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Abstract 

Nitrate pollution, primarily in groundwater (GW), has been one of major water 

pollution problems in Europe over the last 30 years. Specially, Mediterranean areas 

(semi-arid zones) are more vulnerable to nitrate pollution, as in these areas a small 

excess of nitrogen produce higher nitrate concentrations than in more humid countries 

because the aquifer recharge is minor. A large number of GW bodies in the Júcar River 

Basin District (RBD) (43.000 km2), located in Spain, has nitrate concentrations above 

50 mg/L. The Water Framework Directive (WFD) sets out the goal of good status for 

the water bodies of the European Union, which also implies compliance with the 

Nitrates Directive. 

The River Basin Authorities (RBAs) must define the measures needed to reach the 

environmental objectives in the River Basin Management Plans (RBMPs), considering 

the long time-lag of aquifers is decisive in the measures effectiveness. By means of 

nitrogen cycle simulation in the river basin district and with the help of the monthly 

distributed PATRICAL model, the Júcar RBA has defined the measures to be applied 

and the exemptions to reach the objectives in GW in relation to nitrate pollution. Both, 

model and methodology are useful for other river basins to define measures. 
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The total nitrogen inputs in the Júcar RBD amounts to 180,000 tN/year, which 

represents a nitrogen surplus of 80,000 tN/year and a pressure of 58.5 kgN/year/ha-crop. 

Around 3/4 of GW bodies have currently the good status while the remaining of GW 

bodies could reach the good status during following hydrological planning cycles 

through the implementation of modernized irrigation systems that include fertigation -

the use of fertilizers in the water for irrigation-. The implementation of this scenario 

involves increasing efficiency in fertilizer application, in order to reduce nitrogen losses 

from slightly under a half to less than 1/3. 
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1. Introduction 

Water pollution by nitrate produces negative impacts on human and environmental 

health (Rios et al., 2013). Exposure to higher concentrations of nitrates or nitrites has 

been associated with increased incidence of stomach and gastric cancer in adults, and 

possible increased incidence of brain tumours, leukaemia, and nasopharyngeal (nose 

and throat) tumours in children (USEPA, 2007). Also, the main health effect for 

children is the “blue baby syndrome” (methemoglobinemia), seen most often in infants 

exposed to nitrate from drinking water (USEPA, 2007). In aquatic ecosystems, elevated 

concentrations of nitrate can help to produce eutrophication. 

The global increase in nitrogen (N) use as chemical fertilizer (Heffer, 2012) or as 

organic input from large livestock population, produced a general increase of nitrate 

concentration in surface water (SW) (Aquilina et al., 2012) and groundwater (GW), 

which, in recent decades, has become a major environmental concern (Galloway et al, 

2004; Vitousek et al, 1997). Many regions have significantly altered the global nutrient 

cycle (Ferrant et al., 2011), such as the following: Upper Mississippi River (Houser and 

Richardson, 2010), Northeastern United States (Howarth et al., 1996; Berka et al., 2001; 

Boyer et al., 2002), New Zealand (Gillingham and Thorrold, 2000; Monaghan et al., 

2005), Ireland (Neill, 1989; Watson and Foy, 2001), United Kingdom (Webb and 

Walling, 1985; Reynolds and Edwards, 1995; Whitehead et al., 2002b), Norway 

(Blecken and Bakken, 1997), France (Ruiz et al., 2002; Molenat et al., 2002; Martin et 

al., 2004) and Portugal (Pacheco and Sanches-Fernandes, 2016). Specially, nitrate 

concentration reaches higher values in GW, thus there are great extensions of GW 

polluted by nitrate in the world: in the USA, Canada, Japan, Europe and Australia 

(Deng et al., 2011), and also northeast China (Huan et al., 2012) and Yellow River 

(Shen et al., 2011). 

The US Protection Agency (US EPA) has established a maximum contaminant 

concentration of 10 mg/L NO3-N (USEPA, 2000) or 45 mg/L NO3 for drinking water 

while the maximum acceptable concentration of nitrate for potable water according to 

the World Health Organization (WHO), is 50 mg/L NO3 or 11.3 mg/L NO3 -N. The 

purpose of both the EU Nitrates Directive (EC, 1991) and the Groundwater Directive -

GWD- (EC, 2006), according with the Water Framework Directive -WFD- (EC, 2000), 
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is to keep nitrate concentration in GW below a threshold of 50 mg/L. Once a water 

source is contaminated, the costs of protecting consumers from nitrate exposure can be 

significant. Nitrate cannot be removed by conventional drinking water treatment 

processes; its removal requires additional, relatively expensive treatment units (USEPA, 

2004). 

Due to the long time-lag in the groundwater system, it could take decades for leached 

nitrate from the soil to discharge into freshwaters (Wang et al. 2012; Wang et al 2013 

and Wang et al 2016). Besides, the intercrop periods were identified as critical periods 

for nitrate leaching (Dupas et al., 2015) and total annual precipitation and catchment 

connectivity are important for nitrate-N transport, with fluxes in a wet year roughly 

doubling that recorded in a dry year (Outram et al., 2016). 

