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Abstract 10 

Droughts are a major threat to water resources systems management. Timely anticipation 11 

results crucial to defining strategies and measures to minimise their effects. Water managers 12 

make use of monitoring systems in order to characterise and assess drought risk by means of 13 

indices and indicators. However, there are few systems currently in operation that are capable 14 

of providing early warning with regard to the occurrence of a drought episode. This paper 15 

proposes a novel methodology to support and complement drought monitoring and early 16 

warning in regulated water resources systems. It is based in the combined use of two models, 17 

a water resources optimization model and a stochastic streamflow generation model, to 18 

generate a series of results that allow evaluating the future state of the system. The results for 19 

the period 1998-2009 in the Jucar River Basin (Spain) show that accounting for scenario 20 

change risk can be beneficial for basin managers by providing them with information on the 21 

current and future drought situation at any given moment. Our results show that the 22 

combination of scenario change probabilities with the current drought monitoring system can 23 

represent a major advance towards improved drought management in the future, and add a 24 

significant value to the existing national State Index (SI) approach for early warning purposes. 25 

 26 

 27 
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Highlights 28 

• Modelling the past to anticipate future drought is an ineffective and risky approach 29 

• A new method for continuous drought monitoring and early warning in regulated 30 

catchments is proposed 31 

• Reservoir storage probability is a reliable indicator for drought status in regulated 32 

catchments 33 

• New approach adds value to existing monitoring and early warning methods 34 

Keywords 35 
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 38 

1. Introduction 39 

Droughts are a major threat to the sound operation and management of water resources 40 

systems. Developing new approaches to anticipate them will help in defining strategies and 41 

measures to minimise their effects. The use of monitoring systems to calculate drought indices 42 

and indicators can help water managers characterize droughts and define risk scenarios. The 43 

activation of a drought scenario in a system will trigger a number of measures addressed to 44 

minimise the possibilities of developing into a worse scenario and minimizing the possible 45 

effects of the current situation.  46 

The assessment of drought severity requires the use of an index which fulfils well-known 47 

criteria (Tsakiris et al. 2013): operational usefulness, physical meaning, sensitivity to a wide 48 

range of drought conditions, applicability in all parts of the globe, quick response to changes 49 

due to drought and high availability of required data. Commonly, such an index is a prime 50 

variable for assessing the effect of a drought and defining different drought parameters, which 51 
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include intensity, duration, severity and spatial extent as defined by Yevjevich (1967) in his 52 

theory of runs. A time series of drought indices provides a framework for evaluating drought 53 

parameters of interest. Generally, drought indices are categorized as meteorological, 54 

hydrological, agricultural or remote sensing–based (Rossi and Cancelliere 2013). Mishra and 55 

Singh (2010) and Pedro-Monzonis et al. (2015) made an extensive review of existing 56 

univariate drought indices both concluding that each index performance is region specific 57 

mostly due to the characteristics of the variables used for their calculation and the purpose of 58 

the analysis. In addition, in recent time some authors have  also attempted to combine  all the 59 

variables (e.g. precipitation, soil, water content) that lead to different physical forms of drought 60 

in so-called multivariate drought indices (Rajsekhar et al. 2015). In some cases, the index is 61 

built as an aggregation of variables selected according to their relation each drought type 62 

(Keyantash and Dracup 2004; Rajsekhar et al. 2015). Inother, the index is constructed using 63 

copulas to derive the joint distribution of two or more variables (Kao and Govindaraju 2010; 64 

Hao and AghaKouchak 2013). 65 

An indicator system is a drought monitoring system that allows the anticipation in the 66 

application of mitigation measures for the reduction of socio-economic and environmental 67 

impacts of droughts (Estrela and Vargas 2012). Such systems can also be considered early 68 

warning systems for their capacity to anticipate the effects that drought may have on the 69 

system in order to trigger necessary mitigation measures (Rossi et al. 2008). In most cases, 70 

these systems are normally formed by basic variables selected at different points in a river 71 

basin that are capable of defining the current drought status. Their reliability will depend on 72 

their capacity to represent, using real-time data: 1) the relationship between significant 73 

reductions of water availability with deviations of meteorological and hydrological components 74 

from their average; 2) detecting early stages of drought development; 3) provide results that 75 

allow comparison between events both in time and space; and 4) assessing the severity of 76 

the ongoing situation in order to support decision making for triggering drought mitigation 77 

actions. Additionally, in the case of regulated water resources systems, it would be desirable 78 
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that the indicator is capable of showing the evolution of management and how this would 79 

change the drought status of the system if new operation rules are envisaged. 80 

Different drought early warning systems have been developed at different spatial scales, but 81 

a very small number of such systems are actually in operation (Rossi and Cancelliere 2013). 82 

