 = det

(
∂v

∂w

)
=

1

h̃R(t)
=

α̃1 − α̃2

α̃1eα̃2t − α̃2eα̃1t
6= 0, w.p. 1.

Therefore, by applying Th.1 of [7] the joint p.d.f. of the random vector W =
(W1,W2,W3,W4) is given by

fW(w) =

fX0,X1,A1,A2

(
w1 − g̃R(t)w2

h̃R(t)
, w2, w3, w4

)
∣∣∣h̃R(t)

∣∣∣ , w1,i ≤ wi ≤ w2,i, 1 ≤ i ≤ 4.
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Finally, taking into account that Z = W1 and the definition of the event E1,
one gets

f1R(z, t)

=

∫ w2,2

w2,1

∫ w3,2

w3,1

∫ min

[
w4,2;

(w3)2

4

]
min

[
w4,1;

(w3)2

4

] fW1,W2,W3,W4
(w1, w2, w3, w4) dw4dw3dw2

=

∫ x1,2

x1,1

∫ a1,2

a1,1

∫ min

[
a2,2;

(a1)2

4

]
min

[
a2,1;

(a1)2

4

] fX0,X1,A1,A2

(
z−gR(t)x1

hR(t) , x1, a1, a2

)
|hR(t)|

da2da1dx1,

(2.10)
being gR(t), hR(t) and α1, α2, defined by (2.7) and (2.1), respectively.

2.1.2. Computing the piece f2R(z1, t1; z2, t2) of the 2-p.d.f. In the subse-
quent, we will still take advantage of RVT method to determine the piece
f2R(z1, t1; z2, t2) of the total 2-p.d.f. f2(z1, t1; z2, t2) of the solution s.p. of
IVP (1.4). With this aim, let us fix times t1 and t2. Then, we apply Th.1
of [7] with n = 4 to determine the joint p.d.f. of r.v.’s Z1 = Z(t1) and
Z2 = Z(t2) considering the mapping r(V) as defined in (2.8) except for
components W1 = r1(V) and W2 = r2(V), which now, for convenience, are
defined by {

W1 = r1(V) = hR(t1)X0 + gR(t1)X1,
W2 = r2(V) = hR(t2)X0 + gR(t2)X1,

(2.11)

where gR(t) and hR(t) are defined by (2.7). Then, the inverse s(W) is given
by (2.8) except for the components X0 = s1(W) and X1 = s2(W), which
now result as

s1(W) =
W1g̃R(t2)−W2g̃R(t1)

g̃R(t2)h̃R(t1)− g̃R(t1)h̃R(t2)
,

s2(W) =
W2h̃R(t1)−W1h̃R(t2)

g̃R(t2)h̃R(t1)− g̃R(t1)h̃R(t2)
.

Notice that s1(W) and s2(W) are well-defined because

g̃R(t2)h̃R(t1)− g̃R(t1)h̃R(t2) =
eα̃1t1+α̃2t2 − eα̃1t2+α̃2t1

α1 − α2
6= 0, t1 6= t2.

As a consequence, the Jacobian of inverse transformation is different from
zero

J4 = det

(
∂v

∂w

)
=

1

g̃R(t2)h̃R(t1)− g̃R(t1)h̃R(t2)
6= 0, w.p. 1.

Therefore, the joint p.d.f., fW(w), of random vector W = (W1,W2,W3,W4)
can be obtained by applying Th.1 of [7]. Taking into account that Z1 =
W1, Z2 = W2 and the definition of event E1 (see (2.4)), the joint p.d.f. of
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r.v.’s Z1 = Z(t1) and Z2 = Z(t2) can be computed, and hence the piece
f2R(z1, t1; z2, t2) of the total 2-p.d.f. of Z(t) is determined. This yields

f2R(z1, t1; z2, t2)

=

∫ a1,2

a1,1

∫ min

[
a2,2;

(a1)2

4

]
min

[
a2,1;

(a1)2

4

] fX0,X1,A1,A2

(
z1gR(t2)− z2gR(t1)

gR(t2)hR(t1)− gR(t1)hR(t2)
,

z2hR(t1)− z1hR(t2)

gR(t2)hR(t1)− gR(t1)hR(t2)
, a1, a2

)
1

|gR(t2)hR(t1)− gR(t1)hR(t2)|
da2da1,

(2.12)
being gR(t), hR(t) and α1, α2, defined by (2.7) and (2.1), respectively.