Models can help better understand the nitrate pollution in SW and GW in a large river 

basin. They are needed to understand direct interactions between land cover and water 

pollution by nutrient in space and time (Ferrant et al, 2011), and also, to assess the 

effectiveness of the implementation of programmes of measures. 

Models are widely used to simulate N cycle and N transport at plot scale or small 

catchment scale (Brisson et al., 1998; Vanclooster et al., 1995) and to determine the 

nitrate concentration in river and the N-exportation rates (Ferrant et al., 2011; Zhang et 

al., 2016). Large-scale catchments have been modelled by integrating GIS or decision 

support modules (Lake et al., 2003; Lasserre et al., 1999; Lunn et al., 1996) and it has 

been suggested that the appropriate use of these different model types will depend on 

the scale of investigation (Quinn, 2004). Moreover, in most of these models, the GW 

compartment has a limited role and may even be lacking in GIS or statistical models 

(Aquilina et al., 2012); thus, in studies of GW at regional scale, it is usual to apply the 

approach based on the vulnerability assessment, such as the application of the 

DRASTIC model (Huan et al., 2012; Martínez-Bastida et al., 2010). 

In Ferrant et al, (2011) it is indicated that several models (Breurer et al., 2008) have 

coupled an hydrological model and a crop model to study the interactions between 

agricultural practices and catchment physical characteristics on the dynamics of N in 

streams (Mangold and Tsang, 1991; Vachaud et al., 1993; Styczen and Storm, 1995; 

Lunn et al., 1996; Beaujouan et al., 2002;Whitehead et al., 2002a; Wade et al., 2004; 
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Liu et al., 2005; Flipo et al., 2007). Also, SW and GW models are coupled to simulate 

nitrate in GW such as, SWAT-MODFLOW-MT3DMS models to simulate a large 

aquifer of 11600 km2 in India (Narula and Gosain, 2012). Hydrogeological models 

GROWA-DENUZ/WEKU, were coupled to the agro-economic model RAUMIS to 

define measures to reach the nitrate objective in SW and GW in the Federal State of 

North Rhine Westphalia in Germany (Kuhr et al, 2015). Lumped-parameters models 

were developed to simulate future nitrate conditions in the Gaza Coastal Aquifer 

(Hajhamad and Almasri, 2009) and, also, to determine the best management options to 

reduce nitrate concentration in GW.  

While mitigation programs have been developed to reduce N input to the SW, the 

effects of such attempts remain relatively limited (Aquilina et al., 2012); there is a 

consensus that more efforts are required to reduce nitrate concentrations in rivers and 

aquifers. River Basin Authorities and Nacional/Regional Governments must apply new 

approaches and strategies to reverse this trend and to recover the status of the aquifers. 

The Water Framework Directive (WFD) requires no further deterioration as well as a 

progressive reduction of pollution to reach the good status in the GW bodies in the year 

2015. Also, the WFD indicates that in case of specific conditions as for instance 

technical feasibility, disproportionately expensive or natural conditions -such as long 

time-lag in the groundwater system which does not allow timely improvement in the 

status of the water body-, the deadline may be extended (exemptions in following 6-

year period, 2021, 2027 …). The River Basin Management Plan (Annex VII of WFD) 

must establish the specific nitrate concentration in each GW body for the year 2015 the 

extended deadlines foreseen and the measures to achieve these nitrate objectives. 

In Europe -EU-27-, the averaged pressure (nitrogen surplus) is around 60 kgN/ha of 

crops (ha-crop) (Leip et al. 2011). Spain has lower nitrogen pressure than the average, 

around 50 kgN/ha-crop, and much lower than other countries, such as the Netherlands 

(250-300 kgN/ha-crop), Belgium (150-200 kgN/ha-crop) or Denmark (130-150 kgN/ha-

crop). However a large number of aquifers in Spain, mainly in the semiarid areas, are 

polluted by nitrate. This is produced because the aquifer recharge is minor in the 

semiarid areas of Spain than in other areas with humid climate, and thus, the same 

nitrogen pressure (or even minor pressures) over the aquifers, produces higher nitrate 
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concentrations. For this reason, the Spanish Mediterranean areas are more vulnerable to 

nitrate pollution than other areas with humid climate. 

