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ABSTRACT 

 

The two most common commercial copper baths are the acid sulfate copper bath and 

the alkaline cyanide copper bath. Alkaline copper baths are mostly used to coat parts 

with complex geometry and to avoid galvanic deposition when depositing a metal on a 

less noble substrate. Because of the toxicity of cyanide compounds, alternative baths 

have been developed using different complexing agents. The starting point of the 

present study is a cyanide-free strike bath developed for copper plating on Zamak 

substrates developed by the Institute for Technological Research of the State of São 

Paulo/ Brazil. The replacement of a raw material such as cyanide must be 

economically advantageous and technically feasible. Therefore, this study intended to 

propose an alternative to the treatment of liquid wastes from the mentioned bath, 

aiming at simultaneous water reclamation and chemicals recovery in a closed system. 

The electrodialysis membrane separation process was studied, using a laboratory-

scale system operating with a synthetic solution simulating the rinsing waters from the 

HEDP-based bath. The feasibility of the technique was evaluated by analyzing 

operational parameters such as ion extraction, demineralization rate, concentration 

rate, current efficiency for each anionic specie and average energy consumption. 

Because HEDP is a chelating agent, the transport of Cu(II)-HEDP chelates through 

anion-exchange membranes was also evaluated by means of electrochemical 

methods. Chronopotentiometric and current-voltage curves were constructed for 

different model solutions containing the same compounds as the original bath. A 

relation between the presence of chelates in the solutions and the fixed ion exchange 

group could be established. Lastly, deposition tests were performed using electrolytes 

containing the recycled inputs and the characteristics of the coatings were analyzed. 

The results showed that an electrodialysis stack using strongly basic anion-exchange 

membranes was suitable to produce treated solutions and a concentrate containing 

the ions from the bath. The concentrate could be added to the copper bath to 

compensate eventual drag-out losses without affecting the quality of the coatings. 

Thus, the application of electrodialysis was shown to be a feasible alternative for 

recovering water and inputs from the evaluated solution, reducing the wastewater 

generation and saving natural resources.  

 

Keywords: membrane separation process; electrodialysis; copper chelates; 

cyanide-free plating bath; water reclamation; inputs recovery. 

 

 

 



 
 

RESUMO 

 

Os dois banhos de cobre comerciais mais comuns são o banho ácido à base de sulfato 

e o banho alcalino à base de cianeto. Os banhos alcalinos são usados principalmente 

para recobrir peças com geometria complexa e para evitar a deposição por 

deslocamento galvânico quando se deposita um metal em um substrato menos nobre. 

Por causa da toxicidade dos compostos cianídricos, banhos alternativos vêm sendo 

desenvolvidos usando diferentes agentes complexantes. O ponto de partida do 

presente estudo é um banho toque isento de cianeto para deposição de cobre em 

substratos de Zamak, desenvolvido pelo Instituto de Pesquisas Tecnológicas / Brasil. 

A substituição de matérias-primas como o cianeto deve ser economicamente 

vantajosa e tecnicamente viável. Desta forma, este estudo pretendeu propor uma 

alternativa para o tratamento de resíduos líquidos do banho mencionado, visando à 

recuperação simultânea da água e das matérias-primas em um sistema fechado. Foi 

estudado o processo de separação por membranas de eletrodiálise, usando um 

sistema em escala laboratorial operando com uma solução sintética que simulava as 

águas de lavagem do banho à base de HEDP. A viabilidade da técnica foi avaliada 

por meio da análise de parâmetros operacionais, como a extração dos íons, a taxa de 

dessalinização, o percentual de concentração, a eficiência de corrente calculada para 

cada espécie iônica e o consumo médio de energia. Devido ao HEDP ser um agente 

quelante, o transporte de quelatos Cu(II)-HEDP através de membranas aniônicas foi 

avaliado por meio de métodos eletroquímicos. Curvas cronopotenciométricas e curvas 

corrente-potencial foram construídas para diferentes soluções sintéticas que 

continham os mesmos compostos que o banho original. A relação entre a presença 

de quelatos nas soluções e os grupos fixos de troca iônica pôde ser estabelecida. Por 

fim, testes de deposição foram realizados usando eletrólitos contendo os compostos 

reciclados e as características dos depósitos foram analisadas. Os resultados 

mostraram que o sistema de eletrodiálise usando membranas aniônicas contendo 

grupos de troca fortemente básicos pôde produzir soluções tratadas e um concentrado 

contendo os íons do banho. O concentrado pôde ser adicionado ao banho original 

para compensar eventuais perdas por arraste sem afetar a qualidade dos depósitos. 

Assim, a aplicação da eletrodiálise se mostrou uma alternativa viável para a 

recuperação de água e de insumos da solução avaliada, reduzindo a geração de 

efluentes e economizando recursos naturais. 

 

Palavras-chave: processo de separação por membranas; eletrodiálise; quelatos de 

cobre; banho de deposição isento de cianeto; recuperação de água; recuperação de 

insumos. 

 



 
 

RESUMEN 

 

Los dos baños de cobre más utilizados comercialmente son el baño ácido a base de 

sulfato y el baño alcalino a base de cianuro. Los baños alcalinos son utilizados 

principalmente para producir recubrimientos en piezas con geometría compleja y para 

evitar la deposición galvánica cuando se deposita un metal en un sustrato menos 

noble. Debido a la toxicidad de los compuestos de cianuro, se han desarrollado baños 

alternativos usando diferentes agentes complejantes. El punto de partida de la 

presente investigación es un baño primario sin cianuros para deposición de cobre en 

sustratos de Zamak desarrollado en el Instituto de Investigaciones Tecnológicas del 

Estado de Sao Paulo / Brasil. La sustitución de materias primas como el cianuro debe 

ser económicamente ventajosa y técnicamente viable. De esta manera, la 

investigación presentada pretendió proponer una alternativa para el tratamiento de 

residuos líquidos del baño ya mencionado con la finalidad de recuperar de manera 

simultánea el agua y las materias primas en un sistema cerrado. Se ha estudiado el 

proceso de separación por membranas de intercambio iónico, la electrodiálisis, 

usando un sistema en escala de laboratorio y una disolución sintética que simulaba 

las aguas residuales del baño a base de HEDP. Se ha evaluado la viabilidad del 

sistema por medio del análisis de los parámetros de operación, como la extracción de 

iones, la tasa de desmineralización, el porcentaje de concentración, la eficiencia de la 

intensidad calculada para cada especie y el consumo medio de energía. Debido a que 

el ácido HEDP es un agente quelante, se ha evaluado el transporte de los quelatos 

Cu(II)-HEDP a través de membranas de intercambio de aniones por medio de 

métodos electroquímicos. Se han construido curvas cronopotenciométricas y curvas 

intensidad-potencial para diferentes disoluciones sintéticas que contenían los mismos 

compuestos que el baño original. Se ha establecido la relación entre la presencia de 

los quelatos en las disoluciones y los grupos fijos de intercambio de aniones. Por fin, 

se han realizado las pruebas de deposición usando electrólitos conteniendo los 

compuestos reciclados y se han evaluado las características de los depósitos 

obtenidos. Los resultados indicaron que el sistema de electrodiálisis usando 

membranas de intercambio de aniones con grupos de intercambio de base fuerte ha 

podido producir disoluciones tratadas y un concentrado conteniendo los iones del 

baño. Se ha podido añadir el concentrado al baño original para compensar eventuales 

perdidas del arrastre sin afectar la calidad de los depósitos. Por lo tanto, la aplicación 

de la electrodiálisis demostró ser una alternativa viable para la recuperación del agua 

y de las materias primas de la disolución evaluada, reduciendo la generación de 

residuos líquidos y ahorrando los recursos naturales. 

 

Palabras clave: procesos de membranas; electrodiálisis; quelatos de cobre; baño 

electrolítico sin cianuros; recuperación del agua; recuperación de materias primas. 



 
 

RESUM 

 

Els dos banys de coure més utilitzats comercialment són el bany àcid a base de sulfat 

i el bany alcalí a base de cianur. Els banys alcalins són utilitzats principalment per a 

produir recobriments en peces amb geometria complexa i per a evitar la deposició 

galvànica quan es deposita un metall en un substrat menys noble. A causa de la 

toxicitat dels compostos de cianur, s'han desenrotllat banys alternatius usant diferents 

agents complexants. El punt de partida de la present investigació és un bany primari 

sense cianurs per a deposició de coure en substrats de Zamak desenrotllat en l'Institut 

d'Investigacions Tecnològiques de l'Estat de Sao Paulo / Brasil. La substitució de 

matèries primeres com el cianur ha de ser econòmicament avantatjosa i tècnicament 

viable. D'aquesta manera, la investigació presentada va pretendre proposar una 

alternativa per al tractament de residus líquids del bany ja mencionat amb la finalitat 

de recuperar de manera simultània l'aigua i les matèries primeres en un sistema 

tancat. S'ha estudiat el procés de separació per membranes d'intercanvi iònic, 

electrodiàlisi, usant un sistema en escala de laboratori i una dissolució sintètica que 

simulava les aigües residuals del bany a base d'HEDP. S'ha avaluat la viabilitat del 

sistema per mitjà de l'anàlisi dels paràmetres d'operació, com l'extracció d'ions, la taxa 

de desmineralització, el percentatge de concentració, l'eficiència de la intensitat 

calculada per a cada espècie i el consum mitjà d'energia. Pel fet que l'àcid HEDP és 

un agent quelant, s'ha avaluat el transport dels quelats Cu (II)-HEDP a través de 

membranes d'intercanvi d'anions per mitjà de mètodes electroquímics. S'han construït 

corbes cronopotenciomètriques i corbes intensitat-potencial per a diferents 

dissolucions sintètiques que contenien els mateixos compostos que el bany original. 

S'ha establit la relació entre la presència dels quelats en les dissolucions i els grups 

fixos d'intercanvi d'anions. Finalment, s'han realitzat les proves de deposició usant 

electròlits contenint els compostos reciclats i s'han avaluat les característiques dels 

depòsits obtinguts. Els resultats van indicar que el sistema d'electrodiàlisi usant 

membranes d'intercanvi d'anions amb grups d'intercanvi de base forta ha pogut produir 

dissolucions tractades i un concentrat que conté els ions del bany. S'ha pogut afegir 

el concentrat al bany original per a compensar eventuals perdudes de l'arrossegament 

sense afectar la qualitat dels depòsits. Per tant, l'aplicació de l'electrodiàlisi va 

demostrar ser una alternativa viable per a la recuperació de l'aigua i de les matèries 

primeres de la dissolució avaluada, reduint la generació de residus líquids i estalviant 

els recursos naturals. 

Paraules clau: processos de membranes; electrodiàlisi; quelats de coure; bany 

electrolític sense cianurs; recuperació de l'aigua; recuperació de matèries primeres. 
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1 INTRODUCTION 

 

 The fundamentals of metal plating were firstly observed in 18th century and 

began to be applied in industrial processes less than a hundred years later (1,2). Ever 

since, electroplating has become one of the most important techniques of metal 

finishing industry.  The main objectives of metal deposits are: to protect the substrate 

surface against corrosion, to enhance mechanical or electrical properties such as 

hardness, resistance to abrasion or the electrical conductivity and to improve 

decorative aspects (3–5). Some of typical examples of coated components are engines 

and automotive vehicle parts, sanitary accessories, jewelry, printed circuit boards and 

household appliances (5,6). 

 One of the main characteristics of electroplating is its variety of raw materials. 

Electroplating baths usually are composed of copper, zinc, nickel, chromium, gold, 

silver and tin (5). However, only a fraction of the mentioned materials is directly 

incorporated to the final products. There is a volume of wastewater containing metal 

salts and other chemicals that is forwarded to the treatment plants. The most traditional 

wastewater treatment methods may generate a galvanic sludge that is classified as 

hazardous waste according to the Brazilian standards (NBR) from Associação 

Brasileira de Normas Técnicas (ABNT), NBR 10004:2004 (7), and that may be 

classified as hazardous or dangerous waste according to the European Directive 

2008/98/EC (8). 

 Four important issues started to stimulate plating industries to search for 

alternatives in order to recover and reuse chemicals from wastewaters: 

i. The cost related to waste treatment and disposal and the indirect cost of 

discarded raw materials (9); 

ii. The water consumption per unity encourages water reclamation (9); 

iii. The environmental legislation became more rigorous throughout the years. 

In Brazil, the National Policy on Solid Waste (PNRS) and the National Policy 

of Water Resources (PNRH) may be mentioned. In Europe, the Directive 

2008/98/EC of the European Parliament on waste may be cited. 

iv. The concern about the depletion of ores, creating a future scenario of metal 

scarcity and cost raise (10). 
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The cleaner production concept began to be incorporated in several industries 

aiming at improving the efficiency of natural resources and energy utilization, reducing 

risks for the environment and for human life and reducing the environmental impact 

caused by manufactured products throughout their life cycle (11,12). Cleaner 

production strategies are generic and multidisciplinary which means that each 

production unity is responsible for establishing their goals and for managing their 

performance indicators. Considering a metal finishing industry, some examples of set 

goals may be the decrease of water consumption, the water reclamation, the recovery 

and reuse of chemicals, the replacement of toxic raw materials and the improvement 

of waste treatment techniques (13–15). 

In the face of the current tendency to recover water and chemicals from 

industrial waste, membrane separation processes are being alternatively used instead 

of traditional wastewater treatment methods. Some of the advantages of membrane 

separation processes are (16): 

i. No required use of external heat sources, since it is not necessary to 

perform solvent phase changes. As a consequence, equipment such as 

condensers and evaporators are not necessary;   

ii. Performing at ambient temperature; therefore, there is no generation of 

combustion products; 

iii. No sludge generation; 

iv. Recovering value-added chemicals; 

v. The possibility of adapting them to other applications; 

vi. Being able to integrate them to other methods in hybrid systems.  

The disadvantages of membrane separation processes are: membrane 

clogging, limitation of suspended particles, solution viscosity and maximum salt 

concentration of treated solutions (16).  

 The present study proposes the application of electrodialysis (ED) as an 

alternative to the treatment of a solution simulating the wastewater from a cyanide-free 

copper electroplating bath, aiming at the recovery of water, copper and other 

added-value chemicals. The possible interactions between the ions from the solution 

and two commercial ion-exchange membranes were thoroughly evaluated.  

 Electrodialysis is a membrane separation process that uses an electrical 

potential difference applied between two electrodes as a driving force to promote the 
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transfer of ions through selective membranes (17). Previous studies (18–21) indicated 

the feasibility of electrodialysis for treating wastewaters from plating processes for 

recovering metals and other chemicals. 

 This work was subdivided into three steps. In the first step, the transport 

properties of ions from the cyanide-free copper bath through two different commercial 

ion-exchange membranes for electrodialysis were evaluated. Emphasis was given to 

the formation of metallic chelates between copper and the organic acid 

1-hydroxyethane,1-1,diphosphonic acid (HEDP) which plays the role of a complexing 

agent instead of cyanide in the studied bath. In the second step, electrodialysis was 

evaluated as a possible alternative for treating solutions simulating wastewaters from 

the above mentioned bath aiming at the recovery of its most important compounds in 

a concentrated solution. In the third step, the concentrated solution obtained by 

electrodialysis was reused as a source of ions in the original bath in order to simulate 

the replacement of lost ions due to a drag out. The quality of copper deposits was 

evaluated and compared to the deposits obtained by using the original electrolytic 

solution. 

 

1.1 Background 

 

Electroplating baths may be categorized in four main groups: acid baths 

composed of simple salts, acid baths composed of complex salts, alkaline baths 

composed of metals forming amphoteric salts and alkaline baths composed of complex 

salts. The latter represent the most common application of cyanide salts in plating 

baths. Cyanide-based baths are mostly used for coating parts with complex geometry 

because they present greater throwing power in comparison with acid baths. They are 

also used to coat parts constituted of a metal less noble than the coating metal (22). 

The application of alkaline cyanide-based baths will be discussed in more detail 

posteriorly. 

Because of the toxicity of cyanide salts, alternative raw materials have been 

studied in order to obtain metal coatings with similar properties to cyanide-based baths 

but using non-toxic compounds. The focus of the present work is a cyanide-free copper 

alkaline bath developed at the Institute for Technological Research (IPT), in Brazil, for 

copper coating on zinc alloy die castings in barrel plating systems (23).  
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In a previous study (24), the possibility of treating synthetic wastewaters from the 

mentioned bath by using electrodialysis was proposed. The performed study allowed 

an extraction up to 99 % of ions from the synthetic waste and no membrane clogging 

was observed. Because of the high extraction rates achieved previously, this thesis 

contains a more detailed investigation for closing the loop in the electrodialysis 

application for the evaluated bath. When new substances are used in an electrodialysis 

system, such as the HEDP, it is important to evaluate some properties to ensure the 

process feasibility. In the present thesis, the energy consumption, the formation of 

metallic complexes and the possible interactions between ions from the solutions and 

the functional groups of ion-exchange membranes were studied. Furthermore, the 

possibility of obtaining a concentrated solution from the synthetic wastewater was 

evaluated along with the effectiveness of returning the concentrated solution to the 

bath. 

 

1.1.1 Scientific contributions 

 

Throughout the last years, researches (25–30) have shown that electrodialysis 

can be used for treating wastewaters coming from electroplating processes for water 

reclamation, for the recovery of metals and other raw materials. This practice enhances 

the extension of the bath operational life since the concentrated solutions can be 

replaced in the bath tanks. Moreover, it can be a tool for waste minimization and for 

reduction of raw material consumption.  