According to (1.3), the piece of the total conditional p.d.f. f2R(z2, t2|z1, t1)
corresponding to event E1 is determined from expressions (2.10) and (2.12).
We do not explicit the expression because its writing is cumbersome.

2.2. Complex random roots

In order to guarantee the existence of complex roots of the characteristic
equation (2.3), let us now assume that p2 > 0. For convenience, hereinafter

Re(α1(ω)) = −A1(ω)

2
,

Im(α1(ω)) =

√
−∆(ω)

2
, ∆(ω) = (A1(ω))2 − 4A2(ω),

ω ∈ Ω,

will denote the real and imaginary parts of the random root α1 = α1(ω),
respectively. In this manner, when the characteristic roots are complex, the
solution of the IVP (1.4) can be represented as follows

Z(t) = hC(t)X0 + gC(t)X1, (2.13)

where
gC(t) =

eRe(α1)t

Im(α1)
sin (Im(α1)t) ,

hC(t) = eRe(α1)t

[
cos (Im(α1)t)− Re(α1)

Im(α1)
sin (Im(α1)t)

]
.

(2.14)

2.2.1. Computing the piece f1C(z, t) of the 1-p.d.f. Next, we will take ad-
vantage of this closed-form expression for the solution of (1.4) together with
the application of Th.1. of [7] to determine the piece f1C(z, t) associated to
the event E2 that contributes to determine the 1-p.d.f. f1(z, t). Let us define
the mapping r1 and its inverse s1 as

W1 = r1(V) = hC(t)X0 + gC(t)X1, X0 = s1(W) =
W1 − g̃C(t)W2

h̃C(t)
,

being g̃C(t) and h̃C(t) the expressions resulting after substituting α1 by α̃1

in (2.14) (see (2.9)). We keep the rest of the mappings r2, r3, r4, s2, s3 and
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s4 as they were defined in (2.8). Notice that now the Jacobian is given by

J4 =
1

h̃C(t)
=

e−Re(α̃1)t∣∣∣cos (Im(α̃1)t)− Re(α̃1)
Im(α̃1)

sin (Im(α̃1)t)
∣∣∣ 6= 0, w.p. 1.

Hence, by applying Th.1. of [7] the joint p.d.f. of the random vector W =
(W1,W2,W3,W4) is

fW(w) =

fX0,X1,A1,A2

(
w1 − g̃C(t)w2

h̃C(t)
, w2, w3, w4

)
∣∣∣h̃C(t)

∣∣∣ , w1,i ≤ wi ≤ w2,i, 1 ≤ i ≤ 4.

Finally, taking into account that Z = W1 one gets

f1C(z, t)

=

∫ x1,2

x1,1

∫ a1,2

a1,1

∫ max

[
a2,2;

(a1)2

4

]
max

[
a2,1;

(a1)2

4

] fX0,X1,A1,A2

(
z−gC(t)x1

hC(t) , x1, a1, a2

)
|hC(t)|

da2da1dx1,

(2.15)
being gC(t), hC(t), and α1, α2 defined by (2.14) and (2.1), respectively.

2.2.2. Computing the piece f2C(z1, t1; z2, t2) of the 2-p.d.f. The development
exhibited in Section 2.1.2 to deal with the computation of the piece of the
2-p.d.f. in the case where both characteristic roots are real and distinct can
be properly adapted to the complex case. In order to apply Th.1 of [7] to
compute the joint p.d.f. of r.v.’s Z1 = Z(t1) and Z2 = Z(t2), let us consider
the mapping r(V) as the one defined in (2.8) but now taking the components
W1 = r1(V) and W2 = r2(V) as follows{

W1 = r1(V) = hC(t1)X0 + gC(t1)X1,
W2 = r2(V) = hC(t2)X0 + gC(t2)X1,

(2.16)

being gC(t) and hC(t) the functions defined by (2.14). Again, the inverse
mapping, s(W), is given by (2.8) except for the components X0 = s1(W)
and X1 = s2(W), which now are given by

s1(W) =
W1g̃C(t2)−W2g̃C(t1)

g̃C(t2)h̃C(t1)− g̃C(t1)h̃C(t2)
,

s2(W) =
W2h̃C(t1)−W1h̃C(t2)

g̃C(t2)h̃C(t1)− g̃C(t1)h̃C(t2)
.

