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ABSTRACT 23 

A multi-technique approach was used to study the changes occurring in European eel Anguilla 24 

anguilla ovaries during hormonally-induced vitellogenesis. Aside from classic techniques used to 25 

monitor the vitellogenic process, such as ovary histology, fat content analysis, sodium dodecyl 26 

sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and vitellogenin enzyme linked 27 

immunosorbent assay (ELISA), a new technique, Fourier Transform Infrared (FT-IR) 28 

Microspectroscopy, was used for the first time to analyze A. anguilla ovaries. The results from the 29 

different techniques provided different ways of approaching the same process. Although it is 30 

considered a time consuming approach, of all the employed techniques, histology provided the 31 

most direct evidences about vitellogenesis. SDS-PAGE and ELISA were also useful for studying 32 

vitellogenesis, whereas fat analysis cannot be used for this purpose. The FT-IR analysis provided a 33 

representative IR spectrum for each ovarian stage (PV, EV, MV and LV), demonstrating that it is a 34 

valid method able to illustrate the distribution of the oocytes within the ovary slices. The obtained 35 

chemical maps confirmed changes in lipid concentrations, and revealed their distribution within 36 

the oocytes at different maturational stages. When the results and the accuracy of the FT-IR 37 

analysis were compared to those of the traditional techniques commonly used to establish the 38 

vitellogenic stage, it became evident that FT-IR is a useful and reliable tool, with many advantages, 39 

including the fact that it requires little biological material, the costs involved are low, analysis times 40 

are short, and, last but not least, the fact that it offers the possibility of simultaneously analyzing 41 

various biocomponents of the same oocyte. 42 

 43 

Keywords: ovary, vitellogenesis, SDS-PAGE, Folch, ELISA, FT-IR. 44 

 45 
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INTRODUCTION 47 

The European eel Anguilla anguilla L. 1758 has a peculiar life cycle which is not yet fully 48 

understood. It is a semelparous species which undergoes a 5-6,000 km migration to reach the 49 

Sargasso Sea, the supposed spawning area (van Ginneken & Maes, 2005). 50 

The A. anguilla, like all Anguillid species, does not mature in captivity unless hormonally 51 

stimulated. hCG is commonly used in males – although recently it was demonstrated that 52 

recombinant hCG achieves better results – and fish pituitary extract in females (Asturiano et al., 53 

2005; Palstra et al., 2005; Pérez et al., 2008; Peñaranda et al., 2010; Gallego et al., 2012). 54 

Hormonal treatment in males results in good quality sperm (Asturiano et al., 2005; Gallego et al., 55 

2012), while the current protocol used for females, both in the case of A. anguilla and Japanese eel 56 

Anguilla japonica Temminick and Schlegel 1847, results in low quality eggs and has a negative 57 

impact on embryo survival. Possible causes for the low quality eggs might be: inadequate 58 

broodstock nutrition leading to altered lipid accumulation (Seoka et al., 2003), inappropriate 59 

maturation techniques (Pedersen, 2004; Kagawa et al., 2005; Horie et al., 2008), or the 60 

accumulation of pollutants (Palstra et al., 2006). Vitellogenesis is a complex process controlled by 61 

hormones. It involves the brain, pituitary, ovaries and the liver and is influenced by environmental 62 

and internal factors. Vitellogenesis is crucial since egg growth and the uptake of the nutrients 63 

which will be used for embryo development are dependent on it (Nagahama, 1994; Brooks et al., 64 

1997; Carnevali et al., 2001a,b; Polzonetti-Magni et al., 2004). Among the different hormones 65 

involved, the gonadotropins FSH and LH (produced in the pituitary), as well as E2 (synthesized in 66 

the ovary), play important roles since they control the hepatic production of vitellogenin (an 67 

important precursor of yolk protein), the plasma levels of which affect the final egg quality 68 

(Carnevali et al., 2001b; Polzonetti et al., 2002, Lubzens et al., 2010). 69 

The egg composition of A. japonica has been investigated in relation to egg quality (Furuita et 70 
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al., 2003, 2006, 2007) however, to date, no studies have focused on A. anguilla. Hence, further 71 

studies on A. anguilla oocytes during vitellogenesis are necessary in order to optimize 72 

reproduction in this species. 73 

In the last few years, several studies have been carried out in order to gain a better 74 

understanding of A. anguilla vitellogenesis and zonagenesis (Pérez et al., 2011; Mazzeo et al., 2012; 75 