In this paper, it is described how the Júcar River Basin Management Plan (RBMP) 

establishes, in a scientific and rigorous manner, the exemptions (mainly deadlines) and 

measures required to reach the objectives in relation to nitrate pollution in the GW 

bodies, taking in account the long time-lag of watersheds and aquifers. The 

methodology presented is common to the entire territory of Spain and it is based on the 

application of a distributed hydrologic and water quality simulation model, the 

PATRICAL model. The hydrologic module, its formulation and application to the Júcar 

River Basin District (RBD), is described in Pérez-Martín et al. (2014), and the nitrate 

module (formulation and application) is presented here. The methodology has two 

steps: 1) model calibration to the observed data; 2) nitrate simulation for three future 

scenarios with different degrees of implementation of mitigation measures. The main 

contributions of this manuscript are: 1) presents a new nitrate transport model for large 

river basins that is distributed, parsimonious (reduced number of parameters) and 

includes SW, GW and their interactions; 2) presents a methodology developed by the 

Júcar RBA to determine the measures required to recovery aquifers, and the year that it 

is produced, taking in account the long time-lag of aquifers; 3) the model and the 

methodology presented is applicable to other river basins in Europe that are currently 

working in establish the nitrate concentration objectives in the GW bodies and the 

measures - and deadlines - required to recovery the aquifer status, as evidenced by 

subsequent application to the entire Spanish territory. 

The effect of these three fertilizer application scenarios on nitrate concentrations has 

been assessed with the simulation model. The scenarios are: 1) baseline scenario, which 

corresponds to maintaining the current fertilization; 2) optimal scenario, which involves  

the application of the nitrogen optimal dose and includes the fertilizers in the drip 

irrigation; this requires a strong economic investment through the application of 

techniques such as fertigation, which include the use of fertilizers in the drip irrigation; 

3) trend reversal and improvement scenario, which is an intermediate stage between the 

two previous ones and includes the development of the action plans defined in current 

vulnerable areas; this is the more plausible scenario in the short to medium term. 
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The PATRICAL model simulates the nitrate cycle in medium/large basins, as it is the 

case of the entire Spanish territory (500,000 km2) where it is applied (Pérez-Martín et al. 

2012). The model uses the water flows and water storages obtained by its hydrological 

module in altered conditions by human activities. The model obtains the monthly nitrate 

concentrations in aquifers and surface flows. This model has only three parameters to 

simulate the nitrate transport in the entire river basin, thus it can be stated that the model 

is very parsimonious. The results obtained with this methodology are: the GW bodies 

that are foreseen to reach the objective in the year 2015 (nitrate concentration lower 

than 50 mgNO3/L) and the GW bodies that require extended deadline until next water 

planning cycles: 2021, 2027, 2033 or 2039. Also, other valuable results are the 

definition of the measures needed to reach these objectives in each GW body. 
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2. Methods and Data Sets 

2.1. The Simulation Model 

The PATRICAL model is a large-scale (medium/large RBs), conceptual, monthly and 

spatially distributed (grid 1×1 km2) water balance and water quality model (for multi-

decadal periods 50–100 years). The description of the hydrological model -components, 

water storages and fluxes and hydrological parameters- and its calibration and 

application to the Júcar RBD- is addressed in Pérez-Martin et al. (2014). The nitrate 

module has three storages in each cell (i.e. 1 x 1 km), (Fig 1c): 1) Soil Storage, where 

nitrogen is included in the soil moisture. 2) Unsaturated Zone, between the root zone 

and the GW level. 3) Aquifer, which corresponds with the saturated zone, where a 

complete mixing of substances in water is considered. The model has the following 

modules (Fig. 1c and formulation in the Appendix): 1) Nitrogen balance on soil, 2) 

Nitrogen balance on unsaturated zone, 3) Nitrogen balance in the aquifer, 4) Routing 

Module and River Losses, and 5) Groundwater Transfer Module. 

In this model, point source (PS) and non-point source (NPS) pollution are incorporated. 

PS pollution comes mainly from wastewater treatment plants from urban and industrial 

areas and it is transported directly by surface runoff. NPS pollution - nitrogen surplus 

(Fig. 1a)-, comes mainly from fertilizers, manures and deposition. NPS pollution is 

located in soil and is carried by water, as nitrate, by surface runoff and infiltration into 

the aquifer (Fig. 1b).  

The nitrogen surplus is retained in soil (Fig. 1c), where volatilization and the water 

transport is produced. Nitrate is carried by surface runoff to the rivers and by infiltration 

to the unsaturated zone. Nitrate is retained in the unsaturated zone, where the amount 

retained depends on the unsaturated thickness, which is the difference between surface 

and the monthly simulated GW level. The nitrate in the unsaturated zone is washed out 

by deeper infiltration into the aquifer. The aquifer is considered as an aggregate element 

and GW discharges represent the nitrate outputs of the aquifer. Nitrate from surface 

runoff and GW discharges, is routed into the river. Finally, nitrate transported by 

transfers between groundwater bodies and river losses, is computed. 
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Only three parameters with a unique value for the entire basin are defined in the model: 

1) de-nitrification constant for a long stay of nitrate in soil (kden, dimensionless [0,]), 

which defines the volatilization rate of the nitrogen stored in soil; 2) nitrate transfer 

coefficient in soil (ks, dimensionless [0,]), which determines the facility of water to 

wash out the nitrate from soil and thus the amount of nitrate retained in soil; and 3) 

nitrate transfer coefficient in the unsaturated zone (kuz , mm-1 [0,]), which represents 

the facility of water to wash the nitrate from the unsaturated zone. 