In a conventional electrodialysis stack design, it is impossible to get access to 

the membrane-solution interface, where the most important mass transfer mechanisms 

occur. Therefore, in a research whose goal is to study the interface phenomena, an 

alternative assembly is used which is composed of a galvanostat/potentiostat and 

reference electrodes positioned very close to the membrane surfaces. The analysis of 

the electrochemical response allows one to evaluate the transport of ions through the 

membrane. Chronopotentiometry has been used as a complementary tool for 

electrodialysis and it has shown to be suitable to investigate ion transport through 

selective membranes (31–33). The transport of metallic cations and inorganic anions 

through ion-exchange membranes using chronopotentiometry has been intensively 

studied (34–38).  
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The simulated wastewater evaluated in this study contains organic chelates 

formed between copper and HEDP which is a condition that needs further investigation 

since the researches considering the formation of chelates are scarce. Therefore, the 

main scientific contribution of this work was to elucidate the transfer of copper chelates 

across two different anion exchange membranes including the transport mechanisms 

and the interaction between chelates and the functional groups of each studied 

membrane. Moreover, the behavior of copper chelates in a laboratory-scale 

electrodialysis system was analyzed, in both batch and continuous systems and the 

results were correlated with the obtained chronopotentiometric curves. 

 

1.1.2 Technical contributions 

 

As it was mentioned in Item 1, the starting point of the present study is a 

cyanide-free strike bath developed for copper plating on Zamak substrates. It is well 

known that the replacement of a raw material should attend to the requirements of a 

company, i.e., it must be economically advantageous and technically feasible.  

Although cyanide salts are considered low cost raw materials, the replacement 

of cyanide may be economically feasible if the alternative raw material is possible to 

be reused. The general treatment of wastewaters containing cyanide complexes 

involves cyanide oxidation to cyanate, resulting in loss of raw material. Therefore, if 

the alternative compound can be recovered and reused, costs may become 

competitive.  

The other aspect is related to the technical feasibility. Previous work (23) 

showed that the quality of the coating obtained from HEDP-based bath was 

comparable to those obtained from cyanide baths. In addition, it was reported (39) that 

a model wastewater from the mentioned bath had sufficient electrical conductivity to 

be used in an electrodialysis system and no membrane deterioration due to fouling 

was observed. Still there are some points to be elucidated in order to strengthen the 

technical feasibility of the novel bath. The possibility of obtaining a concentrated 

solution able to replace ions from the original bath was investigated. The system 

efficiency when operating with different membranes was evaluated. The effects of 

copper chelate in the lifespan of the ion-exchange membranes were studied.  

Thus, the main goal of the technical contributions of the present study is to 

evaluate the feasibility of the wastewater treatment from the HEDP-based bath aiming 
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at a closed system in which the water treatment and the raw materials recovery could 

be simultaneously achieved. 

 

1.1.3 Structure of the thesis 

 

The thesis is subdivided into three main topics: the chronopotentiometric 

analysis, the electrodialysis tests and the electrodeposition tests. In order to facilitate 

the understanding, an illustrative scheme is shown in Figure 1. The above mentioned 

subdivisions are: 

i. Chronopotentiometry was used to evaluate the transport of anions 

through a heterogeneous and a homogeneous membrane. The transfer 

mechanisms (migration, diffusion, electroconvection and water splitting) 

were evaluated. The effects of acid/metal ratio, of molar concentration 

and pH in the transport properties (ohmic resistance, plateau length, 

overlimiting and limiting current density) were analyzed. The obtained 

results for both membranes were compared; 

ii. Electrodialysis tests in a batch system were performed to complement 

the chronopotentiometric results. The effects of underlimiting and 

overlimiting mechanisms for each membrane were evaluated in terms of 

percent extraction, current efficiency and specific energy consumption. 

Electrodialysis tests in a continuous system were carried out in order to 

obtain a concentrated solution that was forwarded to electroplating tests. 

The aim of these experiments was to evaluate the possibility of reusing 

the obtained solution to replace ions in the original plating bath. In 

addition, the electrical properties of the membrane were analyzed after 

electrodialysis tests; 

iii. Electroplating tests were carried out to evaluate the aspect of the copper 

deposits when using the concentrated solution from electrodialysis tests. 

Solutions containing different amounts of the concentrate obtained by 

electrodialysis were tested and the quality of the deposits was compared 

to copper layers obtained using the original bath. The quality of the 

deposits was evaluated by means of adherence tests, visual analysis and 

Scanning Electron Microscopy analysis. 
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Figure 1. Structure of the thesis. 
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1.2 Objectives 

 

The objective of the present study is to evaluate the feasibility of the wastewater 

treatment from the HEDP-based bath by electrodialysis aiming at a closed system able 

to recycle water and raw materials. In addition, this work intended to elucidate the 

transfer properties of copper chelates across two different anion-exchange 

membranes. The specific objectives were: 

 

✓ To evaluate the effect of the equivalent charge, the Cu(II)-HEDP chelation ratio 

and the addition of chloride anions in the transport properties drawn from 

chronopotentiometric and current-voltage curves; 

✓ To analyze the interactions between counterions and the fixed groups at 

underlimiting and overlimiting regimes, comparing the transport properties 

drawn from chronopotentiometric and current-voltage curves between two 

anion-exchange membranes containing different fixed groups; 

✓ To evaluate quantitatively the effective selectivity of both anion-exchange 

membranes for HEDP against chloride; 

✓ To evaluate the anion extraction, the demineralization rate, the concentration 

rate, the current efficiency for each anionic specie and the average energy 

consumption in an electrodialysis system, comparing the results between both 

membranes; 

✓ To use a laboratory-scale electrodialysis stack to produce treated solutions and 

a concentrate solution, allowing the recovery of water and inputs; 

✓ To evaluate the main properties of the membrane after the electrodialysis tests 

and after cleaning procedures; 

✓ To evaluate the possibility to use the concentrate solution in the process of 

copper electroplating and to analyze the copper coatings by means of visual 

tests, adherence tests and scanning electron microscopy.   
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2 BIBLIOGRAPHIC REVIEW 

 

2.1 Metal plating 

 

The term “metal plating” is used to describe a range of surface finishing methods 

which use electrochemical deposition of metals onto a substrate. The electrochemical 

deposition occurs by means of redox reactions from which electrons are transferred 

between the interface of a conductive solid phase and an electrolyte. The electrolytic 

solution is an ionic conductor composed of dissociated salts that may form free metal 

cations (Mez+) or charged complexes (40,41).  

Generally, the object to be coated and a counter electrode are immersed in the 

electrolyte. Both are connected to an external power supply. The parts to be coated 

are connected to the cathode (negative terminal) and the counter electrode is 

connected to the anode (positive terminal). When an electric current is applied, the 

object becomes negatively charged so that the metal ions from the solution are 

reduced to their metallic form (Me0) on the object surface, forming a deposited film 

(40,41).  

 There are processes that do not use external power supplies. In those cases, a 

reducing agent is added to the electrolytic solution and metal ions are reduced at the 

substrate interface with the aid of the oxidation of the reducing agent on the cathode 

surface. A typical example of such processes is the nickel bath using sodium 

hypophosphite (40,41). 

The typical stages of a metal plating process are the pretreatment, the 

electrodeposition and the post-treatment. Pretreatment is performed using mechanical 

or chemical/electrochemical steps for degreasing, stripping, cleaning, neutralizing and 

mechanical finishing (22). The electrodeposition occurs by immersing the parts into a 

succession of baths whose composition and operating conditions vary according to the 

type of process. The post-treatment steps may include a final cleaning, passivation, an 

application of organic varnishes or special corrosion inhibitors (22,23). 
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2.2 Copper plating processes 

 

There are four main types of commercial copper plating baths: alkaline cyanide 

copper baths, alkaline pyrophosphate copper baths, acid sulfate copper baths and acid 

fluoborate copper baths. The two most used are the acid sulfate copper bath and the 

alkaline cyanide copper bath (42).  

Acid sulfate baths are composed of cupric sulfate and sulfuric acid. The cupric 

sulfate is the source of Cu2+ cations. Sulfuric acid is added to increase the conductivity 

and to avoid Cu2+ precipitation due to the formation of insoluble hydroxides. The 

composition of conventional acid copper baths may vary between 200 g.L-1 to 250 g.L-1 

of cupric sulfate and between 45 g.L-1 to 90 g.L-1 of sulfuric acid. Other compounds, 

e.g. brighteners, may be added to acid baths. Usually, acid baths use soluble copper 

anodes and present current efficiency1 of about 100 % (42). Some of the common 

applications of copper acid baths are: printed circuit boards, semiconductor devices, 

heat exchangers and electrical cables (42). 

 Alkaline copper baths have different characteristics in comparison with acid 

baths. They are mostly used to coat parts with complex geometry as they present 

greater throwing power than acid baths. In addition, they are used to avoid galvanic 

deposition which causes a lack of adherence when depositing a metal on a less noble 

substrate (22). An alkaline cyanide copper bath is composed of cupreous cyanide 

(CuCN) to provide Cu+ cations, sodium (or potassium) cyanide (NaCN or KCN) to 

promote the formation of cupreous complexes with CuCN and to provide free CN- 

anions and a carbonate (Na2CO3) used as a buffer to avoid the pH decrease (22,42). 

The cupreous complexes formed with cyanide are [Cu(CN)2]-, [Cu(CN)3]2- the 

[Cu(CN)4]3- (23). The presence of free CN- ions is necessary to ensure the anode 

corrosion. Alkaline baths produce thinner deposits and present lower current efficiency 

than acid baths (between 10 % and 60 %) (23,42). 

 

 

                                            
1 Current efficiency refers to the fraction of electric current supplied by the external source which is 
utilized to reduce the metallic ion (cathodic efficiency) or to oxidize the metal from the soluble anode 
(anodic efficiency) (22). 
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2.3 Replacement of cyanide in alkaline copper baths 

 

In the middle 1990’s, the use of cyanide-based alkaline baths had been halved 

in comparison with the 1970’s (42) mainly because of the toxicity of cyanide 

compounds which could contribute to environmental contamination and endanger the 

safety for workers. Cyanide salts are related to the majority of chemical risks existing 

in plating industries and may pollute water resources (6). Such compounds are 

classified as toxic to aquatic organisms, harmful to the environment and potentially 

mortal to humans by inhalation, ingestion or in contact with the skin (43–45).  

By the 1980’s, cyanide-free electrolytes started to be developed, particularly for 

zinc, gold and copper plating, containing alternative complexing agents, such as 

ammonium, chloride, citrate, ethylenediaminetetraacetic acid (EDTA), glycerolate, 

phosphate, pyrophosphate and tartrate (46).  

 

2.4 Development of a HEDP-based strike cyanide-free copper 

alkaline bath 

 

The cyanide-free copper bath which is the focus of this study was developed by 

the Institute for Technological Research (IPT / Brazil) to be applied as the first layer in 

the decorative chromium plating on Zamak2 substrates. The decorative chromium 

coating is usually applied by means of three consecutive plating baths: a strike copper 

bath, a nickel bath and lastly the chromium bath (23). The intermediate layer (nickel 

layer) are applied to increase the coating’s corrosion resistance (22). The first copper 

layer is necessary in Zamak substrates since copper is the only metal that can be 

plated directly on Zamak and that can receive a following nickel coating (23). The 

bottom copper layer is plated with the aid of alkaline baths composed of complex salts 

named strike baths. 

The main characteristic of strike baths is that the concentration of the 

complexing agent must be higher than the concentration of the metal cation. For 

instance, an ordinary cyanide-based copper strike bath presents a CN:Cu2+ ratio of 

approximately 4 (23). Free ions from the complexing agent improve the corrosion of 

                                            
2 Zamak is a commercial alloy containing zinc, aluminum, copper and magnesium. 
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the anodes since they ensure that the oxidized Mez+ cation will find available cyanide 

anions to form the complex (22).  

The HEDP-based3 strike bath was developed from an available commercial 

bath. However, the commercial product was not able to produce adherent coatings on 

Zamak in barrel plating systems. By adapting the commercial bath, the aforementioned 

research could establish the operational conditions and the composition of a novel bath 

that produced copper coatings with adherence and brightness comparable to 

cyanide-based baths (23) (Table 1).  

 

Table 1. Composition and operating parameters of the HEDP-based strike copper bath (23). 

 Unit 

Cu2+ 4.5 g.L-1 
HEDP 105.0 g.L-1 

KCl 4.0 ~ 7.0 g.L-1 

Salicyl-Sulphonic acid (optional) 4.0 g.L-1 

Potassium sulfate (optional) 4.0 g.L-1 

pH 10 - 

Current density 0.2 ~ 0.5 A.dm-2 

Temperature 25 ~ 60 ºC 

Agitation present - 

 

 

2.4.1 Copper(II)-HEDP chelates4 

 

HEDP is a synthetic chelating agent that belongs to the group of 

organophosphonates. These compounds are mostly used as scaling inhibitors and 

cleaning agents due to their facility in binding metal cations (47). HEDP forms strong 

chelates with transition metals, especially with Fe2+, Cu2+, Zn2+, Cd2+ and Ni2+ (48) 

under alkaline conditions. Since HEDP is a polyprotic acid, its protonation and 

deprotonation reactions form at least three different chelates with copper cations, 

[Cu(HEDP)]2-, [CuH(HEDP)]- and [CuH2(HEDP)] (39). The existence of other chelates 

seems to be possible, in the case of [Cu(HEDP)2]6- (49) as well. However, the formation 

of [Cu(HEDP)2]6- in the strike bath was not confirmed (23). 

The HEDP dissociation follows from Equation 1 to Equation 4 (48). 

                                            
3 See item 2.4.1 
4 A chelate is formed when there are bonds or attractive interactions between two or more binding within 
the same ligand and a single central atom (77).  
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H+ + HEDP4- ↔ HHEDP3- log K = 11.0 Equation 1 

2H+ + HEDP4- ↔ H2HEDP2- log K = 17.9                 Equation 2 

3H+ + HEDP4- ↔ H3HEDP-  log K = 20.6                 Equation 3 

4H+ + HEDP4- ↔ H4HEDP  log K = 22.2 Equation 4 

 

The reactions of anionic HEDP chelates with copper follows from Equation 5 to 

Equation 7 (48). 

 

Cu2+ + HEDP4- ↔ [CuHEDP]2- log K = 12.0 Equation 5 

H+ + Cu2+ + HEDP4- ↔ [CuHHEDP]-  log K = 17.4 Equation 6 

2H+ + Cu2+ + HEDP4- ↔ [CuH2HEDP] log K = 20.4 Equation 7 

 

From the aforementioned reactions, the speciation diagrams for HEDP and for 

copper (II)-HEDP chelates may be constructed as shown in Figure 2 (23).  

 
(a)              (b) 

Figure 2. Speciation diagram for a 0.5 mol.L-1 HEDP solution (a) and for a 0.5 mol.L-1 HEDP 
+ 0.071 mol.L-1 Cu2+ solution (b). The symbol L refers to the HEDP ligand (23). 

 

 According to the speciation diagrams presented in Figure 2, it is suitable to 

consider that the main species of the copper strike bath would be the [Cu(HEDP)]2- 

chelates and the H(HEDP)3- unprotonated anion. Furthermore, at least 16 types of 

coordination of HEDP anions forming chelates with metal cations were found in the 

studies of Sergienko (49,50). The most probable geometric forms of [Cu(HEDP)]2- 

chelates are shown in Figure 3 (50). 
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Figure 3. Representations of the most common Me-HEDP chelates formed from the reaction 
Cu2+ + HEDP4- ↔ [Cu(HEDP)]2-. The shaded circles indicate metal (M) atoms. Open circles 

represent oxygen atoms. Solid lines indicate the P–O, P–C, or C–O bonds, while dotted lines 
represent the M–O bonds (adapted  from (50)). 

 

2.5 Electroplating industry waste 

 

Surface finishing practices generate solid, liquid and gaseous wastes. Liquid 

waste is classified as concentrated and diluted effluents. A concentrated effluent 

derives from periodically discarded electrolytic baths. A diluted effluent includes waste 

from containment pans, cleaning water for general purposes, purged scrubber liquids 

and water from rinsing tanks (6). 

Rinsing waters correspond to about 90 % of the water consumption in a plating 

process (51). The rinsing operation is performed subsequently to each electrolytic 

bath, in order to prevent the contamination of the following steps due to drag-out. The 

water from the rinsing tanks is usually forwarded to a treatment station for the removal 

of harmful contaminants. Typical treatment techniques applied to liquid waste are 

flocculation and precipitation. Chemicals are added to the wastewaters to form 

insoluble hydroxides which are precipitated in alkaline medium. The precipitated 

sludge is filtrated, dehydrated and sent to hazardous waste landfills (52).  

 A typical treatment route presents some issues. The reaction of hydroxide 

formation may be incomplete and an amount of metal cations may remain in their ionic 

form. Furthermore, the precipitation of alkaline solutions composed of complex salts is 

impracticable since the metal ion generally forms strong soluble complexes with the 

complexing agent. Lastly, environmental and economic factors have led to the 

development of research to reduce the volume of galvanic sludge disposed of in 

hazardous waste landfills (52).  

 Alternatives for galvanic sludge minimization have been investigated under 

different perspectives. Espinosa and Tenório (46) studied the incorporation of galvanic 

sludge from a chromium plating process in the cement manufacturing. Rossini and 
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Bernardes (53) evaluated the selective recovery of copper, nickel and zinc from a 

galvanic sludge by sulphating roasting using pyrite from coal waste as a sulphating 

agent. Other researches (54,55) applied hydrometallurgical processes, such as 

leaching and solvent extraction to recover metals from a galvanic sludge. Membrane 

separation processes, especially ultrafiltration and electrodialysis, have also been 

evaluated for the same purpose (19,56–58). 

 The recovery of valuable raw materials from rinsing waters is an alternative for 

reducing the consumption of natural resources. One example is related to copper ores. 