Peñaranda et al., 2013). Due to the complexity of vitellogenesis itself and all the changes that 76 

occur during this process, the objective of this study was to compare different techniques which 77 

can be employed to study vitellogenesis, in order to evaluate which one is the most suitable in 78 

terms of obtained results vs. costs and times, and how information provided by each technique 79 

can be intercrossed. 80 

To achieve this, techniques commonly employed in the study of oocyte growth, such as histology, 81 

ELISA, SDS-PAGE, and Folch method for determining fat content were used. In addition, Fourier 82 

Transform Infrared (FT-IR) Microspectroscopy was employed for the first time with A. anguilla. This 83 

technique, previously used in the study of zebrafish Danio rerio Hamilton 1882 and mummichog 84 

Fundulus heteroclitus L. 1766 ovaries and single oocytes, is considered a novel and powerful tool 85 

for analyzing the macromolecular composition of ovarian structures (Carnevali et al., 2009; 86 

Giorgini et al., 2010; Lombardo et al., 2012). Plasma FT-IR has also been shown to be effective in 87 

determining the stage of sexual development in sturgeon Acipenser transmontanus Richardson 88 

1836 (Lu et al., 2013). 89 

 90 

MATERIAL AND METHODS 91 

FISH HANDLING 92 

Thirty-nine silver-stage A. anguilla females (660 ± 162 g body mass) were caught by local 93 

fishermen between December and March during their reproductive migration from the Albufera 94 
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lagoon (Valencia, Spain) to the sea, and transported directly to the Universitat Politècnica de 95 

València (Spain) aquaculture facilities. 96 

The fish were placed in a 1500 l tank with recirculating freshwater and gradually acclimated to 97 

seawater salinity (37) and temperature (18 ± 1 °C) over the course of two weeks. The tank was 98 

covered to maintain constant darkness, thereby reducing stress. Since A. anguilla stop eating at the 99 

beginning of their reproductive migration, they were not fed during the whole experiment. The 100 

fish were handled in accordance with the European Union regulations concerning the protection of 101 

experimental animals (Dir 86/609/EEC) and under the supervision of the University Ethics 102 

Committee. 103 

 104 

HORMONAL TREATMENT 105 

After being anesthetized (benzocaine, 60 mg l-1; www.sigmaaldrich.com/) and weighed to 106 

calculate the hormone dosage, the A. anguilla females were treated weekly for 12 weeks with 107 

intra-peritoneal injections of carp pituitary extract (CPE: Catvis, www.catvis.nl) at a dose of 20 mg 108 

kg-1. The CPE was prepared as follows: 1 g of pituitary powder was diluted in 10 ml of NaCl solution 109 

(9 g l-1) and centrifuged at 1260 g for 10 min. The supernatant was collected and stored at -20 °C 110 

until use. 111 

 112 

SAMPLING 113 

Once acclimated to seawater salinity and temperature as previously described, eight fish were 114 

sacrificed every four weeks. The animals were anesthetized (benzocaine, 60 mg l-1) before being 115 

weighed and sacrificed by decapitation. Before sacrificing, blood samples were obtained from the 116 

caudal vasculature, and plasma was retrieved by centrifugation (3000 rpm, 15 min) and stored at -117 

80 °C until further analysis. 118 
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The gonads were weighed to calculate the gonad somatic index (IG; ovary mass/body mass*100). 119 

For the histological analysis, gonad samples were preserved in 10% buffered formalin (pH 7.4). 120 

Gonad samples for fat, FT-IR and SDS-PAGE analyses were frozen at -20 °C. 121 

 122 

GONAD HISTOLOGY 123 

After dehydration in ethanol, samples were embedded in paraffin and 5-10 µm thick sections 124 

were cut with a Shandon Hypercut manual microtome (Shandon, Southern Products Ltd, 125 

www.southernbiological.com/). Slides were stained with haematoxilin and eosin and observed 126 

through a Nikon Eclipse E-400 microscope and pictures were taken with a Nikon DS-5M camera 127 

attached to the microscope (www.nikon.com/). 128 

The stage of oogenesis was determined following the method described by Pérez et al. (2011). 129 