The sensibility analysis shows that high values of kden (> 5) imply that all the nitrogen 

will be volatilized in the next month, while the 0 value implies that there is no nitrogen 

volatilization. Low values of ks increase the amount of nitrogen retained in soil while 

high values (> 3) produce a rapid wash of nitrate from soil. Low values of kuz mean that 

the nitrogen needs a long time to reach the aquifer, high values (>1) imply that all the 

nitrogen reach the aquifer in less than a year. 

 

Fig. 1. a) Distributed nitrogen surplus (kgN/ha) and b) simulated nitrate concentration in 

groundwater (mgNO3/L) and c) structure and variables of the nitrate module of PATRICAL 

model. 



10 

2.2. The Júcar River Basin District  

The Júcar River Basin District (RBD) (43,000 km2) is located on the Mediterranean side 

of the Iberian Peninsula (Fig. 2a). In the Júcar RBD, there are 90 GW bodies defined. A 

GW body is formed by one or more aquifers, and it is an administrative delimitation of 

GW. In the model, a GW body can be divided in various sectors, corresponding to the 

aquifers delimitation or to the different behaviour detected in different parts of the GW 

body. The model includes the simulation of more than 200 sectors in this river basin 

(Fig. 2b). A further description of the Júcar RBD is included in Ferrer et al. (2012) and 

Pérez-Martín et al. (2014).  

a)

b)

Plana Valencia Sur

Plana Valencia Norte

Plana Sagunto

Plana Castellón

Medio PlanciaLíria-Casinos

Mancha Oriental

Buñol-Cheste

 

Fig. 2. a) Júcar RBD location b) GW and Sector delimitation and nitrate GW network. 

Nitrogen surplus comes from the annual balance of nitrogen in soil at municipal level 

for the period between the years 2000 and 2011 (MARM, 2014). The mean balance in 

the Júcar RBD for the period 2007-2011 (Table 1) shows that 80% of inputs comes 

from inorganic/organic fertilizers (57/13%) and atmospheric deposition (10%), while 

harvest (crops and woods) and volatilization represents nearly 90% of the outputs. 
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Inorganic fertilizers are the major input of nitrogen in the river basin, representing 57% 

thereof. Atmospheric deposition is associated to the atmospheric volatilization produced 

in the nearest area, so it also depends on the total nitrogen input produced in the nearest 

area. 

The NPS pollution, i.e. the nitrogen surplus, is around 80,000 t of Nitrogen per year 

(tN/year) and it represents 44% of the total nitrogen inputs (181,000 tN in Table 1), 

which produces a mean pressure of 58.5 kgN/ha-crop. The global pressure related to the 

entire extension of the Júcar RBD is 18.5 kgN/ha. 

Inputs tN rel kgN/ha-crop Outputs tN rel kgN/ha-crop

Inorganic Fertilizers 103,060 0.57 75.9 Crop Harvest 58,856 0.58 43.3 

Organic Fertilizers 23,932 0.13 17.6 Wood Harvest 15,380 0.15 11.3 

Atmospheric Deposition 18,766 0.10 13.8 Stubble Burning 6,235 0.06 4.6 

Nitrogen from Urban Waste 12,769 0.07 9.4 Pasturages 1,750 0.02 1.3 

Nitrogen in Water 8,341 0.05 6.1 Fertilizers Volatilization 16,794 0.16 12.4 

Livestock Manures 7,715 0.04 5.7 Pasturages Volatilization 1,421 0.01 1.0 

Biological Fixation 5,202 0.03 3.8 Fertilizers Denitrification 1,119 0.01 0.8 

Seeds 1,563 0.01 1.2 Others Denitrification 212 0.00 0.2 

    Pasturages Denitrification 114 0.00 0.1 

TOTAL 181,348 1.00 133.5 TOTAL 101.879 1.00 75.0 

Surplus     79.469 0.44 58.5 

Table 1. Averaged 5-year nitrogen balance in soil in the Júcar RBD for the period 2007-2011. 

Nitrogen surplus at municipal level are spatially distributed within the municipality by 

means of the land use map (Corine Land Cover: CLC, 2000). Higher values are located 

mainly inside major agricultural areas (Fig. 1a) such as near the Mediterranean Sea (50 - 

200 kgN/ha) and the Eastern Mancha Aquifer (25 kgN/ha). 
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2.3. Model Calibration and Validation 

The model runs from October 1970 until September 2012 and it requires hydro-

meteorological data, described in Pérez-Martín et al. (2014), and the nitrogen surplus 

data generated in the river basin. The nitrogen surplus data comes from the municipal 

nitrogen balance (described in section 2.1) for the period 2000-2011, and for the rest of 

the simulation period corresponding to previous years (1970-1999), nitrogen surplus is 

obtained combining the municipal balance (2000-2005) with the evolution of the global 

nitrogen use in Spain from 1970 to 2005. 