In the last century, copper concentration in ores has decreased from 4 % to 1 %. It is 

predicted that, if production and consumption of copper remain at the same level as 

the present situation, the copper demand will exceed the supply and the copper supply 

would be depleted in about 40 years (59).  

 

2.6 Membrane separation processes and the choice for 

electrodialysis 

 

Membrane separation processes may be classified according to the driving 

force applied to separate the solute from the solvent. The processes that use pressure 

gradient are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse 

osmosis (RO). The techniques that utilize concentration gradient are dialysis, 

pervaporation and gas permeation. Lastly, electrodialysis (ED) is the process that uses 

an electrical potential difference (16). The choice for the most suitable process is 

performed based on the size and molecular weight of the particles to be removed, as 

summarized in Figure 4.  

In addition to technical feasibility, the costs of each process must be considered. 

Microfiltration, ultrafiltration and nanofiltration are distinguished by membrane porosity. 

Nanofiltration membranes present the lowest porosity and retain smaller particles. On 

the other hand, they require higher hydrostatic pressure which must be taken into 

account when predicting the total cost (60). From Figure 4 (60), it can be observed that 

reverse osmosis and electrodialysis are feasible techniques for metal ion removal. 
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Figure 4. Solutes removed by different membrane separation processes (60). 

 

The cost difference between the two techniques depends on each application. 

Nayar et al (61) proposed a feasibility study for water desalination using in-home 

systems. The authors reported that the standard reverse osmosis system presented a 

low recovery rate (about 25 %). The proposed small-scale electrodialysis system 

showed a similar cost in comparison with reverse osmosis with a water reclamation 

rate of 80 %. 

McGovern, Zubair and Lienhard (62) evaluated a hybrid ED-RO system and 

reported that electrodialysis may be more effective in recovering water than reverse 

osmosis at a competitive cost. The main advantages of electrodialysis over reverse 

osmosis are: flexibility to change inputs and outputs, operation at low pressure, 

cheaper lifecycle cost and easier maintenance (63). However, a cost increase of 

electrodialysis may be expected depending on the salinity of the feed solution (62,64).  

 

2.7 Electrodialysis 

 

Electrodialysis is a membrane separation process developed in the 1950’s for 

brackish water desalination (65). The term electrodialysis was applied for the first time 

in 1890 by Maigrot and Sabates (66) who proposed a combination of dialysis and 
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electrolysis to demineralize sugar syrup using membranes made of permanganate 

paper (66). A suitable current definition for electrodialysis is “a membrane separation 

process which uses an electric potential difference as driving force to promote ionic 

transport from different solutions with the aid of semi-permeable membranes” (67). 

In an electrodialysis system, an electric potential difference (or an electric 

current density) is applied between two electrodes – cathode and anode. Ion exchange 

membranes are paralleled positioned between the electrodes forming individual 

compartments. The solutions of interest are circulated through the compartments while 

the electric current density from an external source is applied to the electrodes. Cations 

from the solution are transported towards the cathode while anions are transferred 

towards the anode. There may be cation-exchange membranes (CEM) (allow cations 

to pass through and retain anions) or anion-exchange membranes (AEM) (allow anions 

to pass through and retain cations). Consequently, more concentrated or more diluted 

solutions than the original solution are formed (66,67). Figure 5 (68) shows a 

representation of the principle of electrodialysis. 

 

 
Figure 5. Representation of electrodialysis (68). 

 

 The ED stack in Figure 5 shows two electrodes that are separated from each 

other by cation-exchange and anion-exchange membranes. The system is fed with the 

solution to be treated along with an electrode solution whose function is to maintain 

the electrical conductivity and to protect the electrodes. Cations and anions are 

transferred from the diluted compartments to the concentrated compartments through 
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the ion-exchange membranes. In the lower part of Figure 5, the obtained solutions are 

indicated (treated solution and concentrated solution). 

 On an industrial scale or in pilot plants, dozens or hundreds of ion-exchange 

membranes are assembled, as shown in Figure 6 (69). 

 
Figure 6. Electrodialysis system for water demineralization (69). 

 

2.8 Driving force for electrodialysis 

 

In an electrodialysis stack, the total electrical potential difference should 

overcome the electrolyte resistance (ohmic drop), the membranes resistance, the 

resistance related to the redox reactions at the electrodes interface and the ion 

transference at the membrane surface (65). Typical concentration and potential 

difference profiles of a cell-pair is presented in Figure 7 (17,65). 

In Figure 7, Region I is the bulk solution, in which the ohmic drop takes place. 

The ohmic drop is related to the energy dissipation from the friction between ions and 

water molecules (70) and is more pronounced in the diluted compartment. Thus, the 

slope of the potential profile (Figure 7-b) in the diluted compartment is steeper than in 

the concentrated compartment. Region II is the diffusion boundary layer (DBL), at 

which it is assumed that ion concentration varies linearly from the bulk solution until 

the membrane surface (65,70,71). It is noteworthy that the most important transfer 

mechanisms take place in DBL and this region will be thoroughly discussed further. 
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Region III corresponds to the membrane itself. Here, the potential gradient is due to 

the Donnan potential5 and to the potential difference inside the membrane (65). 

 

 
Figure 7. Concentration profile (a) and electric potential difference (b) in a cell-pair. Adapted 

from Strathmann (17) and from Aly et al (65). 

 

Aly et al. (65) proposed that the potential gradient in each of the mentioned 

regions can be determined by the integration of Nernst-Planck equation, as long as 

proper boundary conditions are established for simplification purposes. The 

Nernst-Planck equation describes ion transport in solutions considering three acting 

mechanisms: diffusion, migration and convection (72).  

According to Strathmann (70), the theoretic determination of the potential 

gradient is complex. By means of a number of simplifications, the potential difference 

in a system similar to the presented in Figure 7 can be estimated by using Equation 

8 (70). 

 

𝑈 = 𝐼 [
2∆

Λ
(

1

𝐶𝑑
+

1

𝐶𝑐
) + 𝜌𝑎𝑛 + 𝜌𝑐𝑎𝑡] Equation 8 

 

                                            
5 Donnan potential is defined as the potential gradient at the membrane-solution interface (65). The 
Donnan potential will be further discussed in item 2.9. 
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In Equation 8, U is the electric potential difference between electrodes (V). I is 

the applied current (A), Δ is the cell thickness (m) and Λ is the salt molar conductivity 

(m².S.mol-1). C is the concentration (mol.L-1) in diluted and concentrated 

compartments, Cd and Cc, respectively and ρ is the electric resistance (Ω) of anion and 

cation-exchange membranes, ρan e ρcat, respectively. In practice, the most applied 

relation consists in multiplying the applied current, the cell potential, the time of 

operation and the number of cell pairs in order to predict the total energy consumption 

(kW.h) (17). 

 

2.9 Ion-exchange membranes 

 

For Mulder (73), “a membrane can be considered a permselective barrier or an 

interphase between two phases". Membranes act as selective agents, allowing the 

passage of a certain component from one phase to another under the action of a 

driving force (74). Ion-exchange membranes are composed of a backbone that has 

positive or negative active groups fixed in its structure. Cation-exchange membranes 

have negative functional groups, such as SO3
-, COO-, PO3

2-,PO3H- and C6H4O-. 

Anion-exchange membranes present positive functional groups, the most common 

being NH3
+, NRH2

+, NR2H+, NR3
+, PR3

+ and SR2
+ (70,75). Figure 8 (76) shows an 

anion-exchange membrane with CH3N+ groups (a) and a cation-exchange membrane 

having SO3
- groups (b). 

 

    (a)        (b)  

 
Figure 8. Anion-exchange membrane (a) with CH3N+ groups and cation-exchange membrane 

(b) with SO3
- groups, both in contact with a NaCl solution (76). 
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 In Figure 8, the mobile counterions are those that present opposite charge to 

the fixed groups and mobile coions present the same charge as the fixed groups. 

Considering a cation-exchange membrane in contact with a monovalent salt (e.g. 

NaCl), mobile counterions (Cl-) tend to be excluded from the matrix since they present 

the same charge as the fixed groups. On the other hand, mobile counterions (Na+) are 

able to permeate in the matrix as they are attracted by the fixed groups mainly due to 

Coulomb forces. This is the principle of the Donnan exclusion (17,70,74,76).  

 The International Union of Pure and Applied Chemistry (IUPAC) (77) defines 

the Donnan exclusion as being the “reduction in concentration of mobile ions within an 

ion exchange membrane due to the presence of fixed ions of the same sign as the 

mobile ions”. In an ideal membrane, all coions would be excluded from the matrix and 

the membrane would be 100 % permselective. However, coions are more or less 

excluded, depending on the affinity for mobile ions and on the membrane deviation 

from ideality. In general, the coion exclusion is more effective the higher is the 

concentration of fixed charge and the more diluted is the solution of interest (17,74).  

 Because of the Donnan exclusion mechanism, a steady-state similar to the 

presented in Figure 9 (17) is achieved. 

 

Figure 9. Cation and anion-exchange membranes in a single salt solution (a); concentration 
profile (b) and potential profile (c) (17). 
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 Figure 9 (a) represents a single salt solution in contact with membrane pair. 

There is an increase in the concentration of mobile counterions while the concentration 

of mobile coions is reduced inside the membranes. The concentration profile is 

illustrated in Figure 9 (b). The charge density gradient and the ion concentration 

gradient between the solution and the membrane create fluxes in opposite directions 

until the establishment of an equilibrium state (17,70,74,76). The principle of the 

Donnan equilibrium settles that, when the equilibrium is reached, the electrochemical 

potential of an ion in the solution phase must be equal to its electrochemical potential 

in the membrane phase (74) according to Equation 9. 

 

𝜇𝑖
0 (𝑠)

+ 𝑅𝑇. 𝑙𝑛 𝑎𝑖
(𝑠)

+ |𝑧𝑖|. 𝐹. 𝜙(𝑠) =  𝜇𝑖
0 (𝑚)

+ 𝑅𝑇. 𝑙𝑛 𝑎𝑖
(𝑚)

+ |𝑧𝑖|. 𝐹. 𝜙(𝑚) Equation 9 

 

In Equation 9, μi
0 is the standard chemical potential of ion i (J.mol-1), R is the 

gas constant (J.mol-1.K-1), T is the temperature (K), a is the activity of ion i, zi is the 

charge of ion i, F is the Faraday constant (s.A.mol-1) and ϕ is the electric potential (V). 

The superscript characters s and m correspond to the solution and membrane phase, 

respectively. The Donnan potential shown in Figure 9 (c) is the potential difference 

between the two phases and is expressed by rearranging Equation 9 to Equation 10. 

φDonnan = ϕ(s) − ϕ(m) =
RT

|zi|F
ln

ai
(m)

ai
(s)

 Equation 10 

 

 The development of ion-exchange membranes began in 1850 (72), when 

Thompson and Way noticed the ion-exchange effect in soil samples. At that time, 

research on cell membranes contributed to the synthesis of the first inorganic 

ion-exchange systems (72). Processes using ion-exchange membranes were studied 

about 40 years later with the work of W. Ostwald on the properties of semipermeable 

membranes (75). This was the first time that the existence of a potential difference in 

the solution-membrane interphase due to the ion concentration gradient was proposed. 

In 1911, Donnan proved the existence of the mentioned potential difference and 

formulated the principle of the Donnan potential (78). 

 From the 1940’s (78), industries raised their interest in ion-exchange 

membranes and the first synthetic membranes with polymeric backbone started to be 
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manufactured (78). In 1954 (65), the Saudi company Aramco installed the first 

electrodialysis system for brackish water desalination for the company’s own use (65). 

 

2.10 Homogeneous and heterogeneous membranes 

 

There are different ways of classifying ion-exchange membranes, such as by 

their function, by their porosity, by their materials or by their microstructure. Synthetic 

ion-exchange membranes may be classified in homogeneous or heterogeneous, 

according to the distribution of fixed charges in the backbone. Homogeneous 

membranes are composed of one single phase, in which the polymer exerts both 

structural and exchanger functions. Heterogeneous membranes are composed of 

different materials for structural backbone and exchanger groups (79).  

 The manufacturing of heterogeneous membranes utilizes granular 

ion-exchange resins that are molten and pressed with a thermoplastic polymer. 

Heterogeneous membranes may also be manufactured from the dispersion of an 

ion-exchange resin in a molten polymeric matrix (73,78).  

Homogeneous membranes may be manufactured either by polymerization or 

by condensation (72). The first one consists in the polymerization of a monomer 

containing an ionic radical with a chargeless polymer or with a charged polymer (17). 

The latter lies in a condensation process in which condensation polymers6 are 

produced by heating in the presence of catalysts. Low molecular weight viscous 

polymers are formed which may receive structural reinforcements. After curing, the 

reaction is finished by means of drying and heating methods (72). It is noteworthy that 

ion-exchange membranes must have mechanical strength and dimensional stability. 

These properties are obtained with the use of structural reinforcements (78). 

The most important difference between homogeneous and heterogeneous 

membranes are the distribution of the fixed charge groups. In heterogeneous 

membranes, the polymeric matrix may act as a non-conductive region, thus creating 

higher resistance to the transport of counterions, such as illustrated in Figure 10 (80). 

 

                                            
6 According to the Carothers definition, condensation polymers form molecules (water, chloridric acid or 
methanol) as products of the condensation reaction (154). 
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Figure 10. Distribution of electric current lines in homogeneous (a) and heterogeneous (b) 

membranes (81) 

 

In Figure 10, it is observed the effect of non-conductive regions in the distribution 

of electric current lines in heterogeneous membranes when compared to 

homogeneous. Non-conductive regions may affect the electric properties of 

heterogeneous membranes. For instance, the electric resistance tends to be higher, 

which may increase the energy consumption (70,80,82). As the current lines deviate 

towards the conducting regions, the local current density in these areas may be higher 

than the average current density (38).  

It is possible that homogeneous membranes present a certain degree of 

non-conductive regions because of the inert polymers used as reinforcement 

fabrics (82). Some authors (38,83,84) observed a number of heterogeneous micro 

regions formed during the synthesis of homogeneous membranes. Choi et al. (83) 

found 7 % of non-conductive regions in a homogeneous membrane and reported that 

this value may achieve 25 % to 50 % in heterogeneous membranes. 

 The manufacturing materials and process will determine the main properties of 

ion-exchange membranes. In general, it is possible to mention that a higher number of 

crosslinked bonds results in higher mechanical strength. In addition, an increase of the 

fixed charge density produces membranes with lower electrical resistance (74). Some 

of the desirable properties for ion-exchange membranes are: keeping electrical 

resistance as low as possible, not allowing the transfer of neutral elements (water), 
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having enough mechanical, chemical and dimensional stability and having ability to 

differentiate counterions from coions, being selective for counterions (17,74). 

 The properties of ion-exchange membranes may be affected depending on the 

operational conditions. Długołęcki et al. (85) observed an increase of 5 times with 

respect to the membrane electrical resistance when it was submitted to dilute NaCl 

solutions (0.017 mol.L-1). According to the authors, when concentrated solutions were 

evaluated (NaCl 0.5 mol.L-1), the membrane electric resistance was independent of 

the flow rate, unlike the observed for the dilute solution. 

 However, manufacturing process are not able to achieve optimum properties 

since generally the improvement of one characteristic is counterbalanced by a decline 

of some other one. An example is the presence of a greater number of crosslinked 

bounds which increases the mechanical resistance, but causes loss of 

hydrophilicity (74). 

 

2.11 Ion transport in electrodialysis 

 

The most common relation used to describe ion transport in an electrodialysis 

system is the Nernst-Planck equation (Equation 11) (17,65). 

 

𝐽𝑖 = −𝐷𝑖 (
𝑑𝐶𝑖

𝑑𝑥
+ 𝑧𝑖. 𝐶𝑖.

𝐹

𝑅𝑇
.
𝑑ɸ

𝑑𝑥
) + 𝑉𝑘. 𝐶𝑖 Equation 11 

 

 In Equation 11, Ji is the flux of ion i (mol.m-2.s-1) Di is its diffusion coefficient 

(m².s-1), Ci is its concentration (mol.L-1), zi is its charge, Φ is the electrical potential (V) 

and Vk is the linear velocity. The interpretation of the Nernst-Planck equation is based 

on a combined driving force, having a term attributed to the transport due diffusion – 

concentration gradient -(−𝐷𝑖 (
𝑑𝐶𝑖

𝑑𝑥
)) and a term attributed to the transport due migration 

– electrical potential gradient - (𝐷𝑖 . 𝑧𝑖. 𝐶𝑖 .
𝐹

𝑅𝑇
.

𝑑𝜙

𝑑𝑥
). The last term (Vk.Ci) is attributed to 

electroconvection, although is often neglected because of its lower contribution in 

comparison with diffusion and migration (17). 
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 In order to understand the Nernst-Planck model, it is necessary to take into 

account that ion transport occurs under the influence of both chemical and electrical 

potential gradients, according to Equation 12 (17). 

𝜂𝑖 = 𝜇𝑖 +  𝑧𝑖 . 𝐹. 𝜙 =  𝜇𝑖
0 + 𝑅. 𝑇. ln 𝑎𝑖 +  𝑧𝑖 . 𝐹. 𝜙 Equation 12 

 

In the works of Aly et al. (65) and Strathmann (17) it is possible to access a 

detailed derivation for Nernst-Planck equation (Equation 11) starting from Equation 12 

and from basic relations. It is important to mention that the term (−𝐷𝑖 (
𝑑𝐶𝑖

𝑑𝑥
)) from 

Equation 11 is related to the First Fick’s Diffusion Law. In other words, under regular 

conditions, it is assumed that a steady-state is achieved and the diffusional flux does 

not vary with time. 