The diameters of 100 oocytes from each specimen were measured and the corresponding stage 130 

was established on the basis of the most advanced oocyte stage observed in the histological 131 

sections. The following stages were observed: Previtellogenic stage (PV): oocyte at perinucleolar 132 

and oil droplet stages; Early vitellogenic stage (EV): oocytes with small yolk globules at the 133 

periphery of the cytoplasm; Mid-vitellogenic stage (MV): oocytes with bigger yolk globules, widely 134 

distributed in the cytoplasm but still with a greater abundance of oil droplets; Late vitellogenic 135 

stage (LV): oocytes with more yolk globules than oil droplets. 136 

The most advanced stage observed was the nuclear migration stage (NM), characterized by 137 

oocyte hydration and the migration of the nucleus towards the animal pole. However, the NM 138 

stage was only reached by one animal and it was not considered in the performed analyses due to 139 

the poor meaning of comparing with just one specimen. 140 

 141 

 142 
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ENZYME LINKED IMMUNOSORBENT ASSAY FOR VTG 143 

VTG plasma levels were assayed using a homologous ELISA previously developed for A. anguilla 144 

(Burzawa Gérard et al., 1991). In summary, purified A. anguilla VTG was fixed on 96-well plates, by 145 

24 h incubation at 4 °C (200 ng/well). After washing, non-specific sites were saturated by the 146 

addition of 2% pig serum to the wells and incubated for 2 hours at room temperature, and being 147 

washed again. Serial dilutions of A. anguilla VTG standard, or of A. anguilla plasma samples, were 148 

pre-incubated with anti-A. anguilla VtG rabbit antiserum (1/100 000 final dilution) for 24 h at 4 °C. 149 

The mixtures were added to the wells in duplicate and incubated for 24 h at 4 °C. After washing, 150 

anti-rabbit IgG goat antiserum linked to peroxydase was added to each well (1/4000) and 151 

incubated for 2 h at room temperature. After washing, peroxydase activity was revealed by ortho-152 

diphenylalanine (ODP) in the presence of H2O2, for 15 minutes in the dark at room temperature. 153 

The reaction was stopped by the addition of sulfuric acid, and the Optic Density measured using a 154 

Appolo LB 913 Spectrophophotometer (Berthold Biotechnologies, www.bionity.com). The 155 

sensitivity of the ELISA was 1.7 ng ml-1 and the intra and inter-assay variation coefficients were 6.2% 156 

and 9.1%, respectively.  The sensitivity of the ELISA was 1.7 ng ml1 (Burzawa Gérard et al., 1991). 157 

 158 

SODIUM DODECYL SULFATE–POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS–PAGE) 159 

50 mg of ovary from different stages (PV, EV, MV and LV) were placed in 500 µL Eppendorf tubes 160 

containing 10 µL of lysis buffer (10 mM TRIS-HCl, pH 6.8, 1% SDS) and immediately homogenized. 161 

The homogenates were then centrifuged at 14000 g for 15 min at 4 °C to separate the dissolved 162 

yolk from the insoluble cellular debris. Protein concentration was determined by a Bradford assay 163 

(Bradford, 1976). The supernatant was added to the sample buffer (4% SDS, 20% glycerol, 10% 2-164 

mercaptoethanol, 0.004% bromophenol blue, 0.125 M TRIS-HCl, pH 6.8) in the proportion of 1:1 165 

and run on SDS-PAGE in stacking (4%) and resolving (10%) acrylamide mini-gels, 7x10 cm (Selman 166 
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et al., 1993). Molecular weight standards were placed in the well and electrophoresed at a 167 

constant current (60 mA). The protein bands were visualized by fixing the gel in 12% trichloroacetic 168 

acid for 30 min, then staining for 45 min in 0.2% Coomassie Blue R-350 (Amersham-Pharmacia 169 