Since t1 6= t2 and we are in the complex case, one gets

g̃C(t2)h̃C(t1)− g̃C(t1)h̃C(t2) =
eRe(α1)(t1+t2)

Im(α1)
sin (Im(α1)(t1 − t2)) 6= 0.

As a consequence, the Jacobian of inverse transformation is well-defined and
different from zero

J4 = det

(
∂v

∂w

)
=

1

g̃C(t2)h̃C(t1)− g̃C(t1)h̃C(t2)
6= 0, w.p. 1.
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Following an analogous development as the one showed to compute f2R(z1, t1; z2, t2),
one obtains

f2C(z1, t1; z2, t2)

=

∫ a1,2

a1,1

∫ max

[
a2,2;

(a1)2

4

]
max

[
a2,1;

(a1)2

4

] fX0,X1,A1,A2

(
z1gC(t2)− z2gC(t1)

gC(t2)hC(t1)− gC(t1)hC(t2)
,

z2hC(t1)− z1hC(t2)

gC(t2)hC(t1)− gC(t1)hC(t2)
, a1, a2

)
1

|gC(t2)hC(t1)− gC(t1)hC(t2)|
da2da1,

(2.17)
being gC(t), hC(t) and α1, α2, defined by (2.14) and (2.1), respectively.

3. An important particular case: When initial conditions are
random variables

In this section we deal with the computation of the two first p.d.f.’s of the
solution s.p. of (1.4) in the particular case that initial conditions X0 and
X1 are r.v.’s with joint p.d.f. fX0,X1

(x0, x1) and, coefficients A1 and A2 are
deterministic constants. For the sake of clarity in the presentation, we will
distinguish the deterministic nature of coefficients by using lower-case let-
ters, i.e., A1 → a1 and A2 → a2 thereafter. We consider the analysis of this
particular case by two main reasons. First, since coefficients a1 and a2 are
deterministic, the description of both p.d.f.’s does not require the considera-
tion of any probabilistic event of type Ei, 1 ≤ i ≤ 3, introduced in (2.4), and
as a consequence, the representation of both p.d.f.’s does not need to be sep-
arated as we did in (2.5) and (2.6). Secondly, now a new representation of the
solution s.p. of (1.4) must be considered in the case that both characteristic
roots are real and identical. Notice that this case has not been considered in
the general case addressed in Section 2 because its correspondent counter-
part, given by event E3, had null probability. Additionally, it is important to
point out that important properties, such as Gaussianity, can be inherited
by the solution s.p. under specific hypotheses upon random initial conditions
X0 and X1. This latter issue will be discussed later.

3.1. Computing the two first p.d.f.’s

The expression of the 1-p.d.f. in the cases where the characteristic roots,
α1, α2, are real and distinct, or complex constants can be straightforwardly
deduced from the development glossed in Section 2. Nevertheless, for the sake
of completeness, we will specify them below. Hereinafter, we just indicate the
minor adjustments we have had to make in order to adapt RVT method to
the present context.
In the case that α1, α2 are real and distinct (∆ > 0), mapping r and its
inverse s are just defined by the two first components given in (2.8). This



Solving random homogeneous linear second-order differential equations11

yields

f1(z, t) =

∫ x1,2

x1,1

fX0,X1

(
z−gR(t)x1

hR(t) , x1

)
|hR(t)|

dx1, (3.1)

being gR(t), hR(t) defined by (2.7) and, α1, α2 the (deterministic) values given
by (2.1) but setting the correct deterministic notation A1 → a1 and A2 → a2.
Whereas, the 2-p.d.f. is given by

f2(z1, t1; z2, t2) =
1

|gR(t2)hR(t1)− gR(t1)hR(t2)|

×fX0,X1

(
z1gR(t2)− z2gR(t1)

gR(t2)hR(t1)− gR(t1)hR(t2)
,

z2hR(t1)− z1hR(t2)

gR(t2)hR(t1)− gR(t1)hR(t2)

)
.