The mass transport inside ion-exchange membranes follows the same 

abovementioned theory, except that the parameters from the Nernst-Planck equation 

must be associated with the membrane phase and their numerical values may be quite 

different from the solution phase. Considering an ideal system (no convective effects, 

activity coefficient equal to 1, a totally permselective membrane and a solution 

containing a monovalent dissociated salt), then the flux of cations through the 

cation-exchange membrane is equal to the flux of anions through the anion-exchange 

membrane and both may be expressed according to Equation 13 (17). 

 

𝐽𝐾+
𝑐𝑒𝑚 =  𝐽𝐴−

𝑎𝑒𝑚 =  −2 (
𝐷𝐾+

𝑐𝑒𝑚. 𝐷𝐴−
𝑎𝑒𝑚

𝐷𝐾+
𝑐𝑒𝑚 + 𝐷𝐴−

𝑎𝑒𝑚) (
𝑑𝐶𝑖

𝑖𝑒𝑚

𝑑𝑥
+

𝐹𝐶𝑖
𝑖𝑒𝑚

𝑅𝑇

𝑑𝜑

𝑑𝑥
)  

Equation 13 

 

In Equation 13, JK+
cem is the flux of cations through the cation-exchange 

membrane and JA-
aem is the flux of anions through the anion-exchange membrane. The 

suffixes i and iem represent a generic ion and an ion-exchange membrane, 

respectively. 
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2.12 Concentration polarization and limiting current density 

 

Concentration polarization is a phenomenon studied by the classical 

electrochemistry for metal-solution interphases. When a metal is immersed in an 

aqueous system under equilibrium conditions, the potential on the metal-electrolyte 

interphase is called equilibrium potential (Eeq) (86). If the system is submitted to an 

external polarization (η), the redox reactions in the interphase are driven to the 

oxidizing direction (if η>0) or to the reduction direction (if η<0). In general, the higher 

is the applied overpotential, the higher would be the velocity of the redox reaction. 

However, this statement is only valid until a limiting overpotential value (86).  

 Figure 11 (87) shows a scheme of an electrode immersed in an electrolyte that 

contains, for instance, metallic cations. When a cathodic overpotential is applied, 

cations that are close to the interphase are reduced onto the electrode surface. Cations 

remaining in the bulk solution are driven towards the interphase by diffusion 

mechanism. The formation of the diffusion layer (δ) takes place. It is assumed that ion 

concentration in the diffusion layer varies from Ci, which is the ion concentration at the 

interphase, until C0, which is the ion concentration in the bulk solution (87). 

 In Figure 11, the x-axis represents the distance from the electrode and the y-

axis represents the concentration of transferred species. The “true profile” curve starts 

from the bulk solution until the electrode interface. The slopping dotted line is the 

tangent to the true profile and represents the “equivalent concentration profile”. In the 

diffusion layer, at the steady-state, it is assumed that ion concentration increases 

linearly with the distance x. The point at which the tangent line intercepts the C0 line is 

defined as the diffusion layer thickness (δ) (86,87). 
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Figure 11. Schematic drawing of the diffusion layer in a metal-electrolyte interface (87). 

 

 In the boundary layer, mass transfer obeys the First Fick’s Law. The thickness 

of the diffusion layer may vary depending on the agitation and on the viscosity of the 

electrolyte. A typical electrodeposition process may be expressed by Equation 14 (87). 

I = z. F. D.
(C0 − Ci)

δ
 

Equation 14 

 

According to Equation 14, the higher the applied current (I), the higher will be 

the difference (C0-Ci) until the statement of the maximum deposition rate, that is, when 

Ci is zero. If the applied current is still increased, the diffusion of ions from the bulk 

solution will not be fast enough to feed the diffusion layer (86). The system achieves 

the concentration polarization. The value of the current density that causes 

concentration polarization is known as the limiting current density. 

The concentration polarization theory may be applied to membrane-solution 

systems, considering the existence of a profile similar to the presented in Figure 

12 (72). The difference between Figure 11 and Figure 12 is that ions are not reduced 

to their elemental state, but transferred across the ion-exchange membrane (72,88). 
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Figure 12. Scheme of the diffusion layer in a membrane-solution system (72). 

 

 The mass balance of ions in the membrane phase and at the interfaces 

presented in Figure 12 follows Equation 15 (17,72,88). 

 

it

zF
+

D (C1 − C2)

δ1
=

it̅

zF
−

Dm(C3 − C2)

δm
 

Equation 15 

 

In Equation 15: 

• i is the current density (A.cm-²); 

• t is the transport number of a given ion in the solution phase; 

• z is the ion charge; 

• F is the Faraday constant; 

• D is the diffusion coefficient in the solution phase; 

• C1 represents ion concentration at dilute bulk solution; 

• C2 is ion concentration in the membrane phase; 

• δ1 is the thickness of the diffusion layer; 

• 𝑡 is the transport number in the membrane phase; 
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• Dm is the diffusion coefficient in the membrane phase; 

• C3 is the ion concentration at the concentrated membrane surface; 

• δm is the membrane thickness. 

The first term of Equation 15 corresponds to ion transport due to migration in 

the solution phase. The second term represents ion diffusion in the diffusion boundary 

layer. The sum of the two terms represents that both transport mechanisms have the 

same direction (see Figure 12). The third and the fourth terms of Equation 15 

represents, respectively, migration and diffusion transports in the membrane phase. 

Since C3 is higher than C2, the diffusion acts as a driving force opposite to migration. 

Therefore, the fourth term is subtracted from the third. 

Based on Equation 15, two boundary conditions should be established. Firstly, 

the diffusion in membrane phase is negligible if compared to the diffusion in the 

boundary layer. Secondly, when the limiting current density is achieved, C2 is zero. 

Under these conditions, Equation 15 may be rearranged and it is known as the Peer 

Equation (89,90) (Equation 16). 

 

𝑖𝑙𝑖𝑚 =
𝑧𝐷𝐹𝐶1

𝛿1(𝑡̅ − 𝑡)
 

Equation 16 

 

When the limiting current density is achieved, the current efficiency decreases 

as ions from water splitting start to permeate through the membrane instead of the ions 

of interest (72). The electrical resistance and the energy consumption increase. Sharp 

changes in pH values may occur, causing precipitation of insoluble compounds (17). 

In 1956, Peer (91) proposed an experimental procedure to determine the limiting 

current density of a membrane-solution system. Such method is known as 

current-voltage curves (CVC). A typical CVC is presented in Figure 13 (81). 
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Figure 13. Typical CVC curve of a membrane-solution system (81). 

 

The current-voltage curve is obtained by measuring the potential difference 

across the membrane while gradual values of current density are applied to the system 

during a predefined period (91). Three different regions may be observed in a typical 

CVC. The first region (ohmic region) is characterized by a linear increase of membrane 

potential with the applied current density. The diffusion of ions from the bulk solution 

towards the diffusion boundary layer is able to supply the lack of counterions that were 

transferred through the membrane. The electrical resistance may be calculated from 

the inverse of the slope of ohmic region. 

The second region is characterized by a plateau in which it is noticed that the 

increase in the current density causes a greater rise in the potential response. This 

happens because of ion depletion in the diffusion boundary layer. Under this condition, 

the ion transport is limited by the diffusion of ions from the bulk solution, such as 

previously reported. The intersection between tangent lines to first and second regions 

establishes the limiting current density. The plateau length is related to the energy 

required to overcome the diffusion layer. 

The third region is related to other transfer mechanisms, such as water splitting 

and electroconvection, which will be better explained in item 2.13. The inverse of the 

slope of the curve in the third region determines the electrical resistance under 

overlimiting regimes. 
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2.13 Overlimiting transfer mechanisms 

 

The theory about ion transfer above the limiting current density, ilim, was initially 

established from the concentration polarization phenomenon. Considering a 

membrane-solution system, when the applied current density i achieves the limiting 

current density and the depletion of ions in the DBL is settled, it is expected that the 

potential difference though the membrane surrounded by two DBLs would tend to 

infinite. However, in practice this was not observed. The first proposed hypothesis was 

that some contribution of H+ and OH- from water splitting could take place in the 

depleted layer (92). Simons (93) reported that the water splitting products may be 

generated in a distance between 10 Å to 100 Å from the membrane surface and the 

electrical current may be transferred across the membrane by OH- (for anion-exchange 

membranes) and by H3O+ (for cation-exchange membranes) when ion concentration 

in DBL is lower than 10-7 mol.L-1 (93). This event would be followed by a pH change in 

both DBLs, i.e., one of them would become more acid and the other one would become 

more alkaline. Indeed, early researches described pH variations during overlimiting 

regimes (92).  

It is noteworthy to mention that water splitting occurs according to the reaction 

described by Equation 17.  

 

2H2O  H3O+ + OH- or 

H2O  H+ + OH- 

 

Equation 17 

 

According to the work of Simons (93), if H+ and OH- generated at the membrane 

surface resulted only due to the natural water splitting, the flux of water splitting 

products could not exceed 2x10-9 mol.m².s-1. In spite of that, the author verified that 

the flux of hydroxyl group through an anion-exchange membrane could be 5 times 

higher than the predicted. Thus, Simons concluded that H+ and OH- might be formed 

because of overlimiting regimes.  

 In the study of Frilette (94), the existence of a second overlimiting mechanism 

was suggested. As stated by the author, the rise of a convection mechanism could be 
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responsible for enhancing ion transfer from the bulk solution towards the DBL. 

Therefore, the transport of salt ions along with H+ and OH- should be taken into 

account.  

Based on these two discussions, the overlimiting transfer mechanisms have 

been investigated for years. In order to explain the most important overlimiting 

phenomena, the main mechanisms presented in the work of Nikonenko et al (92) 

(Figure 14) will be considered.  

 

 
Figure 14. Overlimiting transfer mechanisms. Adapted from Nikonenko et. al. (92). 

 

2.13.1 Water splitting 

 

2.13.1.1 Charge carriers 

 

Charge carriers refers to the transfer of H+ and OH- generated at the 

membrane-solution interface, as presented in Figure 15 (95). The rate of H+/OH- 

generation depends on the intensity of the applied current and on the catalytic activity 

(i.e., the velocity of the reaction) between the membrane fixed charges and water (93).  

Overlimiting 
current density

(i>ilim)

Water splitting

Exaltation effect

Charge carriers

Current induced
convection

Gravitational
convection

Electroconvection

Coion leakage
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Figure 15. Concentration profiles at an AEM-NaCl solution interface during an overlimiting 

regime in which water splitting occurs. Adapted from Kniaginicheva et. al. (95). 

 

In Figure 15, the concentration profiles of Cl-, OH- and H+ at an AEM interface 

under the occurrence of water splitting are shown. The hydroxyl groups generated are 

transferred through the membrane, causing an increase of the OH- concentration in the 

membrane phase. On the other hand, protons from water splitting reactions would be 

repulsed from the membrane phase (95). In practice, coion leakage may occur and 

protons may be transferred through an AEM under the Grotthuss mechanism (96). 

The protonation and deprotonation of weakly basic groups (mainly tertiary 

amines) favor water splitting in anion-exchange membranes according to the illustrated 

in Figure 16 (93,95). 

(a) 

(b) 

Figure 16. Protonation (a) and deprotonation (b) of tertiary amine fixed groups. Adapted from 
Simons (93). 
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2.13.1.2 Current exaltation effect 

 

The formation of water splitting products affects the electric field at the 

membrane surface since it increases the number of coions that were repulsed from the 

membrane phase. The accumulation of coions may attract counterions from the bulk 

solution (92). In cation-exchange membranes, water splitting release OH- while H+ 

protons react with the fixed groups. On the contrary, anion-exchange membranes 

release H+ to the solution while hydroxyl groups are attracted by the fixed charges. 

Considering for instance, a cation-exchange membrane under the occurrence of water 

splitting, an increase of charge density from OH- groups would take place at the 

membrane surface. The higher negative charge density may bring more counterions 

from the bulk solution. This phenomenon is known as migration current exaltation (92). 

 

2.13.2 Current induced convection 

 

2.13.2.1 Gravitational convection 

 

Gravitational convection occurs when the gravity force acts over a fluid which 

presents a density gradient. This concept may be applied to membrane systems. 

Density gradients are formed in the DBL as consequence of concentration polarization 

because ion concentration in DBL is smaller than ion concentration in the bulk 

solution (97). Thus, a concentration profile and a convection flux may be proposed as 

stated by Tanaka (98) in Figure 17. 
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Figure 17. Concentration profile (dotted lines) and convection flux (full lines) in a boundary 
layer during overlimiting regimes (98). 

 

 Figure 17 shows a cation-exchange membrane in contact with a desalting 

compartment. The dotted lines represent the concentration profiles of counterions. 

When i<ilim, C0 decreases when approaching the membrane surface and when i>ilim, 

C0 is zero. The full lines are the ion fluxes due to convection. The vertical velocity 

component (Vy) is upwardly and tangential to the membrane surface due to the 

decrease of charge density in the DBL (98).  

 One of the most important studies about the effect of gravitational convection 

was performed by Rubinstein (99), who determined the limiting current density for 

membrane systems by positioning the membrane vertically or horizontally.  The author 

observed that the empirical limiting current density was greater than the theoretical ilim 

when the membrane was in a horizontal position with the depleted solution above the 

membrane. Thus, it was raised the hypothesis of the existence of a mechanism that 

could be able to bring ions from the bulk solution. 

 Similar tests were carried out by other researchers (100,101) and it was 

established that gravitational convection plays an important role under specific 

conditions: the distance between membranes is large enough, the ionic concentration 

is higher than 2 mmol.L-1 and the flux is less than 0.1 cm.s-1 (100,101). Otherwise (and 
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generally), the effects of electroconvection are assumed to be more important that 

gravitational convection (92).  

 

2.13.2.2 Electroconvection 

 

In the studies of Rubinstein (99) and of Zabolotsky (100), it had been observed 

that excessive noise in the overlimiting region of chronopotentiometric curves could be 

consequence of a mixing mechanism in the unstirred boundary layer different than 

gravitational convection. The excessive noise was related to a spontaneous convection 

arising in the depleted layer during advanced stages of concentration polarization 

(102).  

 When an excessively high electrical field is applied, a space charge region may 

arise in the diffusion layer. The space charge region is characterized by a deviation in 

the electroneutrality and they can move under the electrical field driving force, creating 

vortexes that enhance mixing in the depleted region. The vortexes provide a partial 

destruction of the diffusion boundary layer, resulting in an increased flow of ionic 

species from the bulk solution (97).  

 In every concentration polarization situation, a deviation on electroneutrality 

may occur. However, electroconvection arises with two coexisting factors:  

1. The appearance of a space charge region and 

2. A homogeneous curved surface (an ion exchange resin) or a heterogeneous 

flat surface (a heterogeneous membrane). 

Hence, the current lines are distorted and the electrical field is decomposed in 

two components, one normal and one tangential to the surface. The normal component 

creates the space charge region because of a strong polarization while the tangential 

component carries the fluid (92,103). 

In Figure 18 (92), it can be observed the formation of a space charge region and 

the electric field decomposition in a homogeneous curved surface and the current lines 

bending in a heterogeneous flat surface. 
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(a) (b) 

Figure 18. Electrical field decomposition in a homogeneous round surface creating a space 
charge region that reduces the diffusion layer thickness δ (a) and electrical current lines 

bending over a heterogeneous flat surface (b) (92). 

 

  In the case of a heterogeneous flat surface, the current lines would bend 

towards a conducting region creating a tangential component of the electric field, which 

is called funneling effect, as shown in Figure 19 (104). 

 

Figure 19. Funneling effect in a heterogeneous membrane (104).  

 

Electroconvection may also occur in homogeneous membranes, although it 

arises from a different mechanism. Under an overlimiting regime, hydrodynamic 

instabilities are produced at high voltages. As consequence, the variation in the fluid 

velocity and concentration produces a heterogeneous electrical field that leads to the 

formation of vortexes at the membrane surface (92).  
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Figure 20. Vortexes on the surface of a homogeneous cation-exchange membrane resulting 

from electroconvection (105).  

 

 Nikonenko et al. (92) proposed a summarized discussion on the 

electroconvection transfer mechanism which will be adopted in this work. In the case 

of heterogeneous membranes, it is assumed that electroconvection arises from the 

electrical field decomposition in two components (Dukhin model). In the case of 

homogeneous membranes, electroconvection results from the hydrodynamic 

instabilities that produce a heterogeneous distribution of the electrical field (Rubinstein 

model) (92,106). The most important points to be settled are that electroconvection 

forms vortexes pairs in the depleted layer which cause the enhancement of mass 

transfer, the mixing of the depleted layer and increase the limiting current 

density (107). 

 

2.14 Chronopotentiometry 

 

Chronopotentiometry is an electrochemical technique used for measuring the 

electrical potential difference in a given system that is under the application of an 

electrical current. This method has been applied in membrane systems in order to 

evaluate ion transport properties. In a conventional electrodialysis stack, it is 

impossible to get access to the membrane-solution interface, where the most important 

mass transfer mechanisms occur. Therefore, researches that intended to study the 
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interface phenomena started to use an alternative assembly that allows the access to 

the membrane surface by using reference electrodes connected to a potentiostat. A 

DC current is applied between a working electrode and a counterelectrode while the 

membrane potential is registered as a function of time. The analysis of the system’s 

electrochemical response allows one to evaluate the transport of ions through the 

membrane (37,108).  

Throughout the last years, chronopotentiometry has been used in researches 

as a complementary tool to electrodialysis and it has been suitable to investigate ion 

transport through ion-exchange membranes (32,34,36,37,109). Chronopotentiometry 

applied to membrane systems allows the measurements of the dynamic potential drop 

response as a function of time. This means that the non-steady state transport 

(condition which is not described in the First Fick’s Law) in the membrane and in the 

adjacent solution layers may be analyzed (110).  