This is mainly due to the low density of meteorological and hydrological gauging networks, the 83 

sharing of the data among different agencies with different objectives, and to the lack of 84 

universal standards in computing drought indices (Rossi 2003). In addition, the development 85 

of indicator systems based on observational frameworks cannot provide sufficient anticipation 86 

with regard to the event in progress in order to activate the necessary measures to mitigate 87 

its effects (Haro et al. 2014). Efforts have been made to correlate drought indices to impacts 88 

(Stagge et al. 2015), but these relationships only provide insight after the event has finished 89 

and the impacts reported. Mishra and Singh (2011) acknowledged that to develop suitable 90 

techniques for forecasting the onset and termination of droughts is still a major research 91 

challenge due to the inability to predict drought conditions accurately for months or years in 92 

advance. Due to these inaccuracies and uncertainties, drought management relies nowadays 93 

mainly on risk assessment. Risk assessment during the operation phase of a system is often 94 

referred as conditioned risk assessment. With this procedure, the state of the system is usually 95 

evaluated for the short-term to explore alternative mitigation measures and policies for an 96 

ongoing drought episode. This same assessment approach can be adopted for early warning 97 

purposes (Cancelliere et al 2009). 98 

Alecci et al. (1986) considered that the risk assessment of a water supply system is a problem 99 

that is better approached through a set of several indices and analysing the probability of 100 

suffering shortages of different entities. This is due to the many complexities existing within a 101 

water resources system such as the stochastic nature of inflows, the high interconnection that 102 

exists between different components of the system, the competition for water by conflicting 103 

demands, the definition of what elements are at risk, and the uncertain character of the 104 

impacts in different drought episodes. Traditionally, reliability, resiliency and vulnerability have 105 
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been the indices used to capture the different performance aspects of water supply systems 106 

(Hashimoto et al. 1982). However, these indices are normally representative of just one 107 

particular use, defining the state of the system with regard to the probability of a failure for 108 

such index. Since all drought events are unique, so too are their effects both temporally and 109 

spatially. Therefore, it is necessary to have an indicator that is capable of summarising the 110 

state of the system for any given situation. In regulated systems, it will be the volume stored 111 

in reservoirs since it provides an overview of the previous management of the system and is 112 

the basis for future resources allocation. 113 

This paper proposes a novel methodology to support drought monitoring and scenario 114 

definition in regulated water resources systems. It is based on the results of two models, an 115 

optimisation model and a stochastic streamflow generation model, both of which have been 116 

calibrated and validated in previous research (Haro et al. 2012a, 2012b, and 2014b; Ochoa-117 

Rivera 2002). Using storage in reservoirs as a summary indicator of the future system status, 118 

we propose a combined use of the two models to generate a series of results that can support 119 

and complement drought monitoring and early warning systems currently in place in a river 120 

basin. The methodology is applied to the Jucar River Basin in Spain to evaluate the probability 121 

of a scenario change several years in advance. The proposed method has the potential to 122 

enhance decision making under highly uncertain hydrological situations, and provide water 123 

resource planners and managers with new insights both regarding the behavior of the system 124 

and the development of drought episodes. 125 

2. Case study description 126 

The Jucar River Basin is located in the eastern part of the Iberian Peninsula in Spain (Figure 127 

1). This basin is the most important of the 9 water exploitation systems in the Jucar River 128 

Basin Demarcation (Demarcacion Hidrografica del Jucar – DHJ in Spanish). In the Valencia 129 

coastal plain, where the Jucar River has its mouth, there is a shallow lake called Albufera, with 130 

an associated wetland. Both, the lake and the wetland depend on return flows from irrigated 131 
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areas in the basin, and also on groundwater flows from the coastal aquifer beneath the plain 132 