Biotech, www.gelifesciences.com) in 30% methanol plus 10% acetic acid, and finally de-staining 170 

overnight in 25% methanol and 7% acetic acid (Carnevali et al., 1992). 171 

 172 

FAT EXTRACTION 173 

Total fat was extracted according to the method described by Folch et al. (1957) with a few 174 

modifications. In summary, 1 g of sample was homogenized in 30 ml of Folch solution (2:1, v/v 175 

dichloromethane/methanol and 0.75 g l-1 butylhydroxytoluene as antioxidant). Homogenization 176 

was carried out in a glass tube with an Ultra216 turrax type of homogenizer. The homogenate was 177 

filtered through fat-free Whatmann n. 6 paper into a new glass tube. To separate the mixture into 178 

two layers - one with lipids and the other with the non-lipid substances - 3.75 ml of potassium 179 

chloride were added and the glass tube was kept at 4 °C overnight. Between 8 to 48 h later, once 180 

the two layers had formed, the upper layer containing the non-lipid substances was removed with 181 

a vacuum pump. Afterwards, the aqueous phase was removed by adding enough sodium sulphate 182 

anhydrous. The fat containing phase was filtered again and evaporated using a centrifuge vacuum 183 

concentrator (Scan Speed MaxiVac Alpha, www.labogene.com/) at 35 °C. The fat was weighed and 184 

its percentage calculated on the basis of the gonad sample mass. 185 

 186 

FT-IR MEASUREMENTS AND DATA ANALYSIS 187 

Ovaries from five different specimens were cryosectioned in thin slices at a predefined thickness 188 

of 5 μm. Two adjacent slices were obtained from each sample: one of which was placed on silicon 189 

supports for the vibrational analysis and the other on conventional glass slides for morphological 190 

http://www.gelifesciences.com/
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examination (haematoxylin and eosin stained). Spectral data were achieved at room temperature 191 

by using a Perkin Elmer Spectrum GXI Spectrometer, equipped with a Perkin Elmer Autoimage 192 

microscope and a photoconductive HgCdTe, MCT, array detector, operating at liquid nitrogen 193 

temperature and covering the entire IR spectral range from 4000 to 700 cm-1. Using the 194 

microscope television camera, specific areas of each sample where the tissue distribution 195 

appeared homogeneous were selected. In these zones (ca. 600x500 μm), the chemical maps, 196 

which represent the total intensity of the infrared absorption with each pixel corresponding to a 197 

single spectrum, were acquired in transmission mode, with a spectral resolution of 4 cm-1 and a 198 

spatial resolution of 20x20 μm (128 scans), for a total of ca. 750 spectra. Background scans were 199 

acquired and rationed against the sample spectrum. For data handling, the following software 200 

packages were used: Spectrum Image 1.6 and Spectrum 6.3.1 (Perkin Elmer, 201 

www.perkinelmer.com/lab-solutions/default.xhtml), and Grams AI 7.02 (Galactic Industries, 202 

www.spectra.co.jp/pdf/grams.pdf). The spectra obtained from each sample were used to build a 203 

two points baseline fitted in the spectral range 4000-700 cm-1 and to normalize the vectors (Wood 204 

et al., 2004). Second Derivative (9-point smoothing) and Peak Fitting (Gaussian algorithm) 205 

procedures were adopted to determine the correct position and absorbance intensity of bands. By 206 

using GRAMS/AI 7.02 (Galactic Industries, www.spectra.co.jp/pdf/grams.pdf), peak fitting was 207 

performed on average spectra (interpolated in the range 1780-1470 cm-1 and two points baseline 208 

fitted), to identify the underlying component bands, the number of peaks together with their 209 

center values were carefully individuated according to the second derivative results and fixed 210 

before running the iterative process, to obtain the best reconstructed curve (residual close to zero). 211 

Correlation maps were obtained by loading second derivative representative spectra onto the 212 

chemical maps (Wood et al., 2004). This procedure, which enables the localization of biological 213 

components in the sample, correlates a selected spectrum with all the spectra in the map, 214 
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affording a colorimetric and numeric scale of correlation percentage. Attribution of the bands was 215 

carried out according to literature (Jackson & Mantsch, 1993, 2002; Pacifico et al., 2003). 216 

 217 

STATISTICAL ANALYSIS 218 

After establishing data normality, the data were analyzed by a one way analysis of variance 219 