A typical description of a membrane-electrolyte interface recognized by many 

authors (85,92,111,112) is shown in Figure 21. 

 

 

Figure 21. Scheme of a membrane-electrolyte interface. C is the counterion concentration, 
C0 is the counterion concentration at the initial condition and d is the membrane thickness. Jk 

is the flux of counterions. Jk
m and Jk

bdl represent the fluxes of counterions inside the 
membrane and in the DBL, respectively (110). 

 

When an electric current is applied to a membrane-solution system, a 

concentration gradient is created near the membrane surface. A non-steady state 

follows until the statement of a steady-state. The potential difference across the 

membrane is measured from t=0 s until the establishment of the steady-state. In order 

to develop a simpler mathematical modeling, three boundary conditions must be 

considered (74,111): the membrane presents a homogeneous surface, an univalent 
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electrolyte is being evaluated and there is lack of turbulence which could promote 

convection. The latter assumption implies that an unlimited growth of the diffusion layer 

is expected.  

By applying the mentioned boundary conditions, it is possible to say that in the 

non-steady state, ion concentration decreases with time following the 2nd Fick’s Law 

(Equation 18). 

𝜕𝐶(𝑥,𝑡)

𝜕𝑡
= 𝐷.

𝜕²𝐶(𝑥,𝑡)

𝜕𝑥²
 Equation 18 

 

According to Equation 18, in the initial condition (t = 0 s), the electrolyte 

concentration C(x,t) is equal to its initial concentration C0. Considering a semi-infinite 

diffusion film, the electrolyte concentration at the bulk of the solution (x ∞) remains 

constant throughout time. Inside the membrane, the diffusion is negligible and the ion 

flux (Jmemb) is governed by migration, following Equation 19. 

𝐽𝑚𝑒𝑚𝑏 =
𝑖. 𝑡𝑗̅

𝑧. 𝐹
 Equation 19 

 

In Equation 19, i is the current density (A.cm-2) and 𝑡̅j is the transport number in 

the membrane phase. At the same time, in the solution, the ion flux (Jsol) is governed 

by both migration and diffusion, according to Equation 20. 

𝐽𝑠𝑜𝑙 =
𝑖. 𝑡𝑗

𝑧. 𝐹
− 𝐷 (

𝜕𝐶

𝜕𝑥
)

𝑥=0
 

Equation 20 

 

By combining Equation 19 and Equation 20, Equation 21 is obtained for t>0 s. 

(
𝜕𝐶

𝜕𝑡
)

𝑥=0
= −

𝑖. (𝑡𝑗̅ − 𝑡𝑗)

𝑧𝐹𝐷
 Equation 21 

 

 Equation 21 states that ion concentration C at the membrane surface (x=0) 

varies throughout time as a function of the applied current density (i). In the work of 

Krol (74), Equation 21 was solved using a Laplace transformation for 2nd Fick’s Law 

and a rearranged equation was proposed for x=0 (Equation 22): 
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𝐶 =  𝐶0 −
𝑖 (𝑡𝑗̅ − 𝑡𝑗)

𝑧. 𝐹. 𝐷
. 2√

𝐷. 𝑡

𝜋
 Equation 22 

 

From Equation 22, it is observed that ion concentration at the membrane surface 

decreases with time as the applied current density increases. The most severe 

condition occurs when the applied current density is high enough to deplete ions at the 

membrane surface (C=0) at a given time. In this condition, Equation 22 may be 

rearranged for the well-known Sand Equation (74,111,112) (Equation 23). 

 

𝜏 =  
𝜋. 𝐷

4
(

𝐶0. 𝑧. 𝐹

𝑡𝑗̅ − 𝑡′𝑗
)

2

.
1

𝑖2
 

 

Equation 23 

 

In the so-called Sand Equation, τ is called “transition time”, which is the time 

elapsed between t=0 s and the depletion of ions in the diffusion layer at a given current 

density. 

For the established conditions, curves obtained by chronopotentiometry present 

a characteristic shape (37,108,113) (Figure 22).  

 

 
Figure 22. Characteristic shape of a chronopotentiometric curve obtained for a monopolar 

ion-exchange membrane (37). The inflexion point (point 6) represents the transition time (τ). 
Point 1 is the potential drop due to the application of the current density. Point 2 represents 

the depletion of counterions in the DBL. Point 3 represents the achievement of the 
steady-state. Point 4 is the interruption of electric current. Point 5 presents the relaxation of 

the system. 
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 When i<ilim, chronopotentiometric curves present only region a. The shape of 

the curve is characteristic of a potential response due to the application of an electrical 

current between two electrodes. When i≈ilim, an inflection point attributed to ion 

depletion at DBL is observed (region b). When i>ilim, the curve presents all six regions 

reported in Figure 22. The first region (a) corresponds to the transposition of the energy 

barrier imposed by the solution (ohmic drop). The second region (b) is attributed to the 

formation of concentration gradients between the bulk solution and the membrane 

surface. The third region (c) corresponds to the moment at which ion depletion at DBL 

occurs. The fourth region (d) corresponds to the steady-state achieved after the 

establishment of overlimiting transfer mechanisms. The fifth region (e) refers to the 

interruption of the applied current density and the sixth region (f) shows the relaxation 

of the system (82). 

 When overlimiting regimes are achieved, secondary effects may be noticed in 

the chronopotentiometric curves. The achievement of a maximum potential difference 

before reaching the steady-state (Figure 23 (a)) may be related to gravitational 

convection or to the presence of water splitting products. The oscillation during the 

steady-state (Figure 23 (b)) may be attributed to the electroconvection 

mechanism (82).   

 

  

(a) (b) 

Figure 23. Effects of overlimiting regimes in the chronopotentiometric curves. Gravitational 
convection or water splitting products are depicted in (a) and electroconvection effects are 

shown in (b) (82). 

 

Some common applications of chronopotentiometry to membrane systems are: 

 

• Determination of the diffusion boundary layer thickness (114); 
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• Evaluation of the limiting current density, the transport number and the 

transition time of different solutions (34); 

• Investigation of overlimiting transfer mechanisms (92); 

• Quantitative determination of non-conductive regions of polymeric 

membranes (82); 

• Evaluation of the formation of poisonous compounds (109); 

• Analysis of fouling potential in membranes (115). 

 

2.15 Electrodialysis and chronopotentiometry applied to 

electroplating wastewater: state-of-the-art 

 

Early researches on the treatment of wastewater from electroplating using 

electrodialysis were published in the 1990’s, but the increase in the number of 

publications was noticed only after the second half of the 2000’s. Ever since the first 

publications, the application of electrodialysis has been evaluated in order to treat 

rinsing waters, to remove potentially toxic compounds and to recover metals of 

economic interest, mainly nickel, copper, chromium and zinc (67).  

One of the first researches related to plating wastewaters containing metal 

complexes was published in 1992 (20). The transfer of copper and zinc cyanide 

complexes through anionic membranes was evaluated and the mobility of anions was 

found to be dependent on the complex charge. The transport of metal-EDTA chelates 

across anion exchange membranes was evaluated by Cherif et. al. (116) to separate 

different metal cations (Ag+, Zn2+ and Cu2+)  according to their affinity for the chelating 

agent. Nevertheless, few researches were dedicated to the recovery of organic acids 

by electrodialysis. Some studies were recently published due to the development of 

novel membranes especially designed for the transport of organic acids (117–119). 

However, the selective transport of organic acids through specific membranes is not 

fully understood yet. Furthermore, the researches showed to be limited for the most 

known complexing agents and organic compounds, such as cyanide, EDTA and 

fumaric acid.  

The electrodialysis process itself was also improved throughout time and the 

novel applications led to the evaluation of the system’s performance, energy 
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consumption and the transport competition in multivalent ion solutions (30). Hybrid 

systems were developed to improve the efficiency of metal recovery by 

electrodialysis (120,121). There are several ways to hybridize two different techniques. 

The most studied electrodialysis hybrid method is called electrodeionization and 

combines electrodialysis and ion exchange resins to achieve a synergic combination 

of the advantages presented by both methods (122). Electrodeionization has shown to 

be suitable for low conductivity solutions. Ion exchange resins placed in the dilute 

compartment may form a preferential path for ions. Therefore, a decrease in the 

electrical resistance and in energy consumption may be achieved. Different authors 

who evaluated electrodeionization for treating electroplating wastewaters were able to 

obtain percent extraction values higher than 97 % for the ions of interest (121,123-125). 

Lu et. al. (126) used a electrodeionization reverse technique to remove Ni2+ ions from 

a rinsing water. The periodic changes in the stack polarity were applied to promote 

membrane selfcleaning. 

Recently, a number of researches have been studying the feasibility of operating 

electrodialysis stacks in overlimiting regimes (92,127–129). According to these 

authors, overlimiting regimes are suitable for electrodeionization systems when water 

splitting is enhanced, since the water splitting products may favor the regeneration of 

ion exchange resins. The water dissociation inside the cell generates H+ and OH- ions 

that promote simultaneous resin regeneration (129). On the other hand, overlimiting 

governed by electroconvection mechanism may be an alternative for electrodialysis 

systems in order to increase mass transfer from the bulk towards the 

membrane-solution interface (128).  

The development of chronopotentiometry for evaluating transport properties of 

metal ions through ion-exchange membranes rose alongside the advance of 

electrodialysis. Most part of chronopotentiometric studies related to plating wastewater 

solutions are dedicated to evaluate the transport of metal cations (Mez+) across 

cation-exchange membranes (32,33,35,36). However, the formation of anionic 

compounds in plating wastewaters is not rare. For example, tin solutions of electroless 

plating of polymers contain SnCl2 which may form [SnCl3]- and [SnCl4]2- 

complexes (130). Molybdate coatings may form polynuclear [H2Mo7O24]4- and 

[H3Mo7O24]3- anions (109). Besides, the most common alkaline baths usually contain 

cyanide complexes, such as [Zn(CN)4]2−,  [Cu(CN)3]2− and [Ag(CN)2]− (23). Hence, 

chronopotentiometric studies with anion-exchange membranes have been 
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performed (109,130) to evaluate the transfer of anionic compounds through the 

membranes. The chronopotentiometric study presented in this thesis aims at filling a 

gap in scientific literature related to the evaluation of the transport properties of metal 

chelates through anion-exchange membranes. 
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3 MATERIALS AND METHODS 

 

The materials and methods section was subdivided according to the structure 

previously proposed in item 1.1.3, Figure 1: chronopotentiometric tests, electrodialysis 

tests (in batch system, in continuous system and for selective separation) and 

electrodeposition tests. In the chronopotentiometric tests, the transport properties of 

the ions from the evaluated bath through two anion-exchange membranes were 

studied. In particular, the influence of chelation between HEDP and copper was 

evaluated. In the electrodialysis tests, the recovery of water and of the ions from the 

working solution was performed. Lastly, the possibility of reusing the recovered 

solutions in an electrodeposition reactor for copper plating was evaluated. 

 

3.1 Synthetic solutions 

 

All the evaluated synthetic solutions were prepared based on the alkaline 

copper bath developed by IPT (Table 2). It was assumed that the rinsing waters 

corresponds to 1 % v/v of the copper bath in distilled water.  

Table 2. Composition of the alkaline copper bath (23). 

Cu2+ ions (from CuSO4.5H2O) 4.5 g.L-1 

HEDP 105.0 g.L-1 

KCl 7.0 g.L-1 

pH ≈ 10 by adding KOH 50 % 

 

For understanding the formation of Cu(II)-HEDP chelates and other ionic 

species, speciation diagrams for the working solutions were constructed with the aid 

of Hydra-Medusa software. Since there was no data for HEDP reactions in the software 

database, the equilibrium constants for HEDP protonation and Cu(II)-HEDP chelation 

were added to the software, according to the data from the literature (23,48) previously 

presented in item 2.4.1, as shown in Table 3. 
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Table 3. Equilibrium reactions added to Hydra-Medusa database (23,48). 

Reaction logK 

HEDP protonation 

H+ + HEDP4-  HHEDP3- 11.0 

2H+ + HEDP4-  H2HEDP2- 17.9 

3H+ + HEDP4-   H3HEDP- 20.6 

4H+ + HEDP4-  H4HEDP 22.2 

Cu(II)-HEDP chelation 

Cu2+ + HEDP4-  [CuHEDP]2- 12.0 

H+ + Cu2+ + HEDP 4-  [CuHHEDP]- 17.4 

2H+ + Cu2+ + HEDP 4-  [CuH2HEDP] 20.4 

 

3.2 Ion-exchange membranes 

 

Throughout the development of this work, two anion-exchange membranes 

were evaluated. The heterogeneous anion-exchange membrane (HDX200) is a 

commercial membrane designed for general electrodialysis applications. This 

membrane contains strongly basic quaternary amine fixed groups (NR3
+) and double 

reinforcing fabrics. It is manufactured in China and was imported by Hidrodex ® 

Company. The homogeneous anion-exchange membrane (PC200D) is manufactured 

in Germany and it was purchased from PCA GmbH. The PC200D anion-exchange 

membrane was specially designed for the transport of medium size organic acids 

(about 200 g.mol-1) and contain two different fixed groups, a strongly basic quaternary 

amine and a weakly basic tertiary amine. The properties of both anion-exchange 

membranes are shown in Table 4. 
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Table 4. Properties of heterogeneous (HDX200) and homogeneous (PC200D) 
anion-exchange membranes (39,117,119). 

Parameter Unit HDX200 PC200D 

Membrane matrix - polymeric polymeric 

Ionic group attached - NR3
+ ammonium 

Water content % 30-45 40 

Ion exchange capacity (Cl-) mol.kg-1 (dry) ≥ 1.8 1.24 / 0.56* 

Membrane surface 

resistance (0.1 mol NaCl) 
Ω.cm-2 ≤ 20 2.0 

Permselectivity (0.1 mol 

KCl/0.2 mol KCl) 
% ≥ 89 ≥ 77 

Burst strength MPa ≥ 0.6 4-5 

Dimension change rate % ≤ 2.0 ** 

Water permeability mL.h.cm-² ≤ 0.2 (< 0.035 MPa) ** 

* strongly basic / weakly basic 
** Not provided 
 

3.3 Chronopotentiometry 

 

3.3.1 Materials 

 

Chronopotentiometric tests were performed using a three-compartment reactor. 

Each compartment was filled with 140 mL of working solutions. The studied membrane 

was positioned between the anodic compartment and the central compartment. The 

effective membrane area was 3.52 cm². An auxiliary cationic membrane was 

positioned between the cathodic compartment and the central compartment in order to 

avoid the transport of hydroxyl ions from the cathode redox reactions. Graphite 

electrodes were used at the extremities of the system and connected to a 

galvanostat/potentiostat as working and counter electrodes. Two Ag/AgCl reference 

electrodes immersed in Luggin capillaries were used to measure the potential 
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differences through the anionic membrane. A schematic representation of the reactor 

is presented in Figure 24. 

 

 
Figure 24. Schematic representation of the experimental setup. 

 

3.3.2 Solutions 

 

The study was carried out using solutions containing copper (II) sulfate 

pentahydrate (CuSO4.5H2O), etidronic acid (HEDP) and potassium chloride (KCl) in 

different concentrations. Analytical grade reagents and deionized water were 

employed. The pH of all solutions was adjusted with a KOH 50 % w/w solution. The 

composition of the solutions is shown in Table 5. The objective for the selection of the 

solution composition is also presented in Table 5. The effect of chelation was studied 

by varying the HEDP:Cu2+ ratio, simulating the effect of electrodialysis galvanostatic 

regimes. The effect of pH was analyzed for evaluating the behavior of a weak 

electrolyte. The effect of chloride addition was studied since Cl- anions are smaller than 

organic HEDP anions and may present a higher mobility in a membrane system. 

Complementary tests were carried out with Na2SO4 salt solutions to evaluate the 

interaction between the SO4
2- anion and the strongly/weakly basic functional groups. 
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Table 5. Composition of the working solutions. 

Objective Composition (x10-3 mol.L-1) pH ID 

Effect of chelation 5.1 (HEDP) + 0.71 (Cu2+) 10 I 

2.8 (HEDP) + 0.71 (Cu2+) 10 II 

0.71 (HEDP) + 0.71 (Cu2+) 10 III 

0.71 (HEDP) + 0.18 (Cu2+) 10 IV 

0.71 (HEDP) + 0.10 (Cu2+) 10 V 

Effect of pH 5.1 (HEDP) 2 VI 

5.1 (HEDP) 10 VII 

Effect of Cl- addition 0.71 (HEDP) + 0.10 (Cu2+) + 0.94 (Cl-) 10 VIII 

5.1 (HEDP) + 0.71 (Cu2+) + 0.94 (Cl-) 10 IX 

5.1 (HEDP) + 0.71 (Cu2+) + 5.1 (Cl-) 10 X 

5.1 (HEDP) + 0.71 (Cu2+) + 10.2 (Cl-) 10 XI 

Interaction of SO4
2-  5.1 (Na2SO4) 5 XII 

 5.1 (Na2SO4) 10 XIII 

 

3.3.3 Procedure 

 

Before the beginning of each experiment, the membranes were immersed in the 

working solutions under stirring for at least 24 h. In all tests, the three compartments 

were filled with the same working solution. Tests were performed in duplicate, at room 

temperature and with no stirring. During the chronopotentiometric tests, different 

current densities were applied between working and counter electrodes for 300 s, while 

the membrane potential difference (Um) between the two reference electrodes was 

registered. After 300 s, the current was interrupted and the membrane potential was 

measured for an additional 100 s. The chronopotentiometric curves and the current 

voltage curves were constructed by plotting the registered values of Um against the 

time or the applied current density, respectively.  

The experimental setup for chronopotentiometric tests is shown in Figure 25. 
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Figure 25. Experimental setup for chronopotentiometric tests. WE is the working electrode, 
CE is the counterelectrode, AEM is the anion-exchange membrane under investigation and 

CEM is the auxiliary cation-exchange membrane. 