The model is calibrated with nitrate data from GW network and it is validated with the 

GW bodies status evaluation made by the Júcar RBMP (CHJ, 2015). There is a large 

amount of available data: 7658 samples, from January 2000 to October 2013, 

distributed in 1874 GW gauging stations in the Júcar RBD (Fig. 2b). The average 

number of data by station is 4, less than 200 stations have more than 10 available data, 

and only 4 stations have more than 20 available samples. The large amount of available 

data allows determining with a great deal of certainty, the current status of the GW 

bodies. However, there is a reduced number of check points with insufficient data to 

determine historical trends or the variability of the processes involved. 

Model performance was assessed using a double criteria approach: 1) a visual 

inspection of the model results in all the aquifers modelled with the observed data 

(some examples in Fig. 3), and 2) fitting the average nitrate concentration simulated in 

last years (oct-2005 to sep-2013) in each aquifer, to the mean nitrate concentration of 

the all samples available in each aquifer in the same period (Fig. 5). The fitted values of 

the parameters for the entire watershed are: kden (dimensionless) = 0.05, ks 

(dimensionless) = 3.0 and kuz (mm-1) = 10.0. Only three numerical values determine the 

nitrate behaviour in the entire river basin, so this provides a great robustness to the 

model. 

Nitrate concentrations over the last years are stabilized in all the aquifers. The model 

results are included in the range of the observed data in different points of the aquifers 

(3 observed points in Fig. 3.). There are high differences between data observed in 
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different points of the same aquifer (Fig. 3a and Fig. 3f) and also between different 

samples of the same point (obs. 1 in Fig. 3a and obs. 3 in Fig 3e). 

 

Fig. 3. Nitrate concentration (mgNO3/L) simulated and observed, including data of 3 observed 

points in the aquifer and the mean values of the all observed data, in different aquifers in the 

Júcar RBD: a) Plana de Castellón, b) Plana de Sagunto, c) Medio Palancia, d) Liria-casinos, e) 

Plana de Valencia Norte and f) Plana de Valencia Sur. 

A multi-year variability in nitrate concentrations is detected in model results, which is 

also confirmed with the observed data of Plana de Castellon and Plana de Sagunto (Fig 

3a and b). In both cases, observed nitrate concentrations decreased from 110 and 

200mgNO3/L respectively in fall of 2000, to 70 and 100 mgNO3/L in summer of 2006. 

In the model, the multi-year variability depends on the annual amount of water that 

infiltrates into the aquifer and the unsaturated zone thickness. The aquifer Medio 

Palancia (Fig. 3c) has the major thickness (around 100 m) of the cases presented, so 

nitrate concentrations -around 80 mgNO3/L- have more long time-lag than the rest of 

cases (thickness around 30 m, Fig. 3). 
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A strong convective rainfall was produced near the coast in October 2000. This rainfall 

carried a large amount of nitrate from soil and the unsaturated zone to the aquifers, so 

nitrate concentration strongly rose in this month in the aquifers. Over the next 

months/years the nitrate concentration in the aquifers will be declining, because soil and 

unsaturated zone (without nitrogen) is retaining the new nitrogen applied in the river 

basin. 

The years 1989, 1990 and 1991 were three consecutive very wet years (Fig. 4a). During 

this period the model simulates a reduction in nitrate concentration in the aquifers (no 

observed data is available in this period). Similarly during the dry periods (1980-1987, 

1992-1999 and 2009-2011) the descending stretches of standardized accumulated 

monthly deviation recharge observed in Fig. 4b) are associated to increases in the nitrate 

concentration (Fig. 3). 

 

Fig. 4. a) Annual rainfall recharge (mm) near the coast in the Júcar RBD and b) standardized 

accumulated monthly deviation recharge (dimensionless). 

Model is also calibrated fitting the average nitrate concentration simulated in the years 

(oct-2005 to sep-2013) in each aquifer to the mean nitrate concentration of all the 
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samples available in each aquifer in the same period (fully mixed hypothesis are used to 

simulate the nitrate behaviour in the aquifers). Moriasi et al. (2007) indicates that in 

general, model simulation can be judged as satisfactory if Nash-Sutcliffe efficiency 

(NSE) >0.50 and if percent bias (PBIAS) ±25% for streamflow, PBIAS ±55% for 

sediment, and PBIAS ±70% for N and P. In this work, the NSE cannot be evaluated 

adequately due to the reduced number of available data along the time in the same point, 

so only the PBIAS is used to judge the model performance. In this case, the model has a 

very good performance (PBIAS ±25%) in 27% of the aquifers, good or very good 

performance (PBIAS ±40%) in 73% of the aquifers, satisfactory (or better) performance 

(PBIAS ±70%) in 88% of the aquifers and unsatisfactory performance in 12% of the 

aquifers. The correlation coefficient between average simulated and average observed 

data in each aquifer is R=0.84 (Fig. 5). As regards to aquifers with higher nitrate 

concentration, observed data greater than 50 mgNO3/L or close to that value (>35 

mgNO3/L), show a correlation coefficient between observed and simulated values of 

R=0.63. 