(3.2)
In contrast to what happened with the case that coefficients A1 and A2 were
r.v.’s, now f1R(z, t) and f2R(z1, t1; z2, t2) are the total 1-p.d.f., f1(z, t), and
2-p.d.f., f2(z1, t1; z2, t2), respectively.
In the case that α1, α2 are complex the 1-p.d.f. and the 2-p.d.f. are given,
respectively, by

f1(z, t) =

∫ x1,2

x1,1

fX0,X1

(
z−gI(t)x1

hC(t) , x1

)
|hC(t)|

dx1, (3.3)

and

f2(z1, t1; z2, t2) =
1

|gC(t2)hC(t1)− gC(t1)hC(t2)|

×fX0,X1

(
z1gC(t2)− z2gC(t1)

gC(t2)hC(t1)− gC(t1)hC(t2)
,

z2hC(t1)− z1hC(t2)

gC(t2)hC(t1)− gC(t1)hC(t2)

)
.

(3.4)
Let us now assume that both characteristic roots coincide. Then, it is easy
to check that the solution s.p. of (2.1) is given by

Z(t) = hD(t)X0+gD(t)X1,

{
gD(t) = teαt,
hD(t) = (1− αt)eαt, α = −a1

2
. (3.5)

In order to compute the 1-p.d.f., let us fix t and define the following mapping
W = r(V) and its inverse V = s(W):

W1 = r1(V) = hD(t)X0 + gD(t)X1 ⇒ X0 =
W1 − gD(t)W2

hD(t)
,

W2 = r2(V) = X1 ⇒ X1 = W2.

The Jacobian of inverse mapping is J2 = 1/hD(t) 6= 0. Then, we first apply
Th.1 of [7] to determine the joint p.d.f. of W = (W1,W2) and secondly, we
marginalize this p.d.f. to get the 1-p.d.f. of the solution s.p. we are looking
for

f1(z, t) =

∫ x1,2

x1,1

fX0,X1

(
z−gD(t)x2

hD(t) , x1

)
|hD(t)|

dx1. (3.6)
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Here gD(t), hD(t) and α are given by (3.5). We finally determine the 2-p.d.f.
of the solution s.p. of IVP (2.1). For this we compute the joint p.d.f. of r.v.’s
Z1 = Z(t1) and Z2 = Z(t2) by defining the mapping r(V) whose components
W1 = r1(V) and W2 = r2(V) are{

W1 = r1(V) = hD(t1)X0 + gD(t1)X1,
W2 = r2(V) = hD(t2)X0 + gD(t2)X1,

(3.7)

where gD(t) and hD(t) are given by (3.5). The inverse mapping, s(W), of
r(V) is

s1(W) =
W1gD(t2)−W2gD(t1)

gD(t2)hD(t1)− gD(t1)hD(t2)
,

s2(W) =
W2hD(t1)−W1hD(t2)

gD(t2)hD(t1)− gD(t1)hD(t2)
.

Since t1 6= t2, one gets

gD(t2)hD(t1)− gD(t1)hD(t2) = (t2 − t1)eα(t1+t2) 6= 0.

Hence, the Jacobian of inverse transformation is well-defined and different
from zero

J2 = det

(
∂v

∂w

)
=

1

gD(t2)hD(t1)− gD(t1)hD(t2)
6= 0, w.p. 1.

Therefore, the 2-p.d.f. f2(z1, t1; z2, t2) is

f2(z1, t1; z2, t2)

= fX0,X1

(
z1gD(t2)− z2gD(t1)

gD(t2)hD(t1)− gC(t1)hC(t2)
,

z2hD(t1)− z1hD(t2)

gD(t2)hD(t1)− gD(t1)hD(t2)