(Andreu et al. 2009). It is the largest system of the DHJ both in surface (22,261 km2) and in 133 

volume of resources (1,548 hm3/year).  134 

The river is an example of a typical Mediterranean river, characterized by a semi-arid climate 135 

in most of the basin territory consisting of low precipitation rates (475mm/year) during the year 136 

combined with exceptional convective storms that can lead to flooding and seasonal summer 137 

scarcity that occurs when irrigation requirements are at their highest. Urban demand accounts 138 

for circa 143.3 hm3/year and the water demand for irrigated agriculture reaches 1034.3 139 

hm3/year. Water supply to small urban areas comes mainly from wells and springs, but large 140 

metropolitan areas such as Albacete, Sagunto and Valencia rely on surface water (Andreu et 141 

al. 2009). According to the White Book of Groundwater (CEDEX 1995), nearly three quarters 142 

(73%) of the resources in the territory of the DHJ have subterranean origin. This highlights the 143 

major importance that groundwater resources have in the management of these basins. The 144 

total amount of available groundwater resources in the basin is 1,225 hm3/year. However, this 145 

only represents the estimated volume in all the groundwater bodies without accounting for 146 

their sharing between other basins or the relationship these bodies have with the surface water 147 

system. 148 

With regard to droughts, the Jucar River Basin can be considered to be one of the most 149 

vulnerable areas in the western Mediterranean region, due to high water exploitation indexes, 150 

and the environmental and water quality problems that arise when droughts occur. This 151 

situation has triggered increased use of non-conventional resources in recent years, such as 152 

reuse of wastewater and drought emergency wells. Also, conjunctive use of surface-ground 153 

waters has historically been a very important option in the region to provide robustness against 154 

droughts. The integrated use of these three resource options was considered a major success 155 

in adapting to the latest drought episode between 2005 and 2008 (Ortega-Reig et al 2014).  156 
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The operation of the system is mainly multi-year. The Alarcon and Contreras reservoirs, at the 157 

headwaters of the system, are capable of storing the highly variable streamflow coming from 158 

their upstream sub-basins. The third most important reservoir in the system, the Tous, is 159 

operated on an annual basis. Before the summer season it stores incoming mid-basin 160 

streamflow and upstream reservoirs releases to supply the different demands within the 161 

Valencia Plain. By the end of the summer, the reservoir is emptied in order to prevent floods 162 

originated from often intense autumn rainfall events. 163 

3. Methodology 164 

In this section, we present the indicator system currently in use in the Jucar River basin as 165 

well as in most of Spanish river basins. Despite being a useful methodology to evaluate the 166 

actual drought conditions in the basin, it has low forecasting capacity; making preventive 167 

management of droughts inefficient and/or very difficult. To complement the information 168 

provided by the indicator, we developed a methodology to derive the probability of drought 169 

scenario change for a four year planning horizon. It is based on the Monte Carlo evaluation of 170 

the results of multiple runs of an optimization model of the system. Based on this analysis, we 171 

derive distribution functions on the future state of the basin and combine them with trigger 172 

values for each drought scenario. 173 

3.1. Current drought indicator system for Spanish river basins 174 

One of the objectives of Spanish Drought Plans is providing means for anticipating drought 175 

events. To do this, it is necessary to establish an early warning system that allows forecasting 176 

drought characteristics and assessing their effects on the system. Spanish basin operators 177 

have adopted a method of drought indicators based on the analysis of historic data that reflect 178 

the availability of water in the system. This indicator is known as State Index (SI) and it is the 179 

result of combining several hydro-meteorological variables obtained from a monitoring system. 180 

The SI has a hydrologic character since its practical interest lays on its ability to serve as 181 

decision-making instrument regarding water resources management in the basin. For each 182 
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catchment, managers select a set of variables that best represent the water resources for 183 

different demand units in the basin using values of reservoirs storage, piezometric levels, 184 

natural streamflow and areal precipitation. In the case of the Jucar River, the selected 185 

variables are detailed in CHJ (2007)1. 186 

For each selected variable, the value of the SI has the following expression (CHJ 2007): 187 