 

3.4 Electrodialysis 

 

3.4.1 Selective separation 

 

3.4.1.1 Materials 

 

Selective separation tests were performed in a three-compartment 

electrochemical cell similar to the reactor presented in Figure 4. The effective 

membrane area was established in 12.6 cm². The compartments were filled with the 

same working solution. The results were compared for both homogeneous and 

heterogeneous anion-exchange membranes. 

 

3.4.1.2 Solutions 

 

In order to evaluate the selective separation of HEDP in comparison with an 

inorganic anion from the same electrolyte, solutions with different organic/inorganic 

anion molar ratios were evaluated, as shown in Table 6. 

WE 
(Anode) 

CE 
(Cathode) 

AEM CEM 

Ag/AgCl 
electrodes 
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Table 6. Composition of working solutions. 
Composition pH* 

5.1 mmol.L-1 HEDP 10 

5.1 mmol.L-1 HEDP + 0.94 mmol.L-1 Cl- 10 

5.1 mmol.L-1 HEDP + 10.2 mmol.L-1 Cl- 10 

5.1 mmol.L-1 HEDP + 5.1 mmol.L-1 Cl- 10 

* adjusted with a KOH 50 % w/w solution 

 

3.4.1.3 Procedure 

 

Before the beginning of each experiment, the membranes were immersed in the 

working solution for a minimum period of 24 h in order to achieve a steady-state. After 

this period, the described experimental apparatus was arranged and the three 

compartments were filled with the same volume of working solution.  

 Firstly, Linear Sweep Voltammetry (LSV) tests were performed for each system 

to determine the current density to be applied in the experiments. The LSVs were 

carried out under the following parameters: scan velocity of 5.0 mV.s-1, initial potential 

of 0 V, final potential of 1.5 V, step potential of 2.44 mV. The linear region of the LSV 

curves determined the current density to be applied by the power supply. 

After determining the current density, the two reference electrodes were 

removed from the reactor and the connection to the potentiostat/galvanostat was 

modified to a constant current operation mode. The current density established by the 

LSV was applied for a period of 6 h in each system. Samples were periodically 

collected from all the compartments and submitted to chemical analysis. All the 

procedures used for chemical analysis are thoroughly described in item 3.6.  The pH 

and the conductivity of the compartments were monitored every 2 h.  

The obtained results were evaluated in terms of percent extraction and 

demineralization ratio, according to Equation 24 and Equation 25.  

 

𝐸𝑝% =
𝐶0

𝑗
− 𝐶𝑓

𝑗

𝐶0
𝑗

 𝑥 100 Equation 24 
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In Equation 24, Ep% is the percent extraction of each component of the system, 

C0 and Cf are the initial and final molar concentration (mol.L-1) of the anion j in the 

central compartment, respectively. 

 

𝐷𝑅(%) = 1 −  
𝜆𝑓

𝜆0
 Equation 25 

 

In Equation 25, DR is the total demineralization ratio (%) and λf and λ0 are the 

final conductivity and the initial conductivity of the working solution in the central 

compartment, respectively.  

The selective separation of HEDP/Cl- was evaluated by means of a binary 

separation factor (SF), according to Equation 26. 

 

𝑆𝐹 =  

(
[𝐻𝐸𝐷𝑃]

[𝐶𝑙]
)

𝑎𝑛𝑜𝑑𝑒

(
[𝐻𝐸𝐷𝑃]

[𝐶𝑙]
)

𝑐𝑒𝑛𝑡𝑟𝑎𝑙

 

Equation 27 

 

The percent extraction and the demineralization ratio for the evaluated systems 

were calculated and compared, in order to obtain information regarding to the selective 

transport of the organic anions through both evaluated anion exchange membranes. 

The separation factor SF allowed the estimative of the separation efficiency of two 

competing ions. If SF is higher than the unity, the membrane has greater selectivity for 

HEDP. If SF is smaller than 1, the membrane presents higher selectivity for chloride 

anions. 

 

3.4.2 Electrodialysis in batch system 

 

The electrodialysis tests in a laboratory-scale batch system were carried out to 

estimate the average concentration rate of the initial working solution and to evaluate 

parameters such as the current efficiency and the energetic consumption per specie. 

The obtained results were related to the transport mechanisms studied in the 

chronopotentiometric tests. 
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3.4.2.1 Materials 

 

Tests were performed in a five-compartment laboratory-scale stack. Each 

compartment was individually separated from each other by using 16 cm² 

cation-exchange (C) and anion-exchange (A) membranes alternately arranged in a 

“Cathode-A-C-A-C-Anode” configuration. The cation exchange membranes that were 

used in electrodialysis tests were heterogeneous or homogeneous, both having 

sulfonic acid fixed groups. The main properties of both cation-exchange membranes 

(heterogeneous HDX100 and homogeneous PC SK) can be found elsewhere (39,58). 

The compartments were manufactured in polymethyl methacrylate and named 

accordingly: cathode compartment, cathode concentrate, dilute, anode concentrate 

and anode compartment. Each compartment was connected to a 1 L reservoir, except 

the dilute compartment, which was connected to a 10 L reservoir. Titanium plates 

coated with 70TiO2/30RuO2 were used as cathode and anode, both having an effective 

area of 16 cm². The electrodes were connected to a direct current power supply. The 

working solutions were recirculated through the compartments by using centrifugal 

electric pumps (3.5 L.h-1). 

The current density to be applied in electrodialysis tests was determined from 

the construction of polarization curves. A similar experimental setup was used, except 

that the dilute reservoir capacity was reduced to 1 L. For the heterogeneous 

membrane, the limiting current density was settled as reported in a previous work 

(131). The polarization curves for the homogeneous membranes were carried out in 

triplicate, for both anion-exchange and cation-exchange membranes. Two voltmeters 

were used to measure the potential difference between the diluted compartment and 

the anode concentrate compartment (anion-exchange membrane) and between the 

dilute compartment and the cathode concentrate compartment (cation-exchange 

membrane). The voltmeters were connected to platinum wires which were positioned 

near the membranes surfaces. The experimental setup used for batch electrodialysis 

tests and for determining the limiting current density is shown in Figure 26. 
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Figure 26. Electrodialysis batch system and its alternative setup for the construction of 

polarization curves. 

 

3.4.2.2 Solutions 

 

The dilute compartment was filled with a model solution simulating the rinsing 

waters from the HEDP-based copper bath with the following composition: 1.05 g 

(HEDP).L-1, 0.045 g (Cu2+).L-1 and 0.070 g (KCl).L-1. The pH was adjusted to 10 by 

adding a KOH 50 % w/w solution dropwise. 

Both concentrated compartments received 1 L of a KCl (1.14 g.L-1) solution, 

having similar conductivity to the model solution used in the diluted compartment. The 

electrodes compartments were filled with a 3.0 g.L-1 K2SO4 solution. The conductivity 

of the electrodes solution was set to be 1.5 to 2 times higher than the other solutions 

to reduce the system ohmic drop. 
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3.4.2.3 Procedure 

 

Before the electrodialysis tests, the limiting current density for the homogeneous 

membranes was established by means of the construction of polarization curves. 

Firstly, a 2 mA direct current was applied during 5 min. After the elapsed time, the 

membrane potential (CEM and AEM) and the stack potential were registered. The 

current was interrupted for 3 min. After a 3 min relaxation time, the electric current was 

increased in a 2 mA step and applied during 2 min. The same abovementioned 

parameters (membrane potential and the stack potential) were recorded. This 

procedure was repeated by increasing the applied current in a 2 mA step until the stack 

potential reached 30 V. The registered data – applied current, CEM potential, AEM 

potential and stack potential – were used to construct “i versus U” curves for each 

membrane and “dU/di versus 1/i” curves for the stack. The limiting current density in 

the “i versus U” curves was established according to the concentration polarization 

theory (Figure 13). The point at which minimum electrical resistance occurs in the 

“dU/di versus 1/i” curve determined the stack limiting current density. 

Electrodialysis batch tests were carried out in the same system, except that the 

capacity of the dilute reservoir was increased to 10 L. The applied current density was 

established as 80 % of the limiting current density estimated from the polarization 

curves. During the experiments, the pH and the conductivity of all solutions were 

monitored. Samples from the dilute compartment (20 mL) and from the anode 

concentrate (10 mL) were periodically collected for chemical analysis. All the 

procedures used for chemical analysis are thoroughly described in item 3.6. 

Electrodialysis was carried out until the conductivity gradient between the dilute and 

the concentrate compartments hindered the mass transfer. The obtained results were 

compared for both heterogeneous and homogeneous membranes. Figure 27 shows 

the batch system during the electrodialysis experiment. 
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Figure 27. Electrodialysis batch system. 1 is the synthetic rinsing water; 2 is the DC 

power supply; 3 refers to the pumps; 4 is the membrane stack and 5 refers to the 
concentrate and electrode solutions.  

 

The most important parameters evaluated during electrodialysis were the 

percent extraction (Equation 24), the total demineralization rate (Equation 25), the 

average energy consumption (Equation 28), the energy consumption for transfer of 

each ionic specie (Equation 29) and the current efficiency (Equation 30). 

E = U.I.t Equation 28 

In Equation 28, U is the stack potential (V), t is the time (h), I is the applied 

current (A) and E is the energy consumption (kW.h). 

In Equation 29, M is the molar mass (g.mol-1), and V is the volume of the dilute 

compartment (L). 

 

Equation 29 

In Equation 30, n is ion charge and F is the Faraday constant (s.A.mol-1).  

 

Equation 30 

  

 

1 

2 

3 

4 

5 
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3.4.3 Electrodialysis in continuous system 

 

Electrodialysis tests in continuous system were performed with the aim of 

obtaining a concentrated solution that could replace eventual drag-out losses of the 

compounds from the bath. After the experiments, the electrochemical properties of the 

anion-exchange membranes were analyzed to evaluate the effect of Cu(II)-HEDP 

chelates. A simple cleaning procedure was performed to evaluate the possibility of 

recovering the membranes original features.  

 

3.4.3.1 Materials 

 

Tests were carried out in a laboratory-scale system similar to the presented in 

Figure 26 and Figure 27. The batch system was modified to operate more likely to a 

real industrial stack. The five compartments with a “Cathode-A-C-A-C-Anode” 

configuration were connected to three reservoirs – dilute, concentrate and electrode – 

having 1L capacity each, as presented in Figure 28.  

 

 
Figure 28. Schematic representation of the electrodialysis continuous system 
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3.4.3.2 Solutions 

 

The dilute and the concentrate compartments were filled with the model solution 

simulating the rinsing waters from the HEDP-based copper bath with the following 

composition: 1.05 g (HEDP).L-1, 0.045 g (Cu2+).L-1 and 0.070 g (KCl).L-1. The pH was 

adjusted to 10 by adding a KOH 50 % w/w solution dropwise. 

The electrode compartment received 1 L of a 3.0 g.L-1 K2SO4 solution. The 

conductivity of the electrodes solution was set to be 1.5 to 2 times higher than the other 

solutions to reduce the system ohmic drop. 

 

3.4.3.3 Procedure 

 

Electrodialysis was performed in long-term concentration tests in order to obtain 

a concentrated solution and simultaneously produce an uncontaminated water. At the 

beginning of the tests, both dilute and concentrate compartment were fed with the 

synthetic wastewater. Tests were conducted until the conductivity of the dilute 

compartment was lower than 200 μS.cm-1. When this condition was reached, the 

treated solution of the dilute compartment was replaced by the original model 

wastewater again. This procedure characterized one “operating cycle”. During the 

tests, the total stack potential, the pH and the conductivity of all compartments were 

monitored. The operating cycles were repeated until the ion transfer was limited by the 

conductivity gradient between the concentrated and the diluted compartments. At the 

end of each operating cycle, the treated solution and 10 mL samples of the concentrate 

solution were collected and forwarded to chemical analysis. The procedures used for 

chemical analysis are described in item 3.6. 

 The obtained results were evaluated in terms of percent extraction (Equation 

24), demineralization rate (Equation 25) and concentration rate (Equation 31). 

𝑃𝐶% =  
𝐶𝑡

𝑗

𝐶0
𝑗

− 1 Equation 31 
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In Equation 31, C0
j and Ct

j are ion concentrations in the initial state and at a 

given time, respectively.   

3.4.3.4 Analysis of HEDP degradation 

 

HEDP degradation was evaluated in terms of phosphate conversion. For this 

study, HEDP degradation is an undesirable reaction since the chelates may dissociate 

and release the copper ions. Samples of the initial and final solutions were analyzed 

for organic HEDP and inorganic orthophosphate, based on the conversion reaction 

proposed by Steber and Wierich (132) which states that HEDP is degraded into acetate 

and orthophosphate. The procedures used for chemical analysis are described in 

item 3.6. 

 

3.4.3.5 Analysis of the membrane electrochemical properties 

 

The electrochemical properties of the anion-exchange membranes were 

evaluated by means of chronopotentiometric measurements after electrodialysis tests. 

The membrane reactor used was well defined previously in item 3.3.1 and Figure 24. 

Two simple cleaning procedures (acid or alkaline) were performed to evaluate the 

possibility of recovering the original features of the membranes after long-term 

concentration tests. The cleaning solutions were analyzed to determine the 

concentration of copper and HEDP that remained in the membranes. The procedure 

is detailed in Figure 29. 
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Figure 29. Procedure for evaluating the membrane properties after long-term 

concentration tests. 

 

After the alkaline cleaning step, the membrane sample was analyzed by means of 

SEM/EDS microscopy and FTIR-ATR spectroscopy to evaluate possible modifications 

in its structure. 

 

3.5 Electrodeposition 

 

Electrodeposition experiments were performed to analyze the copper coatings 

produced when using the HEDP-based bath containing the concentrate obtained by 

electrodialysis as electrolyte. The aim of these tests was to simulate the replenishment 

of the original bath with the recovered solution instead of using fresh water and 

chemicals. The adherence and the visual aspect of the coatings were evaluated by 

means of SEM/EDS analysis and adherence tests. It is important to mention that most 

of the procedures for electrodeposition and adherence tests were based on the work 

of Vargas (23), who developed the formulation of the HEDP-based bath. 

 

ED
• Long-term concentration tests.

1%
• Model solution (1 % v/v Cu(II)-HEDP bath); 24 h

ChP
• Chronopotentiometry

H2O
• Rinsing

H+/OH-
• Cleaning solution (72 h): KOH 0.1 mol.L-1 or H2SO4 0.1 mol.L-1

H2O
• Rinsing (24 h)

1%
• Model solution (24 h), for equilibrium

ChP
• Chronopotentiometry



Chapter 3: Materials and Methods                                                                86 

3.5.1 Materials 

 

The test specimens were manufactured from Zamak 5 ingots provided by 

Votorantim Metais Holding. The composition and dimensions of the ingots are 

summarized in Table 7 (133). 

Table 7. Composition and dimensions of the Zamak ingots used for manufacturing the test 
specimens (133). 

Composition   Dimensions 

Metal (%) Metal (%)   Features (per ingot) 

Zn 94.4965 Cd 0.0030   Length 520 mm 

Pb 0.0040 Cu 0.7 – 1.1   Width 65 mm 

Fe 0.035 Al 3.9 – 4.3   Thickness 25 mm 

Sn 0.0015 Mg 0.03 – 0.06   Weight 4.5 kg 

 

 From the Zamak ingots, the test specimens were manufactured as shown in 

Figure 30. 

                 
Figure 30. Test specimens for electrodeposition tests (not to scale).  

 

 The electrodeposition cell was composed of a 100 mL glass beaker containing 

90 mL of the electrolyte. The test specimen was used as cathode (Area ≈ 19 cm²) and 

a copper plate (Area ≈ 50 cm²) was used as anode. Both cathode and anode were 
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connected to a potentiostat/galvanostat to provide a more precise control of the applied 

current density. The representative scheme of the deposition cell and its visual aspect 

are shown in Figure 31. 

  

(a) (b) 

Figure 31. Representative scheme of the deposition cell (a) and its visual aspect (b) 

 

3.5.2 Solutions 

 

Electroplating tests were carried out using electrolytes containing the 

HEDP-based bath and the concentrate solution obtained by electrodialysis in different 

ratios. The copper bath was prepared with the composition previously reported (Table 

8). The concentrate solutions were the final concentrate obtained by electrodialysis in 

long-term tests performed in the continuous system. 

 

Table 8. Composition and operating parameters of the HEDP-based strike copper bath (23). 

Composition 

Cu2+ 4.5 g.L-1 
HEDP 105.0 g.L-1 

KCl 4.0 ~ 7.0 g.L-1 

pH (KOH 50 %) 10 - 

 

 The mixed solutions were prepared according to Table 9. 
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Table 9. Composition of the mixed electrolytes used for copper deposition. 

Electrolyte 

Total 

volume 

(mL) 

Original 

bath (mL) 

Recovered 

solution (mL) 

% of recovered 

solution 

Original 100 100 0 0 

HDX-V-10 100 90 10 10 

HDX-V-20 100 80 20 20 

HDX-V-30 100 70 30 30 

HDX-V-40 100 60 40 40 

HDX-V-50 100 50 50 50 

HDX-V-100 100 0 100 50 

 

3.5.3 Procedure 

 

Previously to the electrodeposition tests, the surface of the test specimens was 

pretreated with the aid of mechanical and chemical procedures. After surface 

preparation, the test specimens were immersed in 90 mL of the electrolytes listed in 

Table 9. The aspect and the adherence of the obtained coatings were evaluated by 

means of visual analysis, SEM/EDS microscopy and adherence tests. 