)
1

|gD(t2)hD(t1)− gD(t1)hD(t2)| ,

(3.8)

being gD(t) and hD(t) the deterministic functions defined by (3.5).
In Section 2 we have provided explicit expressions for both the first and the
second p.d.f.’s of the solutions s.p.’s of IVP (1.4) in the general case where all
inputs (coefficients and initial conditions) are r.v.’s. Whereas in this section
the particular case where just initial conditions are r.v.’s has been studied.
In both cases, one can continue, at least theoretically, by computing higher
fidis, but their analytical representations will become cumbersome. Although,
the full collection of fidis characterizes the solution s.p. of (2.1), there exist
important situations where computing the two first p.d.f.’s is enough as when
the s.p. is Gaussian. In such cases, only the determination of expectation and
covariance functions are required to give a complete probabilistic description
of the solution s.p. As it has been indicated in Section 1, these two deter-
ministic functions can be obtained from the two first p.d.f.’s. Regarding the
two cases analysed previously, if all inputs are r.v.’s, the solution s.p. Z(t) is
not likely going to become Gaussian, in general, due to the complex random
transformations involved in its representation (see (2.7) and (2.13)–(2.14)).
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With the aim of illustrating a scenario where Gaussian behaviour takes place,
below we will assume a particular situation (corresponding to the degenerated
Liouvillian case) where just the initial conditions are r.v.’s. Nevertheless, we
warn the reader that other complex situations could also lead to the solution
s.p., Z(t), be Gaussian. In fact, assuming that X0 and X1 are independent
Gaussian r.v.’s, say, X0 ∼ N(µX0

;σ2
X0

) and X1 ∼ N(µX1
;σ2
X1

), then using
well-known properties of Gaussian transformations, Z(t) is Gaussian. Under
such hypotheses the determination of the mean and covariance functions can
be done directly from (2.7), (2.13) and (3.5). In fact, the expectation function
is

µZ(t) = hC(t)E[X0] + gC(t)E[X1] = hC(t)µX0
+ gC(t)µX1

, i = R,D,C,
(3.9)

whereas, using the independence between X0 and X1, the correlation function
can be simplified as

CZ(t1, t2) = hC(t1)hC(t2)σ2
X0

+ gC(t1)gC(t2)σ2
X1
, i = R,D,C. (3.10)

In (3.9) and (3.10), the deterministic functions hC(t) and gC(t) are defined
by (2.7), (3.5) and (2.14), respectively. They correspond to the cases where
characteristic roots are real and distinct (R), real and double (D) and complex
(C), respectively.

4. Examples

In this section, we will show two full examples where the main results obtained
throughout Sections 2 and 3 are illustrated.

Example 1. In the context of Section 2, we think that the better way to
illustrate the theoretical results there established is computing the 1-p.d.f.
f1(z, t) of the solution Z(t) to IVP (1.4) at some values of t. This will be
done considering three scenarios depending on the values of the crucial prob-
abilities p1 and p2 associated to events E1 and E2, respectively. Therefore, as
we did in [7], we will again consider the three illustrative situations:

• Case I (p1 � p2): The event E1 is more likely than event E2. In other
words, real and distinct roots of the characteristic equation are more
probable than imaginary roots entailing that the probabilistic contribu-
tion of f1R(z, t) to f1(z, t) is greater than f1C(z, t).

• Case II (p1 ≈ p2 ≈ 1
2 ): The events E1 and E2 are equiprobable, and hence

both pieces f1R(z, t) and f1C(z, t) have a similar probabilistic weight to
determine f1(z, t).
• Case III (p1 � p2): The event E1 is less likely than E2. This case can be

easily interpreted as the counterpart of Case I.

In order to show graphically the computation of the 1-p.d.f. in each one of
the three cases, we will assume a joint Gaussian distribution for the random
vector input parameters, i.e., ηi = (X0, X1, A1, A2)T ∼ N(µηi ; Σηi). To ac-
commodate each one of the three cases, we will take different mean vectors
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µηi , i = 1, 2, 3, and a common covariance matrix Σηi = Σ. Specifically, we
take

µηi =

 (1, 1, 3, 1)T if i = 1 (Case I),
(1, 1, 2, 1)T if i = 2 (Case II),
(1, 1, 1, 1)T if i = 3 (Case III),

Σ =


2/50 0 −1/50 1/50

0 7/50 3/50 −2/50
−1/50 3/50 1/4 1/50
1/50 −2/50 1/50 1/3

 .