𝐼𝐼𝐼𝐼 𝑉𝑉𝑖𝑖 ≥ 𝑉𝑉𝑎𝑎𝑎𝑎  →  SI =
1
2
∙ �1 +

𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑎𝑎𝑎𝑎
𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑉𝑉𝑎𝑎𝑎𝑎

� Eq. 1 

𝐼𝐼𝐼𝐼 𝑉𝑉𝑖𝑖 < 𝑉𝑉𝑎𝑎𝑎𝑎  →  SI =
1
2
∙
𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚
𝑉𝑉𝑎𝑎𝑎𝑎 − 𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚

 Eq. 2 

 188 

Where 𝑉𝑉𝑖𝑖 is the value of the variable in month i; 𝑉𝑉𝑎𝑎𝑎𝑎 is the average monthly value of the variable 189 

in the historic series considered; and 𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 are the maximum and minimum monthly 190 

values of the variable in the historic series considered respectively. The main reason to follow 191 

this calculation approach is that the arithmetic average is a robust statistic, as well as simple; 192 

so a comparison of the current variable value with the average of the historic series considered 193 

will adjust better to the real situation of the studied region. Additionally, taking into account the 194 

maximum and the minimum historic values allows homogenising the different variables into a 195 

dimensionless numeric value capable of quantifying the current situation with regard to the 196 

historic. This also permits to quantitatively compare the different variables selected between 197 

them. Finally, the overall SI of the basin and hence its drought level is defined as the weighted 198 

sum of the SI values of each of the selected hydro-meteorological variables. The weight 199 

assigned to each variable depends on the level of demand served. For the Jucar River, the SI 200 

consists of a combination of 12 different variables including precipitation, streamflow, 201 

piezometric levels and storage in reservoirs at different strategic points within the basin (CHJ 202 

2007). 203 

                                                
1 A partial translation of the contents in CHJ(2007) is provided in Acacio et al. (2013) 
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Spanish Drought Plans establish four different levels of drought, or scenarios, namely: 204 

normality, pre-alert, alert and emergency (CHJ 2007). These levels are determined according 205 

to the values of the SI with the following thresholds: Normality (SI≥0.5); Pre-alert (0.5>SI≥0.3); 206 

Alert (0.3>SI≥0.15); and Emergency (0.15>SI). Figure 2 shows the evolution of the SI in the 207 

Jucar River Basin between October 1998 and September 2010. Between the end of the XX 208 

century and the beginning of the XXI century the basin experienced a short but intense period 209 

of drought that made the SI oscillate between the pre-alert and the alert levels until 2002 when 210 

the situation returned to normality after a period of intense precipitation. Between 2005 and 211 

2008, the system suffered the worst drought event on record with SI reaching emergency 212 

levels several times during that period. After that, the system gradually recovered to pre-alert 213 

in 2009 to finally reach the normality level in 2010. 214 

Haro et al. (2014) showed the possibility that an indicator such as the SI might be insufficient 215 

in order to set and trigger the most appropriate drought mitigation measures early enough to 216 

be efficient. This method is limited to determine the current drought situation based on the 217 

comparison of present variables values with the variables occurred in the past; making its 218 

forecasting capability low, or even non-existent. Moreover, drought episodes vary between 219 

one and another. Hence, it is very unlikely that the SI is capable of working as an early warning 220 

system for droughts, advancing the real consequences of an upcoming event. 221 

In addition, as commented above, it is important that the effects of management decisions and 222 

mitigation measures are included in the monitoring process and that their modifications are 223 

reflected in order to advance their efficacy and to better support decision-making. For this 224 

reason, the use of risk assessment methodologies in combination with indicator systems 225 

provides an interesting and novel framework to support decision making during drought 226 

situations in regulated systems. 227 

3.2. Drought scenario definition based on the risk assessment of the system’s optimal 228 

operation 229 
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The methodology developed is based on previous research by Sanchez-Quispe (1999), 230 

Andreu and Solera (2006), Andreu et al (2007, and 2013) and Cancelliere et al (2009). Their 231 

findings were successfully used in the management of previous drought episodes of the Jucar 232 