The detailed surface pretreatment procedure was: 

✓ Surface degreasing using acetone P.A.; 

✓ Wet grinding with a 320 grit SiC sandpaper; 

✓ Wet grinding with a 400 grit SiC sandpaper; 

✓ Wet grinding with a 600 grit SiC sandpaper; 

✓ Rinsing with distilled water; 

✓ Rinsing with ethanol P.A.; 

✓ Hot-air drying; 

✓ Surface degreasing using acetone P.A.; 

The test specimens were weighed and stored in a glass vacuum desiccator until 

the activation and deposition steps. The surface activation was carried out by 

maintaining the tests specimens under room atmosphere during 24 h, followed by the 

immersion in a H2SO4 1 % v/v solution for 30 s. The deposition procedure consisted 
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of the immersion of the activated test specimens in 90 mL of the electrolyte during 10 

min with no electrical current followed by the application of 0.3 A.dm-2 for 15 min at 

room temperature with magnetic stirring. A minimum number of two test specimens 

were tested for each electrolyte. The entire procedure is summarized in Figure 32. 

 

 
Figure 32. Procedure of pretreatment, activation and deposition utilized for obtaining copper 

coatings on Zamak 5 test specimens. 

 

Once coated, the test specimens were analyzed to evaluate the aspect and the 

adherence of the copper layers. The analyses were performed by means of visual 

tests, SEM/EDS microscopy (the detailed description of SEM/EDS analysis is 

presented in item 3.6.3) and adherence tests. The adherence test was performed 

according to the procedure established by Vargas (23). Each copper coating was 
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carved using a retractable blade knife, creating an X-shaped cut on the test specimen 

surface deep enough to achieve the Zamak substrate. Then, an adhesive tape (3M, 

model 880 Scotch) was coated onto the carved surface and vigorously rubbed with an 

ordinary rubber to ensure a complete adhesion between the tape and the surface. The 

tape was rapidly pulled in a parallel direction of the test specimen surface. The 

evaluation of the adherence was performed quantitatively, by analyzing the 

detachment of the copper layer when pulling the tape.  

 

3.6 Analysis procedures 

 

In this item, all the analytical techniques and microscopy analyses used during 

the development of the thesis will be described.  

 

3.6.1 Ion chromatography (IC) 

 

The analyses of potassium (K+), sulfate (SO4
2-), phosphate (PO4

3-) and chloride 

(Cl-) were carried out in an Ion Chromatography system (Metrohm 850 Professional IC 

AnCat-MCS and 858 Professional Sample Processor). The analyses of anions were 

performed with a Metrosep A Supp 5 - 150/4.0 anion exchange column. The eluent for 

the analyses of anions contained sodium bicarbonate (84 mg NaHCO3.L-1) and sodium 

carbonate (339 mg Na2CO3.L-1). The system flux was set to 0.7 mL.min-1 and the 

temperature was 30 ºC.  

Potassium analysis was performed with a Metrosep C 4 - 150/4.0 cation 

exchange column. The eluent contained dipiconilic acid (117 mg.L-1) and nitric acid 

(1.7 mmol.L-1). The system flux was set to 0.9 mL.min-1 and the temperature was 30ºC.  

 

3.6.2 Energy-dispersive X-ray spectroscopy (EDX) 

 

The analyses of copper (Cu2+) and HEDP were performed with the aid of an 

energy-dispersive X-ray spectroscope, Panalytical Epsilon 3X-L equipped with a metal 

(Ag)-ceramic X-ray tube with a 50 μm beryllium window and a 135 eV high-resolution 

silicon drift detector with a 8 μm beryllium window. 
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The parameters for copper analyses were: air atmosphere, Ag filter, 50 kV, 

97 μA and a calibration curve between 18 cps and 680 cps (4 mg.L-1 to 2.5 g.L-1). The 

parameters for HEDP analyses were: Helium atmosphere (0.62 L.min-1), Ti filter, 10 

kV, 852 μA and a calibration curve between 20 cps and 7960 cps (80 mg.L-1 to 

25 g.L-1). Both analyses considered the Kα X-ray signals and all the samples were 

analyzed in sample holders with 4 μm or 6 μm polypropylene films.  

 

3.6.3 Scanning Electron Microscopy coupled with Energy Dispersive X-ray 

Spectroscopy (SEM/EDS) 

 

The SEM/EDS analyses were carried out in a Phenom Pro X benchtop 

microscope with an accelerating voltage of 15 kV and a Back Scattered Electron 

detector (BSE). The SEM analyses with Focused Ion Beams (FIB) were performed in 

a Quanta FEG (Field Emission Gun) from FEI Company with an accelerating voltage 

of 20 kV and a BSE detector for SEM images and an accelerating voltage of 30 kV and 

a current of 29.6 pA for FIB images. Dispersive Energy Spectroscopy (EDS) was used 

for qualitative characterization of the samples.  

 

3.6.4 Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

 

The copper analyses in samples with concentration under 5 ppm were carried 

out by means of ICP-OES technique in an Agilent 710 Spectrometer under the 

following conditions: plasma flow 15.0 L.min-1, auxiliary Argon flow 1.50 L.min-1 and 

nebulizer pressure 200 kPa. Data acquisition was performed in three wavelengths 

(213.598 nm, 324.754 nm and 327.395) using a calibration curve between 1.04 ppm 

and 20.3 ppm. 

 

3.6.5 Direct pH and conductivity measurements 

 

Direct pH measurements were carried out with a pHmeter/ORP Hanna PH21 

calibrated with two standards (4.01 and 7.01). Conductivity measurements were 

performed with a Sensoglass conductivimeter set with a 1413 μS.cm-1 standard 

solution. 
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3.6.6  Optical Microscopy 

 

Optical microscopies were carried out in a Leica – DM2700 M microscope with 

a pre-magnification of 10x and 50x magnification lenses connected to a HD camera 

(Leica MC170) to capture the images. 

 

3.6.7 Fourier-transform infrared spectroscopy with Attenuated Total 

Reflectance (FTIR-ATR) 

 

The FTIR-ATR spectroscopy analysis was performed in a Shimadzu IR 

Prestige-21 spectroscope, between 700 cm-1 and 4000 cm-1, with 70 scans at 2 cm-1 

resolution. 

 

3.7 Materials and methods summary 

 

Table 10 presents a summary of the materials and methods utilized during the 

development of the thesis.   

 

Table 10. Summary of the materials and methods of each group of experiments performed in 
the present thesis. 

Test Objectives Materials Analyzes Parameters 

C
h

ro
n

o
p

o
te

n
ti

o
m

e
tr

y
 

- Evaluate the 

transport of anions 

through membranes. 

- Evaluate the transfer 

mechanisms. 

- Analyze the effect of 

acid:metal ratio, 

concentration and pH. 

Electrochemical 

membrane 

reactor 

Construction of 

Um vs t and 

CVC curves 

- Electrical 

resistance 

- Limiting 

current density 

- Plateau length 

- ChP curves 
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 (Cont. Table 10)    

S
e

le
c

ti
v

e
 

s
e
p

a
ra

ti
o

n
 

To evaluate the 

selectivity of the 

anion-exchange 

membranes for the 

organic acid (HEDP) 

Electrochemical 

membrane 

reactor 

- Ion 

chromatography 

(Cl-)  

- EDX 

spectroscopy     

(HEDP) 

- Percent 

extraction 

- DR (%) 

- Separation 

factor 

B
a

tc
h

 e
le

c
tr

o
d

ia
ly

s
is

 

- To estimate a 

possible concentration 

rate 

- To evaluate current 

efficiency and energy 

consumption 

- To relate the ion 

transfer with the 

results from 

chronopotentiometry 

ED batch system 

- Ion 

chromatography 

(K+, Cl- and 

SO4
2-)  

- EDX 

spectroscopy 

(HEDP and 

copper) 

- Percent 

extraction 

- DR (%) 

- Energy 

consumption 

- Current 

efficiency 

 

C
o

n
ti

n
u

o
u

s
 

e
le

c
tr

o
d

ia
ly

s
is

 

To obtain a 

concentrate solution 

ED continuous 

system 

- Ion 

chromatography 

(K+, Cl- and 

SO4
2-)  

- EDX 

spectroscopy 

(HEDP and 

copper) 

- Percent 

extraction 

- DR (%) 

- Concentration 

rate 

H
E

D
P

 d
e
g

ra
d

a
ti

o
n

 

To evaluate the 

degradation of HEDP 

in terms of phosphate 

conversion 

ED continuous 

system 

- Ion 

chromatography 

(PO4
3-)  

- EDX 

spectroscopy 

(HEDP) 

PO4
3-

concentration  
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 (Cont. Table 10)    
M

e
m

b
ra

n
e
 a

g
e
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g
 

To evaluate the 

changes in the 

membrane properties 

due to the effect of 

Cu(II)-HEDP chelates 

- ED continuous 

system  

- Membrane 

reactor 

- EDX 

spectroscopy 

(copper and 

HEDP)  

- SEM/EDS  

- Construction of 

Um vs t and 

CVC curves 

- Ion 

concentration in 

the membrane 

phase 

- Membrane 

structure and 

incorporation of 

chelates 

- Electric 

resistance 

- Limiting 

current density 

- Shape of ChP 

curves 

E
le

c
tr

o
d

e
p

o
s
it

io
n

 To evaluate the 

possibility of replacing 

ions from the original 

bath with the 

concentrate obtained 

by electrodialysis 

Electrodeposition 

reactor 

- Visual analysis 

- SEM/EDS 

- Adherence test 

- Visual aspect 

- Adherence 
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4 RESULTS AND DISCUSSION 

 

4.1 Chronopotentiometry 

 

4.1.1 Heterogeneous membrane 

 

4.1.1.1 Effect of the formation of Cu(II)-HEDP chelates 

 

The transport properties of HEDP anions and copper-HEDP chelates through 

the HDX 200 anion exchange membrane (AEM) were evaluated by means of 

chronopotentiometric curves. Synthetic solutions containing HEDP and CuSO4.5H2O 

with different HEDP:Cu2+ ratios were used for evaluating the effect of the formation of 

anionic chelates. The compositions of the working solutions that were used for the 

evaluation of the chelation effect are detailed in Table 11. 

 

Table 11. Composition of the working solutions used for the evaluation of the chelation effect. 

ID HEDP (mmol.L-1) Cu2+ (mmol.L-1) HEDP:Cu2+ pH * 

I 5.1 0.71 7:1 10 

II 2.8 0.71 4:1 10 

III 0.71 0.71 1:1 10 

IV 0.71 0.18 4:1 10 

V 0.71 0.10 7:1 10 

         * adjusted with 50 % w/w KOH 

 

The chronopotentiometric curves obtained for the working solutions for a current 

density of 0.28 mA.cm-2 are presented in Figure 33. 
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Figure 33. Chronopotentiometric curves for HDX200 membrane in contact with 

different solutions for 0.28 mA.cm-2. 

 

In Figure 33, the curves showed different shapes, although the same current 

density was applied in all systems. The curve from solution I did not show any inflexion 

point which indicates that the ion transport is not limited by a diffusion mechanism. The 

registered potential difference is related only to the ohmic drop and to the membrane 

resistance. Curve II presented a slight increase in the membrane potential between 

100 s and 150 s. This indicates the onset of a slight concentration gradient in the 

diffusion boundary layer. 

An inflexion point was well defined in curves III, IV and V showing anion 

depletion in the diffusion boundary layer. In these situations, the ion transport was 

limited by the diffusion of ions from the bulk of the solution towards the boundary layer. 

The elapsed time until the appearance of the inflexion point is known as transition 

time (τ). As stated by the Sand theory, the transition time represents the moment at 

which occurs the depletion of ions in the boundary layer (31). At i = 0.28 mA.cm-2, 

solution IV showed a transition time of about 50 s. For the same current density, the 

transition times of solutions V and III were smaller, i.e., ion depletion was faster than 

the other solutions due to their smaller anionic equivalent charge and to the lower effect 

of hydroxyl groups. 

From the chronopotentiometric curves, the precipitation of insoluble copper 

hydroxides was not observed because an increase of the membrane potential after the 

steady-state was not detected. It has been related in the literature (34,84) that 
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metal-hydroxide precipitation can modify the shape of chronopotentiometric curves 

during ion transport through cation exchange membranes. The formation of metal 

hydroxides is a consequence of water splitting in the membrane boundary layer or the 

rapid transport of protons through the cationic membranes. These two phenomena 

lead the increase of hydroxyl group and consequently the increases of the pH at one 

side of the membrane leading to the formation of insoluble metal hydroxides which can 

clog the membrane surface. Similar behavior is possible to occur with anion exchange 

membranes (134). Under overlimiting current conditions, metal hydroxide precipitation 

is characterized by an increase of the membrane potential after the steady-state is 

reached. The region of the curve attributed to the relaxation of the system can be 

altered due to the recombination between formed hydroxides and protons in the 

solution (32). However, the described effects were not observed in the present studied 

systems. 

The chronopotentiometric curves obtained for solutions with different 

HEDP:Cu2+ ratios indicated that there is a relation between the HEDP concentration, 

the fraction of [CuHEDP] chelates and the shape of the curves. The curve from solution 

III (HEDP:Cu2+ = 1) presented the greatest ohmic drop immediately after the current 

application and the highest potential drop registered for the overlimiting regime. The 

beginning of concentration polarization was noted for a current density of 

0.14 mA.cm-2, the lowest value among all the studied systems. This behavior is 

possibly attributed to the fact that solution III has no free HEDP in its composition. 

Practically, the total amount of HEDP in solution III is in the form of [CuHEDP] chelates 

which may have lower mobility and bigger size than the other anions. 

The results presented in Figure 33 show that, under the same current density, 

different transport mechanisms were acting in each system. This may be explained 

considering the different molar concentration and the ionic mobility of all species under 

a given condition. The software Hydra-Medusa was used to calculate the concentration 

of all ionic species in the systems containing HEDP and divalent copper ions and to 

build speciation diagrams for each system. The calculated molar concentration of the 

main ionic species for each solution is presented in Table 12. 
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Table 12. Concentration (in mmol.L-1) of ionic species for the evaluated systems. 

Solution I II III IV V 

Composition of the working solutions 

HEDP (mmol.L-1) 5.10 2.80 0.71 0.71 0.71 

Cu2+ (mmol.L-1)  0.71 0.71 0.71 0.18 0.10 

K+ (mmol.L-1)  32.0 13.0 8.0 5.4 5.4 

pH 10.3 10.0 9.9 10.7 10.4 

Concentration (in mmol.L-1) of the main ionic species 

K+ 31.84 13.03 7.83 5.30 5.40 

HHEDP3- 3.63 1.95 0.01 0.37 0.49 

[CuHEDP]2- 0.71 0.69 0.71 0.18 0.10 

OH- 0.20 0.09 0.07 0.46 0.28 

SO4
2- 0.58 0.64 0.67 0.17 0.10 

HEDP4- 0.74 0.17 8.91 x10-4 0.17 0.13 

KSO4
- 0.13 0.06 0.04 0.01 3.67 x10-3 

Cu2+ 8.87 x10-10 4.12 x10-9 8.13 x10-7 9.98 x10-10 7.43 x10-10 

Anionic equivalent charge (meq.L-1) 

Q-
 eq 16.78 9.35 2.91 2.95 2.67 

 

The formation of insoluble compounds was not considered in the speciation 

diagrams since there was no indication of copper precipitation neither visually nor in 

the chronopotentiometric curves. The equivalent charge (Qeq) for the cationic and the 

anionic species were calculated using the Equation 32. 

𝑄𝑒𝑞 = ∑|𝑧𝑗| . 𝐶𝑗 Equation 32 

 

In Equation 32, zj is the charge and Cj is the concentration of a given ion j. In 

Table 12, it is noted that the prevailing anions were: HHEDP3-, SO4
2-, OH-, HEDP4-, 

KSO4
- and [CuHEDP]2- chelates. Therefore, a transport competition between them was 

expected, depending on their molar concentration and mobility. Solution I presented 

the highest HEDP concentration and the HEDP:Cu2+ ratio was equal to 7. The 

predominant anion in this solution was the HHEDP3- and its molar concentration was 

about 5 times greater than HEDP4- and [CuHEDP]2- anions. In this case, it is possible 
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to suggest that the ion transport through the membrane is mainly accomplished by 

HHEDP3- anions. 

In solution III, the HEDP:Cu2+ ratio was 1 and practically the total amount of 

HEDP formed bivalent anionic chelates with copper in the evaluated pH range. The 

transfer of electric charges in the membrane phase occurs due to the transport of 

[CuHEDP]2- chelates and SO4
2- anions. Both have similar equivalent charges but the 

anionic chelates have lower mobility. The effect of the [CuHEDP]2- transport was 

noticeable in the chronopotentiometric curves shown in Figure 33. 

The prevalence of HHEDP3- anions was smaller in the remaining solutions (II, 

IV and V). The simultaneous transport of other anionic species became more 

pronounced and the transport properties were not governed by HHEDP3-. Solutions IV 

and V have lower acid molar concentration in their composition and presented 

interference by OH- anions. The hydroxyl groups may have contributed for reducing 

the ohmic drop and the membrane potential, as presented in Figure 33.   

The transfer of anions with different mobility was noted under specific conditions 

in the chronopotentiometric curves obtained for solutions having HEDP:Cu2+ ratio 

equal to 4 (Figure 34). 

 
Figure 34. Chronopotentiometric curves obtained for solutions having HEDP:Cu2+ 

ratio equal to 4. Dashed lines show the transition times (τ) calculated according to the 
maximum of the first derivative method. 