(4.1)

Values of probabilities p1 and p2 defined by (2.4), which are associated
to Cases I-III, are collected in Table 1. These values have been computed
according to the following formulaes also used in the analysis of the example
exhibited in [7]

p1 =

∫ ∞
−∞

∫ (a1)2

4

−∞
fA1,A2(a1, a2)da2 da1, (4.2)

where

fA1,A2
(a1, a2) =

∫ ∞
−∞

∫ ∞
−∞

fX0,X1,A1,A2
(x0, x1a1, a2)dx0 dx1 .

Here, fX0,X1,A1,A2
(x0, x1a1, a2) denotes the joint Gaussian p.d.f. of random

vector ηi = (X0, X1, A1, A2)T with mean µηi , 1 ≤ i ≤ 3, corresponding to
each one of the Cases I–III and variance-covariance matrix Σ, both defined
by (4.1).

In Figure 1, graphical representations for the 1-p.d.f. f1(z, t) at t =
0, 1, 2, 3, 4, 5 in Cases I, II and III are shown. From them, one observes that
in all the cases f1(z, t) tends to have wide tails and a peak about z0 = 0. This
is in agreement with Figure 2 where one observes that the standard deviation
increases as t does. Based on the well-known conditions A1 > 0 and A2 > 0,
that characterize the asymptotic stability of the null solution, Z(t) = 0, to the
deterministic counterpart of IVP (1.4), now we have computed the following
probability ps of the associated key event S

ps = P[S] =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

∫ ∞
0

fX0,X1,A1,A2
(x0, x1, a1, a2)da1 da2 dx0 dx1,

(4.3)
where

S = {ω ∈ Ω : A1(ω) > 0, A2(ω) > 0} .
Values of ps in each one of the Cases I–III are shown in Table 1. Notice

that these values are close to 1, and thus asymptotic stability of the null
solution holds with high likely.

Figure 2 shows the mean, µZ(t), and plus/minus the standard deviation,
σZ(t), of the solution s.p. Z(t) in each one of the Cases I, II and III. These
statistical moments have been computed on the basis of the 1-p.d.f. f1(z, t)
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Case p1 p2 ps
I 0.96641 0.03359 0.9999999990134
II 0.521039 0.478961 0.9999683287582
III 0.133076 0.866924 0.97724986822365

Table 1. Columns p1 and p2 = 1− p1 collect the values of
the probabilities associated to Cases I-III, in the context of
Example 1, when ηi = (X0, X1, A1, A2)T ∼ N(µηi ; Σ) with
µηi , i = 1, 2, 3 and Σ given by (4.1). Values of p1 have been
computed by (4.2). Values of ps represent the probabilities
associated to asymptotic stability according to (4.3) in every
case.
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Figure 1. Plots of the 1-p.d.f. f1(z, t) of the solution Z(t)
to IVP (1.4) in Case I (top left), Case II (top right) and Case
III (bottom) at different values of t = 0, 1, 2, 3, 4, 5, in the
context of Example 1.

by applying expressions given in (1.1). The representations used for f1(z, t)
in each one of the above cases are, (2.5) together with (2.10) and (2.15).

Finally, in Figure 3 the covariance surface, CZ(t1, t2), of the solution s.p.
Z(t) in each one of the Cases I, II and III has been plotted. This important
deterministic function of two-variables t1 and t2 has been computed on the
basis of the 2-p.d.f. f2(z1, t1; z2, t2) by applying expression (1.2) together with
(2.15) and (2.12), as well as the mean function, previously determined.

Example 2. In this example we illustrate the theoretical development exhib-
ited in Section 3 for the IVP (1.4) with deterministic coefficients a1 and a2.
For the sake of completeness, we have considered the three possible cases
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Figure 2. Plots of the mean, µZ(t), and plus/minus the
standard deviation, σZ(t), of the solution s.p. Z(t) to IVP
(1.4) in Case I (top left), Case II (top right) and Case III

(bottom) on the time interval 0 ≤ t ≤ 5, in the context of Example 1.