River Basin. Here we present a further development of existing approaches by introducing an 233 

optimisation approach that allows one to obtain the best results achievable in the system and 234 

better rules for the application of mitigation and prevention measures. This work further 235 

develops that presented by Haro et al. (2014a) by extending its application to a multi-year 236 

regulated basin. In addition, we show how the risk assessment methodology presented here 237 

is applicable to forecast drought scenarios. Figure 3 provides a schematic summary of the 238 

methodology, which is briefly described below. 239 

We applied a monthly Monte Carlo optimisation process to a catchment management model 240 

of the Jucar River Basin previously developed in the GUI of Aquatool DSS (Andreu et al 1996) 241 

for the implementation of the European Water Framework Directive (CHJ 2004) and the 242 

development of is latest basin plan (CHJ 2015), and shown in Figure 4. The model includes 243 

the main surface storage facilities (‘Alarcon’, ‘Contreras’, and ‘Tous’ reservoirs) as well as the 244 

main aquifers in the basin that have a crucial role in the management of the system (‘Mancha 245 

Oriental’ and ‘Plana de Valencia’). The most important demands are also represented, namely: 246 

traditional irrigation in ‘Plana de Valencia’; groundwater irrigation from ‘La Mancha Oriental’ 247 

aquifer; conjunctive irrigation from the newer developments along the ‘Jucar-Turia’ canal; and 248 

the urban demands of Valencia, Sagunto and Albacete, which is minor in quantity but more 249 

sensitive to failures in the supply. Haro et al. (2012a and 2012b) and Haro Monteagudo (2014) 250 

provide a detailed description of the optimization technique, equations and constraints utilised 251 

by the model, as well as the input data it needs. A previous application can also be found in 252 

Haro et al (2014b). The model runs on a monthly time step fed by synthetic streamflow series 253 

generated stochastically from historically observed monthly values between 1980 to 2012. 254 

There are 16 streamflow input nodes along the model network, represented as thick red 255 

arrows in Figure 4. The synthetic series were generated with the stochastic analysis and 256 
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modelling module in Aquatool (Ochoa-Rivera 2002). The 16 observed streamflow time series 257 

were normalised and standardised to calibrate the autoregressive model, AR(1), shown in 258 

equation 3:  259 

𝑋𝑋𝑡𝑡 = 𝝋𝝋𝟏𝟏 ∙ 𝑋𝑋𝑡𝑡−1 + 𝜽𝜽𝟎𝟎 ∙ 𝜀𝜀 Eq. 3 

where 𝑋𝑋𝑡𝑡 and 𝑋𝑋𝑡𝑡−1 are n variables vectors; 𝝋𝝋𝟏𝟏 is an 𝑛𝑛 𝑥𝑥 𝑛𝑛 autocorrelation matrix;  𝜃𝜃0 is an 𝑛𝑛 𝑥𝑥 𝑛𝑛 260 

matrix of coefficients that multiplies the random 𝑁𝑁(0,1) values vector represented by 𝜀𝜀. For 261 

this case, 𝑛𝑛 has a value of 16. For the stochastic generation of synthetic streamflow series 262 

from observed values, the last monthly observed value is used as a seed after normalisation 263 

and standardisation. The generated time series of standardised values are converted to 264 

streamflow values following the inverse path. The validation of the model against the long term 265 

characteristics of the historic series (average, standard deviation, number of dry years), makes 266 

it suitable to explore a large range of events. 267 

The results of each optimisation run in the Monte Carlo process are the time series of 268 

reservoirs storage and releases, surface and groundwater supply to the different demands, 269 

aquifers relative storage and recharge, and flows in river streams. The statistical analysis of 270 

all runs yields a number of indicators to assess risk.  271 

When confronting an ongoing drought situation from a risk minimisation approach and a high 272 

level of uncertainty, it is more useful to rely on an index that summarizes the status of the 273 

basin considering all the possible events. In the case of regulated river basins, this index is 274 

the state of the reservoirs. The evolution of storage in reservoirs clearly reflects the operation 275 

of a system during previous periods of time, and their present status defines the future use 276 

possibilities. Hence, reservoir level state probability and storage probability are useful 277 

indicators with regard to drought in a regulated catchment and may support the decision 278 

making process with information about what can be expected in the future. 279 

Based on the previous consideration, we use the storage probability in the different reservoirs 280 

in the basin as the basis to determine the risk level and the change of scenario probability at 281 
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the end of a number of campaigns for each month. It must be noted that reservoirs levels is 282 

an important element in the Jucar River Basin drought indicator system, representing almost 283 