(ANOVA) followed by a Newman-Keuls post-hoc test. If normality failed, the data were Log 220 

transformed to perform the ANOVA. All the values are expressed as mean ± standard error of 221 

mean (SEM). Differences were considered significant at p<0.05. All statistical procedures were run 222 

using Statgraphics Plus 5.1 (www.statgraphics.com/). 223 

 224 

RESULTS 225 

HISTOLOGY 226 

Five different vitellogenic stages during vitellogenesis were observed using histology [Fig. 1]. At 227 

the beginning of the treatment, all the specimens were in the PV stage (IG: 0.83), which includes 228 

the perinucleolar and oil droplet stages [Fig. 1(a,b)]. The stages progressed in line with the 229 

hormonal treatment, with stages EV (IG: 2.83), MV (IG: 5.32) and LV (IG: 17.26) [Fig. 1(c,d,e)] being 230 

reached. The most advanced stage reached was NM (IG: 39.26) [Fig. 1(f)], observed in just one 231 

female. Histological observation clearly demonstrated that (i) vitellogenesis was preceded by oil 232 

droplet accumulation [Fig. 1(a,b)]; (ii) VTG uptake occurred in the EV stage [Fig. 1(c)] and continued 233 

until the MV and LV stages [Fig. 1(d,e)]; (iii) in the NM stage, nucleus migration and coalescence of 234 

yolk granules were evident [Fig. 1(f)]. 235 

For the remainder of the analyses, specimens were grouped by developmental stage in order to 236 

identify differences relating to the progression of vitellogenesis rather than to the week of 237 

treatment. 238 
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 239 

PLASMA VTG LEVELS 240 

VTG plasma levels [Fig. 2] increased during early vitellogenesis (EV) and then remained constant 241 

until late vitellogenesis (LV). The plasma VTG increase was accompanied by the appearance of yolk 242 

vesicles in the oocytes in the EV stage [Fig. 1(c)]. 243 

 244 

FAT CONTENT 245 

In the ovaries, no differences were found in any of the different phases of vitellogenesis with 246 

respect to fat content. However, in spite of the lack of statistical significance, fat levels increased 247 

when moving from the PV to the EV stage [Fig. 3]. 248 

 249 

SDS-PAGE 250 

The presence of yolk proteins in the growing oocyte was confirmed by the appearance of four 251 

distinct components with an apparent molecular weight of 100, 60, 30 and 26 kDa in the EV, MV 252 

and LV stages, as shown by SDS-PAGE. An additional band with an apparent molecular weight of 15 253 

kDa was observed in the LV stage [Fig. 4]. 254 

 255 

FT-IR 256 

The comparative analysis of representative spectra allowed the visualization of the changes that 257 

occurred in the biochemical composition of the different samples. 258 

With regards to the ovary, when moving from the PV to the LV stage, the uptake of VTG was 259 

substantiated by an increase in lipids, proteins, carbohydrates and phosphates. In the region 3100–260 

2800 cm-1, the convoluted band with a maximum at 2926 cm-1 increased between the PV and the 261 

LV stage: in particular, the analysis of the 2926/2954 cm-1 (νasym CH2/CH3) and 2854/2873 cm-1 (νsym 262 
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CH2/CH3) absorbance band ratios pin-pointed an increase in CH2 moiety [Fig. 5]. According to the 263 

vibrational analysis in the spectral region 1800–1900 cm-1, between the PV and the LV stages in the 264 

ovary, some conclusions can be drawn: (i) the vibrational mode at 1738 cm-1 increased; (ii) changes 265 

in protein content and secondary structure were observed by analyzing Amide I and Amide II 266 

bands; in particular, the bands at 1695 cm-1 (β-turn) and at 1631 cm-1 (β-sheet) increased, while 267 

those at 1640 cm-1 (random coil) disappeared; (iii) the increase in the lipidic chain length was 268 

confirmed by the increase of the band at 1458 cm-1 (δCH2/3) ; (iv) the increase in the phosphate 269 

groups was demonstrated by the bands at 1239 cm-1 (νasym PO2
- ) and 1081 (νsym PO2

- ); (v) there 270 

was a rise in the glucidic component, confirmed by the band at 1060 cm-1 (νsym CO-O-C) [Fig. 5]. In 271 

addition, correlation maps guaranteed the correspondence between the analyzed samples and an 272 

average representative spectrum for each ovarian stage (PV, EV, MV and LV), validating the method 273 

and illustrating the distribution of the oocytes within the ovary slices [Fig. 6]. At the same time, 274 

chemical maps obtained by correlating the region 3100-2800 cm-1 (corresponding to CH2 and CH3 275 

moieties) confirmed changes in the concentration of the analyzed components and showed the 276 

distribution of the lipids within the ovaries in the different maturational stages [Fig. 6]. 277 