Figure 3. Plots of the covariance function, CZ(t1, t2), of
the solution s.p. Z(t) to IVP (1.4) in Case I (top left), Case II
(top right) and Case III (bottom) on the region (t1, t2) ∈
[0, 5]× [0, 5], in the context of Example 1.
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with respect to the nature of the roots of the characteristic equation. These
cases depend upon the values of a1 and a2. In Figure 4 we have plotted the
expectation plus/minus standard deviation, µZ(t)±σZ(t), and the covariance
function, CZ(t1, t2), in each one of the following numerical situations:

• Case I (real and distinct roots): a1 = 3, a2 = 1.
• Case II (real and identical roots): a1 = 2, a2 = 1.
• Case III (complex roots): a1 = 1, a2 = 1.

In all the above cases, the expectation and variance of initial conditions X0

and X1 have been taken as µX0
= 2, µX1

= 1, and, σ2
X0

= 1/4 and σ2
X1

=
1/16, respectively. Computations of µZ(t) ± σZ(t) and CZ(t1, t2) have been
carried out using (3.9) and (3.10), respectively.
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Figure 4. Graphical representations of the expectation
plus/minus standard deviation, µZ(t) ± σZ(t), and covari-
ance function, CZ(t1, t2), of the solution s.p. Z(t) to IVP
(1.4) in Case I (top), Case II (middle) and Case III (bot-
tom), in the context of Example 2.
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5. Conclusions

The aim of this paper has been to complete the study recently provided in [7]
but now dealing with its continuous counterpart, random homogeneous linear
second-order differential equations. With regard to this earlier contribution,
we point out that the current manuscript enlarges the study presented in [7]
because now we have not only determined the first probability density func-
tion (1-p.d.f.) of the solution stochastic process of initial value problem (1.4)
under very general hypotheses but also its second p.d.f. (2-p.d.f.). This is an
important feature because besides providing a characterization of the solu-
tion stochastic process at every time instant through the 1-p.d.f., statistical
dependence between two different time instant of the solution are also fully
characterized. In addition, all one and two-dimensional statistical moments
of the solution can be obtained from both p.d.f.’s, in particular, the expecta-
tion, the variance and the correlation functions. This is a distinctive feature
with respect to other contributions dealing with random differential equa-
tions which often concentrate just on computing the mean and variance of
the solution.

We think that besides constituting a nice generalization of classical the-
ory, the results established in this paper are expected to be very useful in
real applications. Indeed, numerous models are based on these type of differ-
ential equations and, in practice, their input parameters (coefficients, source
term, and initial/boundary conditions) need to be fixed from physical mea-
surements which usually contain errors. Other times, uncertainty can be at-
tributed because ignorance or complexity of the phenomenon under study.
Thereby, many real problems that are modelled by the initial value problem
(1.4) may benefit from the theoretical results established in this article.

Acknowledgements

This work has been partially supported by the Spanish M.C.Y.T. grant
MTM2013-41765-P.

References

[1] B. Øksendal, Stochastic Differential Equations: An Introduction with Applica-
tions, 6th Edition, Springer, Berlin, 2007.

[2] T. T. Soong, Random Differential Equations in Science and Engineering, Aca-
demic Press, New York, 1973.

[3] T. Neckel, F. Rupp Random Differential Equations in Scientific Computing,
Versita, London 2013.

[4] K. Nouri, H. Ranjbar, Mean square convergence of the numerical solution of
random differential equations, Mediterranean Journal of Mathematics (2014)
1–18. doi:10.1007/s00009-014-0452-8.



Solving random homogeneous linear second-order differential equations19

[5] L. Villafuerte, B. M. Chen-Charpentier, A random differential transform
method: Theory and applications, Applied Mathematics Letters 25 (10) (2012)
1490–1494. doi:10.1016/j.aml.2011.12.033.

[6] J. A. Licea, L. Villafuerte, B. M. Chen-Charpentier, Analytic and numer-
ical solutions of a Riccati differential equation with random coefficients,
Journal of Computational and Applied Mathematics 239 (2013) 208–219.
doi:10.1016/j.cam.2012.09.040.

[7] M. C. Casabán, J. C. Cortés, J. V. Romero, M. D. Roselló, Probabilistic solu-
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