50% of the indicators value. We transform the reservoir levels probability distribution into state 284 

index distributions following the calculation method above by comparing the results to the 285 

historic series of observed levels. Afterwards, we determine the probability of scenario change 286 

for each month by crossing each state index distribution by the threshold levels defined by the 287 

state index methodology. 288 

We applied this methodology in the Jucar River Basin for the period between hydrologic years 289 

1998-1999 and 2008-2009. During these 10 years, two of the most important drought episodes 290 

for the Jucar River Basin in history took place (CHJ 2007; van Lanen et al. 2013): the short 291 

but intense drought of 1999-2000 and the long drought episode between 2005 and 2008.  292 

The optimisation process tends to empty the reservoirs by the end of the optimisation period. 293 

Thus, setting the multiple risk assessment runs for just one year would not provide adequate 294 

results since we want to make use of the perfect forecast principle of optimisation. Therefore, 295 

optimisation periods of four years were used for each run extracting the results of the first 296 

year. Three hundred series of 48 months generated with the autoregressive model from 297 

equation 3 proved sufficient to yield representative results in the Monte Carlo optimisation 298 

process for each monthly run. 299 

4. Results 300 

4.1. State Index complementation with scenario change probability 301 

Figure 5 shows the result of applying the proposed methodology together with the evolution 302 

of the Jucar River observed state index for the three first years of the optimisation period 303 

considered in each run. The fourth year is disregarded because it coincides with the end of 304 

the optimisation period, when the algorithm uses all the available water. For each month, we 305 

have the actual drought scenario as defined by the thresholds and the probability of each 306 
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scenario occurring one to three years later corresponding to Figures 5a to 5c, respectively. In 307 

Figure 5a, the probability of a scenario change in the next year is low, with a general tendency 308 

to remain at the same level. In Figures 5b and 5c, the probabilities of a scenario change 309 

increase after two and three years and how this provides a better insight of what can be 310 

expected in the system. With these results, the methodology proposed adds value to the actual 311 

State Index by showing the probability that the current situation might change in the future, 312 

hence providing additional support for decision makers in terms of activating mitigation 313 

measures, which normally require some time to start operating appropriately. 314 

The probability of scenario change with one year anticipation (Figure 5a) is useful for the 315 

middle and end of drought episodes as well as for annually operated systems. For example, 316 

soft preventive measures could have been maintained in February 2001 despite the entrance 317 

in the normality scenario in order to prevent the posterior quick fall to almost emergency one 318 

year later. Conversely, the two and three year anticipation probabilities (Figures 5b and 5c) 319 

are useful in detecting the possible start of a drought situation, especially in multi-year 320 

systems. Between 2004 and 2008, the State Index dropped from the normality scenario to 321 

emergency in about one year (June 2004 to June 2005) and then remained in that situation 322 

for two years. This situation is captured in Figures 5b and 5c, where the probabilities of being 323 

in a scenario worse than normality two and three years after June 2004 exceeded 50%. 324 

4.2. Approximation of SI values with risk results 325 

Previous stakeholder participation experiences in the Jucar River with risk assessment tools 326 

have shown that, in general, risk results obtained for an 80% probability of exceedance level 327 

and one year in advance are trusted as good approximations of the future state of the system. 328 

These results can be easily extracted from the tools used to perform the proposed 329 

methodology, as well as any other risk level results. Hence, we explored the ability of the 330 

proposed methodology to approximate SI from a probabilistic perspective. 331 
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Figure 6 shows the evolution of SI approximated as the 80% risk level one year in advance 332 

versus the actually observed SI in the Jucar River for the period October 1998 through 333 

September 2009. Both indices reflect accurately the drought events occurred in the Jucar 334 

River basin for the period of study. However, while the risk based SI follows the observed one 335 

during the first part of the period, there is a six months delay disconnection right before the 336 

beginning of the 2004-2008 drought episode. This is due to the operation of the optimisation 337 

process. The objective function in the optimisation model works tries to maximise the stored 338 

volume in reservoirs while meeting all the demands and environmental flows, minimising water 339 

loses from the system. First, during the wet period prior to the 2004-2008 event, the 340 

optimisation model achieves better storage levels before the episode starts because all the 341 

demands are met and there is water that would be lost instead at a high cost for the objective 342 

function. Since the optimisation process implies perfect forecast, the model is capable of 343 

storing that water. Second, when reservoirs are near to empty, like during the drought period, 344 

the objective function benefits more from supplying the demands than from storing water. 345 