 

Fig. 5. Mean nitrate concentration (mgNO3/L) observed (and percentiles 40 and 60 -p40, p60) 

and simulated in each aquifer. 

Model results validation of the 90 GW bodies was made with the chemical status 

assessment made by the Júcar RBMP (CHJ, 2015). This official assessment is made 

according to the criteria established in the GWD (EC, 2006), and is based on the 



16 

chemical GW network, assuming a representative weight to each control point located 

in the same GW body. High nitrate concentrations are located in areas near the coast 

and in the Mancha Oriental Aquifer (Fig. 6a); these areas are officially assessed in Not-

Good status by the Júcar RBMP (Fig. 6b). Minor discrepancies are found between 

model results and the official assessment. These discrepancies are located in four GW 

bodies without intensive agriculture and low nitrogen pressure (Fig. 6b) and a detailed 

analysis is developed in these four GW bodies. In three of them -“Javalambre 

Occidental”, “Lezuza-El Jardín” and “Arco de Alcaraz”- the GW network is clearly not 

representative of the GW body global behaviour. Finally, there is only one case, 

“Almansa” GW body, wherein it is not clear if discrepancy is related to model 

limitations or rather to the lack of representativeness of the observed data. The great 

concordance between chemical status and model results, and also, the detailed analysis 

that justifies those discrepancies are mainly due to the lack of representativeness of the 

data network and indicates the great robustness and reliability of the proposed model. 

 

Fig. 6. a) Simulated mean nitrate concentration (mgNO3/L) in GW for the period 2010-2012. b) 

Nitrate status in the Júcar RBMP (Júcar, 2015). 

Model results indicate that 26% of the annual averaged nitrogen surplus (79,469 

tN/year) is volatilized from soil during the year (20,500 tN/year), additional to the 

18,215 tN/year volatilized during the nitrogen application. A large amount of nitrogen 

(38,719 tN/year) is emitted to the atmosphere (21% of the total nitrogen input – 181,348 
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tN/year). Shcherbak et al. (2014) indicates that Nitrous oxide (N2O) is a potent 

greenhouse gas (GHG) that also depletes stratospheric ozone and that Nitrogen (N) 

fertilizer rate is the best single predictor of N2O emissions from agricultural soils, which 

are responsible for ∼50% of the total global anthropogenic flux, although it is a 

relatively imprecise estimator. Turner et al., 2015, indicates that N2O deleterious effects 

on the environment have prompted appeals to regulate emissions from agriculture, 

which represents the primary anthropogenic source in the global N2O budget. 

74% of the nitrogen surplus is carried by water (58,965 tN/year), 31% of this (18,193 

tN/year) by surface runoff and gets into the rivers. Finally, the remaining part (69%, 

40,772 tN/year) is carried by infiltration and reaches the aquifers. In the Júcar RBD, the 

average amount of nitrogen in soil is 8 kgN/ha and the average value in the unsaturated 

zone is 5 kgN/ha. In the intensive agricultural areas the amount of nitrogen in soil 

mainly ranges from 20 to 40 kgN/ha. 
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3. Future Groundwater Nitrate Concentration 

The nitrate concentration in each GW body and the measures needed to achieve the 

objective, are determined by simulating three future scenarios, from 2015 to 2039 to 

cover four water planning cycles (each water planning cycle in EU countries has 6 

years). The scenarios are characterized by the doses of fertilization applied, as follows: 

1) Baseline scenario: the nitrogen applied in the future is the same as last years (2008-

2011), 2) Optimal scenario: the nitrogen applied corresponds to plants requirements 

(optimal doses); though , this scenario could imply a nitrogen deficit in the plant if the 

irrigation systems have not been modernized and 3) Trend Reversal and Improve 

(TR&I) scenario: this is an intermediate scenario between previous scenarios. 

The mean pressure in the Júcar RBD (table 2) varies between 18.5 kgN/ha (58.5 

kgN/ha-crop) in the baseline scenario, to 10.4 kgN/ha (32.9 kgN/ha-crop) in the optimal 

scenario, placing the investment scenario in an intermediate case with 14.4 kgN/ha. The 

optimal scenario includes a nitrogen reduction of 35,890 tN/year (20% reduction in the 

total inputs), which is produced basically with a minor application of mineral fertilizers 

of 26,600 tN/year (reduction of 26% in the fertilizers application) and the subsequent 

minor atmospheric deposition of 2,650 tN/year (reduction of 14% in the atmospheric 

deposition). This reduction in the application of mineral fertilizers (26%) produces a 

significant reduction in the nitrogen surplus of 44%. 

