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Abstract: In this paper, we present a home-made experimental set-up to study the falling movement of an inverted 
pendulum. The experimental set-up allows preparing a laboratory session for first year Physics or Engineering students. 
This set-up has been used in the Bachelor's Degree in Mechanical Engineering at the School of Design Engineering of 
the Universitat Politècnica de València. The experimental data are fitted to the theoretical equation of motion, obtaining 
a very good agreement between experiment and theory. In addition, direct measurement of the parameters involved in 
the equations was carried out, showing a very good agreement with the calculated parameters. 
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Introduction 

An inverted pendulum is a pendulum that has the centre of mass above its pivot point. 
It can be make with a rigid rod which rotates in a vertical plane: Stephenson (1908), 
Phelps & Hunter (1965), Blitzer (1965), Friedman (1982) and Douvropoulos (2012). 
The inverted pendulum has the remarkable property to be stable in a vertical position 
when the supporting point oscillates vertically above a certain frequency: Corben & 
Stehle (1994) and Semenov el al. (2013). This system has been used for teaching 
purpose in nonlinear dynamics and control theory engineering: see for instance Hovland 
(2008), Magana & Holzapfel (1998), Zhao & Spong (2001), among many other 
references that can be found in the literature. 

Analytical and approximate solutions for the differential equation of the non-linear 
pendulum can be found in the literature (see for instance Matthews el al. (2005) and 
references therein).  

In this paper, we present a home-made experimental set-up to study the falling 
movement of an inverted pendulum. The theoretical analysis of the system is based in 
the law of conservation of mechanical energy, that is an important topic of physics in 
the first year of many Engineering Bachelor's Degrees. In particular, this set-up has 
been used in a laboratory session in the subject of physics in the Bachelor's Degree in 
Mechanical Engineering at the School of Design Engineering of the Universitat 
Politècnica de València.  

Material and Methods 

The experimental set up is shown in Figure 1a. It consists of two rigid rods (1) than can 
rotate around an articulated joint (2). Between the two rods, there is a half circle 
protractor (3) marked in degrees, with 7 holes, and the set-up also has an electro-optical 
sensor (4) for detecting the pass through the holes. The holes have an angular size of 2 
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degrees, and the distance between holes is gradually increased. The first hole is placed 
at 7 degrees due to the size of the detection system. 

The electro-optical sensor is composed of a light-emitting diode (led) and a receiver 
phototransistor, placed one in front of the other. When the system is passing in front of 
the holes, the light radiation from the led is received by the phototransistor producing 
a current which is measured in an oscilloscope connected to the system.  

         
Figure 1. (a) Experimental set-up for measuring the free fall of an inverted pendulum. (b) Schematic 

representation of the set-up for measuring the free fall of an inverted pendulum. 

It should be important to note that the cost of the proposed system is very cheap, except 
for the oscilloscope, which is used for data measuring, although this should not be an 
implementation difficulty as this is very common general equipment in Physics and 
Electricity laboratories. 

The system is schematically represented in Figure 1b, where θ is the angle between the 
vertical line and the rod. The represented point cm is the position of the Centre of Mass 
of the system, and 𝑤𝑤��⃗  is the weight of the rod. 

The potential energy of the system when the rod makes an angle θ with the vertical line 
is given by: 

𝑈𝑈 = 𝑚𝑚𝑚𝑚ℎ = 𝑚𝑚𝑚𝑚𝑅𝑅𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐    (1) 
where m is the total mass of the system, g is the gravitational acceleration, h is the 
height of the centre of mass and RCM is the distance from the rotation point to the system 
centre of mass. 

The kinetic energy is given by, 

𝐾𝐾 = 1
2
𝐼𝐼𝜔𝜔2 = 1

2
𝑚𝑚𝑅𝑅𝑔𝑔2𝜔𝜔2    (2) 

where in this last expression ω is the angular velocity, I is the moment of inertia, and 
the radius of gyration, Rg, has been introduced: 

𝑅𝑅𝑔𝑔 = � 𝐼𝐼
𝑚𝑚

    (3) 

The system is dropped from an initial angle θ0, without initial velocity. From the energy 
conservation of mechanical energy, neglecting the loss of energy due to frictional 
forces, the kinetical initial energy at the initial point has to be equal to the total energy 
when the rod makes an angle θ with the vertical line: 