Hence, despite the risk based SI drops below the observed one, the demands still have a 346 

better level of supply than in the real situation. Therefore, the risk based results offer an 347 

envelope of the actual situation, providing managers with an idea of how the system can be 348 

expected to respond at different levels of risk. 349 

5. Discussion 350 

The predictions of the methodology presented improve with respect to the combined use of 351 

storage, streamflow and precipitation to define a drought state index because they include 352 

both previous precipitation and storage data, as well as information regarding the physical 353 

system what allows obtaining its best management options. It also includes up to date 354 

information of the human influence on the system by means of water demands for the different 355 

sectors, and allows considering the environmental needs of the riverine ecosystems in the 356 

form of environmental flows definition. In addition, the presented methodology can be used 357 
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afterwards to assess the risk level with the existing management rules to evaluate the changes 358 

introduced by the mitigation measures. Since the methodology is meant to be used every 359 

month to monitor the state of the system, any new measures could be implemented in the 360 

model in real time. In this way, it is possible to select the best measures for each case and 361 

their optimal application. 362 

5.1. Methodological limitations  363 

The methodology has a number of inherent limitations. Firstly, it was limited by the quality of 364 

the stochastic streamflow series used to drive the whole process. The definition of a good 365 

stochastic model requires an amount of previously observed data that is not always going to 366 

be available. In addition, depending on the stochastic model used, the generated streamflow 367 

series will have a different capacity of capturing the dynamics of hydrology in the system. This, 368 

together with the tendency of stochastic series to reach values around the historic average 369 

after a number of generations, will limit the risk forecasting ability of the method. In this paper, 370 

an autoregressive AR(1) stochastic model was used. Despite being capable of capturing the 371 

basic statistical parameters of the observed series, Ochoa-Rivera et al. (2007) showed that 372 

the approach to streamflow modelling has a significant influence in the final results. Hence, 373 

different modelling methodologies should be explored before implementing the proposed 374 

methodology. 375 

Secondly, optimisation is a highly resources consuming process. This means that complex 376 

models of the system under study will require longer calculation periods than more simple 377 

ones. The creation of models capable of representing the reality of the system while 378 

maintaining a low degree of computational complexity requires a high level of knowledge and 379 

understanding about the system. The Jucar River Basin has been extensively studied by 380 

researchers for many years, and the methodology presented here was relatively easily 381 

applicable. However, it will not be of immediate use in river basins where water level is scarce 382 

and/or the relationships between the individual hydrological processes are not clear. 383 
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Finally, in order to be effective, the methodology and its results must be trusted, but also 384 

understood, by those that will be later affected by the decisions derived from its use. The 385 

model used in this study was developed conjunctively with the managers and water users of 386 

the basin within a participatory process that required reaching agreements for everyone. In 387 

the same way, the triggers that define each drought situation and the corresponding measures 388 

are the results of negotiations between the different actors in the system. This trust building 389 

process is achieved over time and thus, methods such as the one presented here are unlikely 390 

to be successful at the beginning of participative management processes. Anyway, as 391 

observed in Andreu et al. (2009) and Andreu et al. (2013), the very process of implementing 392 

similar methodologies finally resulted in better knowledge of the system and understanding of 393 

stakeholders needs with an overall improvement of management. 394 

5.2. Implications for drought management 395 

Existing drought monitoring systems are normally limited to measure a series of climatic and 396 

hydrologic variables and calculating various indices that allow determining what is the state of 397 

the system compared to the past. Such is the case of the state index used in Spanish drought 398 

management plans shown above. This approach may be useful, if not the only one possible 399 

in some cases, but has been revealed insufficient for its use in some systems, especially 400 

regulated water resources systems (Haro et al. 2014). Using indicators based on observation 401 

of hydrologic variables, and comparison with past data in systems where human activities take 402 

place, are unable to represent the changes occurring in the system along time. Anthropogenic 403 

actions influence not only river flows themselves with extractions and returns but also runoff 404 