The implementation of the optimal scenario requires the modernization of the traditional 

irrigation systems, including the fertigation as the main measure to reduce nitrogen 

application in crops. This measure requires a large investment to modernize these 

irrigation systems. The Júcar River Basin Management Plan (RBMP) and the 

Programme of Measures (CHJ, 2015) includes the modernization of irrigation (drip 

irrigation) as one of the major measures to be applied in this Mediterranean area (area 

with water scarcity), aiming to achieve water savings and also other environmental 

objectives, such as reducing the use of fertilizers. The Júcar RBMP includes a 

government investment of 431 million euros between 2015 and 2027. 
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Scenario Baseline TR&I  Optimal 

Nitrogen inputs (tN/year) (a) 181,348 163,389 145,430 

Nitrogen outputs (tN/year) 101,879 101,292 100,705 

Nitrogen surplus (tN/year) (b) 79,469 62.097 44,725 

Relative surplus (b/a) 0.44 0.38 0.31 

Local Nitrogen pressure (kgN/year/ha-crop) 58.5 45.7 32.9 

Local Nitrogen pressure (kgN/year/ha of crops and pastures) 32.1 25.1 14.4 

General Nitrogen pressure (kgN/year/ha Júcar RBD) 18.5 14.4 10.4 

Table 2. Characterization of future nitrogen scenarios.  

The long time-lag in GW implies a large period of time to achieve the objective after the 

application of measures. This long time-lag is different in each aquifer, and mainly 

depends on the following: the aquifer extension, the aquifer hydrogeological 

characteristics, the thickness of the unsaturated zone and the water fluxes produced in 

the aquifer.  

In the case of Buñol-Cheste GW body (Fig. 7), the nitrate concentration is stabilized 

around 100 mgNO3/L under the baseline scenario and no recovery is produced. Under 

TR&I scenario the trend is changed and a weak recovery is produced. Finally, only with 

the implementation of the optimal scenario the objective is reached; though around 25 

years are required to reach this objective. 

 

Fig. 7. Simulated mean nitrate concentration (mgNO3/L) for the historical period 1970-2011 and 

the three future scenarios in the Buñol-Cheste GW body. 
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74% of GW bodies (67 of 90) reach the objective (nitrate concentration below 50 

mgNO3/L) in the year 2015 (Table 3). Four of these require the application of optimal 

doses of fertilizer to maintain the objective. The intensive irrigation areas of the Júcar 

RBD, coastal aquifers and Mancha Oriental aquifer, are the areas where the aquifers (23 

out of 90) do not reach the objective in the year 2015 (Fig. 8a). In these areas the 

optimal scenario is required to achieve the objective the following cycles of 6 years 

(Fig. 8b). Besides, in four GW bodies additional measures (well as the application of 

optimal doses) are needed to reach the objective in the year 2039.  

Year to reach Number GW bodies ratio Baseline TR&I Optimal Additional 

2015 67 74% 62 0 5 0 

2021 6 7% 1 4 1 0 

2027 9 10% 0 0 9 0 

2033 2 2% 0 0 2 0 

2039 6 7% 0 0 2 4 

Total GW bodies  90 100% 63 4 19 4 

Table 3. Number of GW bodies that reach the objective in each water planning cycle and 

measures required to accomplish it.  

a) b)

 

Fig. 8. a) Year to reach the environmental objectives in each GW body and b) measures required 

to achieve the objective in each GW body. 
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4. Conclusions 

This paper shows how to establish, the exemptions to achieve the nitrate objectives in 

the groundwater (GW) bodies in a large river basin district according to the EU Water 

Framework Directive (WFD) and the measures to be applied to reach these objectives. 

The methodology presented is based on the use of the PATRICAL model that simulates 

the nitrogen cycle for a long period of time. The model and the methodology presented 

in this work is applicable to other river basins in the World and mainly in Europe, as it 

is demonstrated by the currently application to the entire Spanish territory. 

The parameters are calibrated by fitting model results in each aquifer to the observed 

time series and, also, by fitting current average results to mean concentration in each 

aquifer. The model shows a satisfactory performance in 88% of the aquifers modelled 

that have high nitrate concentrations, and a good performance in 73% of the aquifers. 

Model results are validated with the official status assessment of the GW bodies made 

by the Júcar RBMP, where no significant discrepancies have been found. The nitrate 

model is quite robust because with only three parameters with the same value in the 

entire river basin, it fits the behaviour of aquifers in the entire river basin. 