 278 

DISCUSSION 279 

The aim of this study was to integrate information from different techniques to gain a wider and 280 

more complete understanding of vitellogenesis in A. anguilla and to identify the most exhaustive 281 

and convenient technique. 282 

According to the histological analysis of the ovaries, VTG plasma content and fat content follow 283 

a similar pattern, with both showing a first phase of lipid accumulation followed by a phase in 284 

which vitellogenin is synthesized, transported and accumulated. The reason for this could be that 285 

lipids and yolk proteins are the most important macromolecules for the developing future embryo 286 
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(Brooks et al., 1997; Carnevali et al., 2001a,b). 287 

In particular, fat accumulation in the ovary occurs between the PV and the EV stages, as 288 

illustrated in particular by histology and fat analysis (in spite of a lack of statistical significance, an 289 

increase in ovarian fat content was appreciated). This first stage of vitellogenesis, characterized by 290 

the presence of fat, indicates that lipid composition, storage and mobilization are important for 291 

successful vitellogenesis and probably deserve more attention in the attempt to optimize breeding. 292 

The progression of vitellogenesis is supported by histology, the increase of VTG plasma content 293 

and the SDS-PAGE. Vitellogenin is synthesized by the liver in response to 17β-estradiol produced by 294 

the ovary, and is carried in the blood to the ovary (Nagahama, 1994). Hence, VTG plasma content 295 

can be an indicator of the progression of vitellogenesis. These results were validated by FT-IR 296 

analysis, which showed an increase in vitellogenin during oocyte maturation. In fact, the increase 297 

in CH2 moiety and in the vibrational mode at 1738 cm-1  were attributable to changes in lipidic 298 

backbone as well as amino acid side chains (Wood et al., 2008), and to VTG (Carnevali et al., 2009), 299 

respectively. 300 

In A. anguilla, in order to classify animals according to their developmental stage, eye index 301 

together with skin and fin coloration can also be used, but these are indirect evidences that may 302 

help to distinguish migrating from non-migrating individuals (Durif et al., 2005). So, it is important 303 

to find a technique which can give a reliable and more direct indication of the developmental stage 304 

reached by a specimen. 305 

The advantages and disadvantages of each technique are summarized in Table I. Histology has 306 

traditionally been the most employed technique for establishing the developmental stage of fish, 307 

since it allows the direct observation of the progression of vitellogenesis through the analysis of 308 

the ovaries. Unfortunately, this technique is very time consuming (Brewer et al., 2008) and 309 

generates of a lot of waste because of the use of alcohols and chemical reagents. Waste 310 
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production is also one of the disadvantages of fat content analysis by Folch method. However, 311 

unlike histology, ovarian fat content is not a very good technique for studying the progression of 312 

vitellogenesis. In fact, in addition to it also being time consuming, it does not give an immediate 313 

result and, above all, fat content cannot be linked exactly to any vitellogenic stage. However, since 314 

it has been demonstrated that dietary lipid content affects fatty acid composition and egg quality, 315 

studies on fat composition and mobilization – fat content was also studied in other body tissues, 316 

including the muscle and the liver – should be performed to establish the energetic needs of 317 

maturing A. anguilla and to define specific breeder diets (García-Gallego & Akharbach, 1998; 318 

Furuita et al., 2007). 319 

In addition, VTG plasma content and SDS-PAGE only give partial indications on the progression 320 

of vitellogenesis. According to our results, VTG plasma content analysis, which has the advantage 321 

of not needing to sacrifice the fish as blood can be retrieved by anesthetized specimens, could be 322 

used to distinguish the PV stage from more advanced stages.  This is because a significant increase 323 

in the levels is only observed in the PV and EV stages, with no differences found in the other stages. 324 

When using SDS-PAGE, real differences were found between animals at the very beginning of 325 

vitellogenesis and others at more advanced stages, but this technique cannot be used to find out 326 

exactly in which stage a specimen is. However, it would be interesting to carry out a more in depth 327 

analysis in order to understand which yolk proteins appear during the progression of vitellogenesis. 328 