production and groundwater recharge, delaying or preventing water from reaching the 405 

streams. Accounting for all of this and translating observed flows in one point to natural regime 406 

is often an arduous task that is not always rewarded with appropriate results. In addition, the 407 

parameters used for drought indices calculation are variable with time. This causes that new 408 

maximum and minimum observed values have the chance to change dramatically the shape 409 

of the indicator evolution. For example, if an exceptionally wet, or dry, period occurred, several 410 
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hydrological variables (precipitation, streamflow, reservoir storage levels, etc.) could reach 411 

unprecedented levels that might change the values of the state index resulting in completely 412 

erroneous impressions regarding past drought events, as well as influencing the perception of 413 

future ones. 414 

In regulated systems, the volume stored in the different reservoirs of the system, especially 415 

the regulation reservoirs, is normally regarded as a good approximation of the actual status of 416 

the whole system. Moreover, the comparison between the storage levels at the beginning and 417 

the end of the hydrologic year are commonly accepted as a summary of how the management 418 

of the system has been. However, the volumes stored nowadays are not comparable with the 419 

volumes stored, for example, ten years ago since water uses in the system change over time. 420 

This makes that the behaviour of the system, and thus the storage in reservoirs is different 421 

should the new demands were considered and indicators such as the one used by river basin 422 

districts in Spain cannot reflect that. In addition, the existence of high risk levels of developing 423 

drought scenarios during normality situations raise concern about the need for a more 424 

appropriate definition of what is considered to be normality in a water resources system. For 425 

this, it is undoubtedly necessary to have a deep knowledge about the system. The use of both 426 

simulation and optimisation models allow enhancing the knowledge that managers and users 427 

have of the system as well as building common understanding on the needs and concerns of 428 

the different actors involved. 429 

Finally, following a drought preventive strategy in a water resources system needs maintaining 430 

a continuous state of vigilance. Hence, drought monitoring systems should warn of the risk 431 

that a certain situation, that is considered to involve risk, develops into a worse scenario 432 

instead of just informing about the current state of the system. In this way, the measures 433 

addressed to minimise the risk or mitigating the effects of a fully developed drought episode 434 

would have enough time to operate and be efficient, and they could even be less severe than 435 

when applied with urgency. Water resources systems management involves some 436 

bureaucracy and it is necessary to take into account that the activation of measures normally 437 
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will take some time after the declaration of a new drought scenario. Thus, being able to 438 

anticipate the state of the system in a way like the one presented in this work can definitely 439 

help improving the performance of drought plans. 440 

6. Conclusions 441 

This paper has proposed a new methodology to support drought monitoring and scenario 442 

definition in regulated water resources systems. It allows approaching droughts risk 443 

assessment and early warning from a new perspective with regard to previous approaches, 444 

adding value to the existing monitoring methods currently in use. The use of optimisation 445 

modelling to obtain the best management of the system during uncertain hydrologic periods 446 

such as droughts permits anticipating the possible outcomes of these situations without the 447 

need of considering the operation rules in place that might result ineffective in these cases. 448 

An important advantage of the method developed is its capacity for dealing with complex 449 

systems, providing a general picture of the situation in the basin while most of the previously 450 

developed indices are applicable only to a demand or to a group of demands. Thus, the 451 

proposed method constitutes a step forward in the definition of drought early warning systems 452 

in regulated basins. The application of the methodology in the Jucar River shows its potential 453 

for supporting the definition of drought scenarios and hence improving the overall drought 454 

management process in the basin. Furthermore, the methodology proposed is easily 455 

exportable to other cases of study since it makes use of generalized modelling tools freely 456 

available online, although it is important to keep in mind that it is necessary a good knowledge 457 

of the system in order it to be effective. 458 

Since no drought is identical to another, especially given a changing climate, modelling the 459 

past to anticipate future drought is an ineffective and risky approach. Including future changes 460 

in climate and hydrology is essential, but also future water demands and operation policies 461 

must be considered in order to attain useful and reliable results for an efficient anticipation to 462 

future drought events. Different operation policies may also require different approaches with 463 
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regard to drought management, both in the definition of scenario thresholds for measures 464 

activation and the variables monitored, and the tools necessary to support decision making.  465 
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