𝑚𝑚𝑚𝑚𝑅𝑅𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 = 𝑚𝑚𝑚𝑚𝑅𝑅𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1
2
𝑚𝑚𝑅𝑅𝑔𝑔2𝜔𝜔2    (4) 

      (a)                                                                    (b) 
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Then, we can obtain the square of the angular velocity: 

𝜔𝜔2 = 2𝐾𝐾2(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)    (5) 
where, for simplicity in the expression, we have introduce the constant K: 

𝐾𝐾2 = 𝑔𝑔𝑅𝑅𝐶𝐶𝐶𝐶
𝑅𝑅𝑔𝑔2

    (6) 

Then, the students should measure the angular velocity as a function of the angular 
position. The angular velocity can be approximately calculated as the size of the hole 
(2 degrees = 0.0349 rad in the proposed set-up) divided by the time it takes to pass over 
the hole, that it is measured with the oscilloscope: 

𝜔𝜔 ≃ 𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

     (7) 

Within this approximation, the students should graphically represented the square of 
the angular velocity vs the cosine of the angle position, and a straight line should be 
obtained. From this data, performing a linear fit, the slope of the straight line is equal 
to 2K2. From the y-intercept of the line, the value of the initial angle can be calculated. 

Results and Discussion  

      
Figure 2. (a) A group of students performing the measurement. (b) Angular velocity squared vs cos θ; 

crosses represent data points with error bars, and solid line the linear fit. 

In the picture of Figure 2a, it can be seen a group of students performing the 
measurement in the oscilloscope with the proposed set-up. In Figure 2b, the square of 
the angular velocity as a function of angular position is represented. A linear fit has also 
been carried out in order to obtain the slope = – (101.7  ± 1.8) (rad/s)2 and the y-intercept 
point = (101.5 ± 1.4) (rad/s)2. From these results, the value of K and θ0 shown in Figure 
2 are obtained. 

The results obtained for the value for the fit parameters are very good, with relative 
errors smaller than 2%, calculated as the ration between the absolute error and the result 
of measurement. This result is quite remarkable, because of the simplicity of the 
experimental set-up together with the approximations done in calculations. Some points 
in the graph of Figure 2b vary slightly from the trend line, which can be attributed to 
the approximation for the value of the angular velocity.  

In order to compare the results obtained, direct measurement of the parameters can be 
performed by the students. For the angle θ0, the initial position of the rod can be directly 
measured with the half circle protractor, obtaining the value θ0 = (0.096 ± 0.009) rad. 
The agreement is not very good. The reason of this discrepancy for the angle θ0 is due 

 (a)                                                              (b) 
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to the fact that we have represented the value of cos θ, that for the case of θ0 is very 
close to 1. Then, when the arccos of this number is calculated and the propagation of 
error is performed, a large value of the error is obtained. 

On the other hand, the fundamental equation is the same for the pendulum in inverse 
position as for the normal position (Matthews et al., 2005). Therefore, students can 
place the moving part in the normal pendulum position, and make it oscillate over its 
equilibrium position. The angular frequency of the oscillation is equal to the K constant. 
From the oscillation period for small oscillations, they can find the value of the K 
constant (7.09 ± 0.06) rad/s. In this case, we have a very good agreement between the 
obtained value and the direct measurement of the K constant, with a discrepancy smaller 
than 1%. 

Conclusions 

In this paper we have presented a home-made experimental set-up to measure the 
motion of an inverted pendulum fall. This experimental set-up has been implemented 
as a laboratory session in the subject of physics in the first year of the Bachelor's Degree 
in Mechanical Engineering at the School of Design Engineering of the Universitat 
Politècnica de València. 

In spite of the approximation done to calculate the angular velocity, a very good 
agreement between the fitted parameters and direct measurement of these parameters 
has been found. 

After the lab session, the students have to present a laboratory report. From the results 
of this laboratory report, we have checked that most of the students reach the planned 
learning objectives. During the lab session, we have checked that the students are 
motivated by this experiment. In particular, the students are surprised about the good 
results in spite of the simplicity of the experiment. In any case, to complete this study, 
we are planning to take a survey to the students, in order to have feedback, and to check 
their motivation. 
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