In addition, SDS-PAGE is a fast method, which generates little waste and requires small amounts of 329 

tissue. 330 

FT-IR analysis is a novel technique, which was successfully applied to determine the 331 

developmental stage in maturing A. anguilla.  Although specific instruments and trained staff are 332 

needed, this technique has the advantage of short analysis times and the possibility of analyzing 333 

various molecules of interest at the same time on the same oocyte. In fact, FT-IR also provides 334 
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information about the composition of the ovary. Recently, studies on A. anguilla reproduction have 335 

been focusing on the effect of nutrition and broodstock diets on egg quality (Heinsbroek et al., 336 

2013; Støttrup et al., 2013). FT-IR could prove a useful tool in this respect, since it allows the study 337 

how different diets affect ovarian macromolecular composition and oocyte quality. 338 

 339 
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Table I. Comparison of the advantages and disadvantages of the various techniques used to study 

vitellogenesis in Anguilla anguilla. 

 

Technique Advantages Diasadvantages 

Histology - Direct observation of the ovary and 
determination of the developmental 
stage 

- Time consuming 
- Waste production 

 
Folch method 

 
- Basis to study mobilization and 

nutrient requests 

 
- No direct information on 

developmental stage 
- Time consuming 
- Waste production 

 
VTG content 

 
- No sacrifice needed 
- Screening of specimens in PV stage vs 

other stages 

 
- No direct information on 

developmental stage 
 

 
SDS-PAGE 

 
- Screening of specimens in PV stage vs  

other stages  
- Fast 
- Small amount of tissue needed 

 

 
- No direct information on 

developmental stage 
 

FT-IR - Once spectra are acquired, 
information on developmental stage 

- Fast 
- Study of macromolecules 

- Expensive equipment 
- Trained personnel needed 

 

Table
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Figures captions 1 

 2 

Fig. 1. Ovarian developmental stages in Anguilla anguilla. A) Previtellogenic 3 

(PV), perinucleolar stage; B) Previtellogenic, lipid droplet stage; C) Early 4 

vitellogenic (EV) stage; D) Mid vitellogenic (MV) stage; E) Late vitellogenic 5 

(LV) stage; F) Nuclear migration (NM) stage. Arrows in C, D, E show the 6 

position of the yolk globules, arrow in F points to the nucleus. Scale Bar: A, B, 7 

D: 100 µm; C: 50 µm; E, F: 200 µm.  8 

 9 

Fig 2. Changes in VTG plasma levels (mg ml-1) during vitellogenesis according 10 

to Anguilla anguilla ovarian developmental stage. VTG levels are measured by 11 

homologous ELISA. PV: pre-vitellogenesis (n = 8); EV: early vitellogenesis (n 12 

= 9); MV: mid-vitellogenesis (n = 2); LV: late vitellogenesis (n = 6). P < 0.05. 13 

 14 

Fig. 3. Changes in Anguilla anguilla ovarian fat content during ovarian 15 

development according to developmental stage. Fat content was measured by 16 

Folch method. PV: pre-vitellogenesis (n = 3); EV: early vitellogenesis (n = 17 

10); MV: mid-vitellogenesis (n = 2); LV: late vitellogenesis (n = 6). P < 0.05. 18 

 19 

Fig. 4. SDS-PAGE showing changes in protein during Anguilla anguilla oocyte 20 

development. PV: pre-vitellogenesis; EV: early vitellogenesis; MV: mid-21 

vitellogenesis; LV: late vitellogenesis; NM: nuclear migration.  22 

 23 

Figure Captions
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Fig. 5. Representative spectra of the different stages of Anguilla anguilla 24 

oocyte development analyzed by FT-IR analysis. PV: pre-vitellogenesis; EV: 25 

early vitellogenesis; MV: mid-vitellogenesis; LV: late vitellogenesis. The 26 

meaningful peaks are labelled. 27 

 28 

Fig. 6. A: Photomicrographs of Anguilla anguilla ovary sections from fish at 29 

different vitellogenic stages (PV: pre-vitellogenesis; EV: early vitellogenesis; 30 

MV: mid-vitellogenesis; LV: late vitellogenesis). B: Correlation maps of 31 

different vitellogenic stages (PV, EV, MV and LV) integrated under the 32 

corresponding representative spectrum. C: Chemical maps integrated under 33 

the 3010-2800 cm-1 region corresponding to lipids. The color scale indicates 34 

the intensity of the signal detected.  35 

 36 
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