In the Júcar RBD, current nitrate concentration in GW reaches values higher than 50 

mgNO3/L, in a large number of GW bodies (23 of 90). The areas which currently have 

high values are the following: the coastal aquifers, where in some areas it reaches 

concentrations of 100-150 mg/L, and the Mancha Oriental aquifer, where in some 

specific areas the nitrate concentration is higher than 50 mgNO3/L. In general terms, 

currently the nitrate concentration in GW has stabilized, with no trend; only a few deep 

aquifers, due to their major long time-lag, show some upward trend such as Medio 

Palancia or Buñol-Cheste aquifer.  

The horizons in which nitrate WFD objectives are reached in each GW body and the 

measures needed to do it were determined by simulating three future scenarios from the 

year 2015 to 2039, covering four water planning cycles of 6 years. The implementation 

of modernized irrigation systems, including the fertigation systems to apply the 

fertilizers, could reduce the use of fertilizers and allows to meet the WFD objectives in 

the following planning cycles. The reduction in the application of mineral fertilizers 

(26% optimal scenario) produces a significant reduction in the nitrogen surplus (44% 
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optimal scenario). Based on the 23 GW bodies that do not currently meet the objectives, 

15 of them could achieve the objective before the year 2027 and the rest before the year 

2039. The more or less prolonged period of time required to comply with the objectives, 

depends on the long time-lag of each aquifer. 
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Appendix. Model formulation 

Summary of model variables is included in Table A1 and model parameters description 

is included in Table A1 

<Table A1> 

 

1. Nitrogen Balance in Soil 

Nitrogen in soil Nsoilij,t (kgN/ha), in cell "ij" in month “t”, is obtained by mass balance. 

  kden
tijtijtijtij eNleachNsurNsoilNsoil 

  ,,1,,   (A1) 

Nsoilij,t-1 is the amount of nitrate in soil from previous month, Nsurij,t (kgN/ha) is the 

nitrogen surplus generated in this month, kden is the denitrification constant and 

Nleachij,t (kgN/ha) is the nitrogen leached from soil, which is computed by: 
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Where: ks is the nitrate transfer coefficient of soil, Swmaxij is the water soil storage 

capacity (mm), Wa*ij,t is the hydrological surplus (mm) corresponding to the sum of 

surface runoff, infiltration and water returns from irrigation excess. 

The nitrogen is leached from soil by the surface runoff (mm) Rsupij,t , as superficial 

nitrogen Nsupij,t (kgN/ha), and the infiltration (mm) Rinfij,t , as infiltrate nitrogen Ninfij,t 

(kgN/ha), both with the same nitrate concentration: 
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2. Nitrogen Balance in the Unsaturated Zone 

Infiltrated nitrogen reaches the unsaturated zone, where it is stored Nuzij,t (kgN/ha). The 

balance of nitrate stored in the unsaturated zone has the following expression: 

tijtijtijtij NuzinfNinfNuzNuz ,,1,,     (A5) 

A part of nitrate stored is washed by infiltration and reaches to the aquifer Nuzinfij,t 

(kgN/ha), it is computed as follows: 
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Where: kuz is the nitrate transfer coefficient in the unsaturated zone (mm-1), Imaxij is the 

monthly infiltration capacity (mm), dij,t is the depth of water table (mm). 

 

3. Nitrogen Balance in the Aquifer 

The aquifer is considered like a dispersive storage, so the nitrogen is totally mixed with 

the water stored. Nitrate concentration in the aquifer CNaqk,t is obtained by: 

tktk

tktk
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, 43.4
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Where previous nitrogen is obtained by: 

1,1,1,   tktktk WaqCNfaqNaq  (A8) 

and the nitrogen that reaches the aquifer NaqIk,t is the sum of the distributed nitrogen 

above the aquifer, 


ji

kaquifer
tijtk NuzinfNaqI
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,, .  (A9) 

Distributed nitrogen discharges to the river NaqOdij,t is obtained by: 

tijtktij RsubCNaqNaqOd ,,,, 43.4

1
   (A10) 
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4. Routing Module and River Losses 

Nitrogen from aquifers is joined to nitrogen carried by surface runoff Nsupij,t and the 

point pollution discharges Ndischij,t, which together become the total content of nitrate 

in the surface network. 

tijtijtijtij NdischNsupNaqOdNtotal ,,,,    (A11) 

The total nitrate is accumulated in the drainage network Nnet’ij,t using the digital 

elevation model (DEM). Monthly nitrate concentration in the river CNnet’ij,t (mg NO3
-

/L) is obtained dividing the nitrate accumulation and river flows RTnet’ij,t. 

tij
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43.4     (A12) 

Nitrogen infiltrated from rives is obtained by: 

tijtijtij RLCNnetNL ,,, 43.4

1
    (A13) 

 

5. Groundwater Transfer Module 

Final nitrate concentration in the aquifer k, CNfaqk,t, is the relation between total 

nitrogen inputs and total available water, as follows: 
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Where, NaqRLk,t is the total nitrogen infiltrated into the aquifer by the river losses 

RLaqk,t, Flrk,t is the lateral flows between all the aquifers (n) to the aquifer k. 

 