 

1st 

2nd 

1st 

2nd 

2.8 HEDP + 0.71 Cu2+ (mmol.L-1)   (II) 

i = 0.30 mA.cm-² 

0.71 HEDP + 0.18 Cu2+ (mmol.L-1) (IV) 

i = 0.23 mA.cm-² 
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The curves shown in Figure 34 presented two inflexion points, instead of a single 

inflexion point generally observed in similar systems. This behavior may be attributed 

to the transport of anions with different size, molar concentrations, mobility or diffusion 

coefficients in the membrane matrix. A similar characteristic was observed by Zook et 

al. (135). The authors studied the ion transport through a Ca2+ selective membrane in 

contact with a solution containing an ionophore and calcium cations. According to the 

authors, the first inflexion point was assigned to the transport of free ionophore, the 

second inflexion point was attributed to ion-ionophore complex transfer and both 

inflexion points were clearly separated from each other, indicating a difference in ion 

mobility and diffusion coefficient (135). Pismenskaya et al. (136) reported that pH 

changes on a membrane surface due to the preferential transport of hydroxyl ions may 

also modify the transport properties of weak electrolyte anions, depending on the 

membrane selectivity for each charged species. 

Each inflexion point presented in Figure 34 was associated with a transition 

time. Transition times were calculated using the maximum of the first derivative method 

(37,38). The existence of a second inflexion point was more noticeable for solution II 

because of its higher ion concentration. Based on the speciation diagrams of the 

working solutions in their initial conditions, it is possible to suggest that the first inflexion 

point observed in Figure 34 may be associated with the transport of HHEDP3- free 

anions and the second inflexion point may be related to [CuHEDP]2- chelate transfer 

through the membrane. Figure 35 presents the speciation diagram of solution II 

(HEDP:Cu2+ = 4), considering its initial conditions. 
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Figure 35. speciation diagram of solution II (2.8 mmol.L-1 HEDP + 0.71 mmol.L-1 

Cu2+). The dashed lines represent the chemical reaction HHEDP3- + H+ ↔ H2HEDP2- for 
solution I (5.1 mmol.L-1 HEDP + 0.71 mmol.L-1 Cu2+). The speciation diagram was 

constructed with the aid of Hydra-Medusa software. 

 

From Figure 35, the initial composition of solution II for pH 10 shows a 

HHEDP3-:[CuHEDP]2- ratio equal to 2.8. When the overlimiting regime is reached, a 

depletion of HHEDP3- anions occurs at the boundary layer, as they are transported 

towards the anode compartment. The anion depletion may lead to the appearance of 

overlimiting transfer mechanisms, such as electroconvection and water splitting. The 

hydroxyl groups from water splitting mechanism or from the autoionization of water in 

alkaline medium are transferred to the anode compartment and cause a pH raise at 

the anodic side of the AEM. On the other hand, H+ protons, which are excluded from 

the AEM matrix due to Donnan’s exclusion mechanism, provoke a decrease in the pH 

value at the cathodic side of the AEM. The decrease in pH value favors the formation 

of H2HEDP2- anions according to the following Equation 33. 

 

HHEDP3- + H+ ↔ H2HEDP2- Equation 33 

 

The formation of H2HEDP2- reduces the HHEDP3-:[CuHEDP]2- ratio, as it can be 

seen in Figure 35. [CuHEDP]2- chelates present a greater size and a lower mobility 

than the other anions. Thus, their transport across the AEM membrane is characterized 

by a second transition time in the chronopotentiometric curves. By comparing the 
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results with the chronopotentiometric curves obtained for solution I, it is observed that, 

when the HHEDP3-:[CuHEDP]2- ratio is higher (represented by the dotted lines in 

Figure 35), the [CuHEDP2-] chelate transport becomes less evident and the 

appearance of the second inflexion point is suppressed. 

Other transport properties of ions can be evaluated by means of the construction 

of current voltage curves. The limiting current density, the electrical resistance of the 

system and the plateau length provide some additional information regarding ion 

transfer through the membrane. The current-voltage curves obtained for the solutions 

listed in Table 11 are presented in Figure 36. 

 
Figure 36. Current-voltage curves obtained for HDX200 membrane and solutions 

containing HEDP and Cu2+. 

 

Current voltage curves shown in Figure 36 present three characteristic regions. 

The first region, known as the ohmic region, presents a linear dependence between 

the membrane potential and the current density. The ion transport inside the 

membrane matrix occurs mainly due to migration under the electrical potential as a 

driving force. Ion diffusion from the bulk solution to the membrane boundary layer 

transfers the counterions towards the anodic compartment. The system’s electrical 

resistance is represented by the inverse of the slope of the ohmic region. 

 The second region is characterized by a plateau where small current increments 

cause high potential raises due to ion depletion in the boundary layer. This behavior is 

observed because the transport is limited by the ion diffusion from the bulk solution to 

the boundary layer for high current densities. The plateau length is related to the 
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energy required to overcome the diffusion layer and favor the overlimiting transport 

mechanisms, such as electroconvection and water splitting. The interception between 

the tangents of the first and the second regions determines the limiting current density 

of the system. This current density is defined as the maximum current density that can 

be applied to the system to ensure that concentration polarization is avoided (34).  

 In the third region, the membrane potential shows a new linear dependence with 

the applied current density. The overlimiting mechanisms starts enhancing the mass 

transfer, either by the contribution of the water splitting or by the convective flow on the 

membrane surface (130). The electrical resistance at the third region can be 

determined similarly to the ohmic region, i.e., by the inverse of the slope assigned to 

the overlimiting region. 

In Figure 36, it is observed that the increase in the HEDP:Cu2+ ratio by means 

of HEDP addition (solutions I and II) promoted some alterations in the current-voltage 

curves. The limiting current density was raised and the electrical resistance in the 

ohmic region was reduced. Since the molar concentration of SO4
2- and Cu2+ was kept 

constant in all solutions, it is possible to suggest that the changes in the transport 

properties occurred as a consequence of the higher amount of HHEDP3- anion. 

 Solution III presented the lowest limiting current density and the highest 

electrical resistance in the ohmic region of all evaluated systems. The HEDP:Cu2+ ratio 

in solution III is equal to 1, which means that almost the total amount of HEDP formed 

anionic chelates ([CuHEDP]2-) for the evaluated pH range, as described by Equation 

5. The slowest mobility of chelates and their greater molecular volume are likely the 

reasons for the observed changes in the current-voltage curve characteristics. 

 In Solutions IV and V, the HEDP:Cu2+ ratio was modified by decreasing the 

chelate molar concentration. The HEDP concentration was fixed on 0.71 mmol.L-1 in 

both solutions. The current-voltage curves obtained for solutions IV and V seemed to 

be less affected by the amount of free HEDP than solution I. This result may be 

explained by the transport competition between different anions. As presented in Table 

12, the molar concentration of all anionic species of Solutions IV and V is more uniform 

and does not show a predominant value, as observed for solution I. 

 The equivalent charge may be used to represent the main parameters related 

to ion transport through ion-exchange membranes, especially when multicomponent 

electrolyte solutions are employed (36,130). The relation between the anionic 
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equivalent charge, the limiting current density (ilim) and the electrical resistance in 

ohmic region (R1) for all evaluated solutions are presented in Figure 37. 

 
Figure 37. Limiting current density (ilim) and electrical resistance (R1) in ohmic region 

as a function of anionic equivalent charge (Q-) for the evaluated solutions. 

 

It is observed from Figure 37 that the limiting current density increased when 

the anionic equivalent charge was enhanced. On the contrary, the higher equivalent 

charges seemed to reduce the electrical resistance in the ohmic region. The prevailing 

species in solutions with higher equivalent charges is the HHEDP3-. Some of these 

solutions were also influenced by Cl- anions which were added in different 

concentrations. The effect of the chloride addition will be discussed in more detail in 

section 4.1.1.3. The higher amount of available negative charges for electrical current 

conduction was probably the reason for the increase in the limiting current density. The 

higher concentration and, consequently, the higher equivalent charge also caused an 

increase in the electrical conductivity which can explain the reduction of the electrical 

resistance (R1). Similar relations between the equivalent charge and the electrical 

resistance were reported by other authors (36,130,137,138). 

Figure 38 presents the obtained electrical conductivity of the overlimiting region 

(Λ3) and the plateau length as a function of the anionic equivalent charge for each 

solution. 
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Figure 38. Plateau length and electrical conductivity of the overlimiting region (Λ3) as 

a function of the anionic equivalent charge (Q-) obtained for each solution. 

 

As observed from Figure 38, the plateau length decreased with the increase of 

the anionic equivalent charge, especially when Q- is lower than 10x10-3 meq.L-1. This 

relation was reported previously (33,36) for cationic ion-exchange membranes. 

According to the authors (33,36), the plateau length is related to the change of the ion 

transfer mechanism, from diffusion to an overlimiting mechanism, such as water 

splitting or electroconvection. Therefore, it is possible to suggest that the overlimiting 

mechanism is activated for lower membrane potential for solutions with higher 

equivalent charges. As described by Belova et al. (101), heterogeneous anion 

exchange membranes with quaternary ammonium fixed charges may favor 

electroconvection for overlimiting regimes.  

When the plateau length is smaller (solutions with higher equivalent charges), 

the electroconvection mechanism is initiated earlier. The total equivalent charge and 

the equivalent charge for each anion of all solutions are presented in Table 13. It is 

observed that the equivalent charge of HHEDP3- ions are predominant in solutions with 

higher equivalent charges. Therefore, HHEDP3- anions are the main species that 

activate electroconvection for solutions I, II, VII, IX, X and XI. 
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Table 13. Predominant anionic equivalent charges of the solutions under 
investigation. 

Plateau 

(V) 
ID 

Q- (meq.L-1) 

Total HHEDP3- CuHEDP2- Cl- SO4
2- HEDP4- H2HEDP2- H3HEDP- OH- 

1.75 IV 2.95 1.12 0.35 - 0.34 0.68 - - 0.46 

1.65 III 2.91 - 1.42 - 1.34 - - - - 

1.46 VIII 3.34 1.71 0.20 0.96 0.19 0.19 - - - 

1.35 V 2.67 1.46 0.20 - 0.19 0.54 - - 0.28 

1.14 VI 6.41 - - - - - 3.47 2.94 - 

0.59 XI 26.37 11.97 1.42 10.12 1.12 1.49 - - - 

0.58 II 9.35 5.86 1.38 - 1.27 - - - - 

0.54 IX 17.27 11.67 1.43 0.94 1.18 1.82 - - - 

0.53 X 21.46 11.51 1.41 5.04 1.14 2.08 - - - 

0.50 VII 16.41 13.80 - - - 2.44 - - 0.13 

0.47 I 16.78 10.89 1.42 - 1.16 2.97 - - - 

 

In Figure 38, the region that presents a sharp decline of the plateau length is 

related to solutions III, IV, V, VI and VIII which present an equivalent charge about 10 

times lower than the other solutions. By analyzing solutions III, IV, V and VIII in Table 

13, it is observed that the greatest contribution of the equivalent charge of HHEDP3- 

and [CuHEDP]2- anions causes a shorter plateau length. This indicates that even for 

the solutions with lower equivalent charges, HHEDP3- and [CuHEDP]2- favor the 

overlimiting transfer mechanisms. 

The obtained results may be interpreted considering that the plateau length is 

reduced when the Péclet number increases (139). The Péclet number is a 

dimensionless representation of the contribution of convective and diffusive transport 

of a solute in a solvent and is usually proportional to the Stokes radius of a given ion 

(139). The relation between the Stokes radius and the plateau length of a current-

voltage curve (Um versus i) was observed for the ion transport through cation exchange 

membranes (33,36,139) and it seemed to be suitable for the results shown in Figure 

38. According to this theory, ions with larger Stokes radius can activate 

electroconvection earlier and can reduce the electrical potential for which the changes 

of the transfer mechanism occur. Being the Stokes radius proportional to the Péclet 

number, it is expected to be proportional to the contribution of convection as well. The 

activation of convection is observed in a CVC curve by means of the plateau length. 

The plateau defines the transition from ohmic region (Region I) to diffusion region 
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(Region II) and the transition from diffusion (Region II) to convection (Region III). 

Therefore, smaller plateaus indicate that the overlimiting mechanism was activated 

faster. Martí-Calatayud et al. (36) studied the transport of nickel through a cation 

exchange membrane and observed that, in acid solutions, the increase of nickel 

concentration favored the beginning of electroconvection, since Ni2+ cations have 

larger Stokes radius than H+. 

In Table 13, solutions I and XI can be compared, since they had the same 

composition (5.1 mmol.L-1 HEDP + 0.71 mmol.L-1 Cu2+), except that 10.2 mmol.L-1 KCl 

were added to solution XI. It can be seen that the plateau length increased from 0.47 V 

(solution I) to 0.59 V (solution XI) after Cl- addition. Similarly, solution V had the same 

composition as solution VIII (0.71 mmol.L-1 HEDP + 0. 10 mmol.L-1 Cu2+) and 

0.94 mmol.L-1 KCl were added to solution VIII. The plateau length was enhanced from 

1.35 V to 1.46 V. This behavior suggests that the Cl- addition delayed the beginning of 

electroconvection. Considering that the Péclet number is proportional to the atomic 

radius (139), a smaller Péclet number for Cl- ions than for HHEDP3- anions may be 

expected. The literature indicates that the Stokes radius for chloride is 1.21 Å (140) 

while the HEDP structure presents a molecular volume of about 830 Å (141). The 

chelates formed between copper and HEDP are expected to have even greater 

volume (49,50). 

Figure 38 also shows the influence of equivalent charge in the electrical 

conductivity for overlimiting regimes (Λ3). According to Choi et al. (139), the same 

theory that considers the Péclet number can be applied to evaluate the electrical 

conductivity. Ions having larger Stokes radius can favor the intensity of 

electroconvection which causes an increase of the electrical conductivity for the 

overlimiting region of a current-voltage curve.  

 

4.1.1.2 Effect of pH 

 

The effect of pH was evaluated by using 5.1 mmol.L-1 HEDP solutions at pH 2 and 

at pH 10. The chronopotentiometric curves obtained for the alkaline solution for three 

different current densities are shown in Figure 39. 
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Figure 39. Chronopotentiometric curves obtained for 5.1 mmol.L-1 HEDP solution at pH 10. 

 

The chronopotentiometric curves obtained for the alkaline HEDP solution 

presented typical characteristics of theoretical curves for monopolar ion exchange 

membranes. For current densities lower than the limiting current density, the curves 

showed a potential drop that can be attributed to the application of an electrical current 

between two electrodes. For higher current densities, the formation of a well-defined 

inflexion point was observed, related to the ion depletion at the diffusion boundary 

layer. For overlimiting regimes, the transition times decreased with the applied current 

density and the effects of overlimiting transfer mechanisms began to be observed.  

Figure 40 presents the chronopotentiometric curves obtained for a HEDP 

solution with pH 2. 
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Figure 40. Chronopotentiometric curves obtained for HEDP 5.1 mmol.L-1 with pH 2. 

 

At lower current densities (0.34 mA.cm-2), the chronopotentiometric curve 

presented a similar behavior to the alkaline solution. Ions at the membrane/solution 

interface were not completely depleted and, thus, the curve did not show any inflexion 

point. However, for current densities between 0.40 mA.cm-2 and 0.45 mA.cm-2 which 

are higher than the limiting current density (0.33 mA.cm-2, see Table 14) the curves 

from Figure 40 did not seem to reach a stationary regime after the inflexion point, as 

observed for the alkaline solution. Instead, after ion depletion at the boundary layer, 

the potential difference increased continuously up to the interruption of the electrical 

current. For 0.60 mA.cm-2, the curve presented instabilities after the inflexion point 

which may be attributed to the overlimiting transfer mechanisms. 

The behavior of the chronopotentiometric curves for HEDP solution with pH 2 

may be discussed taking into account the ionic species from HEDP dissociation. For 

this evaluation, the speciation diagram for the HEDP solution at the initial state was 

analyzed (Figure 41). 
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Figure 41. Speciation diagram of the HEDP solution. The speciation diagram was 

constructed with the aid of Hydra-Medusa software. 

 

From Figure 41, it can be seen that, for pH 10, the prevailing ionic species (about 

90 %) is the HHEDP3- anion. For pH 2, about 60 % of HEDP forms a monovalent 

species, H3HEDP-. At pH 10, hydroxyl groups may be transferred towards the anodic 

side of the membrane faster than any other anion because of their greater mobility. 

The H+ protons that are excluded from the membrane are able to react with HEDP 

anions, favoring the formation of H2HEDP2-. However, for pH 2, the most probable 

reaction would be the formation of a neutral species, H4HEDP. It is possible to observe 

in Figure 41 that, for pH below 1.6, HEDP is mostly uncharged. The formation of 

uncharged compounds can increase the electrical resistance during the application of 

the electrical current because they will not conduct ion current. The increase of the 

electrical resistance is observed in Figure 40 for 0.40 mA.cm-2 and for 0.45 mA.cm-2, 

represented by a constant increase of the membrane potential after the inflexion point. 

In addition, the potential drop across the membrane for pH 2 is higher than for pH 10, 

even at lower current densities. 

The current-voltage curves for HEDP solutions for pH 2 and for pH 10 are 

presented in Figure 42. For pH 2, an increase in the electrical resistance in ohmic 

region (R1), a decrease in the limiting current density and an increase of the electrical 

resistance in overlimiting region and in plateau length were noticed. The main 

properties of the current-voltage curves are detailed in Table 14. 

 



Chapter 4: Results and Discussion                                                                111 

 
Figure 42. Current-voltage curves for 5.1 mmol.L-1 HEDP solutions for pH 2 and for pH 10. 

 

The ion transport rate across semipermeable membranes depends on the ion 

size, on the solvation degree and on the ion charge. The results shown in Table 14 

indicated that the alkaline solution presented higher limiting current density (ilim) and 

lower ohmic resistance (R1) in comparison with the acid solution. This behavior may 

be attributed to three correlated factors: firstly, the anionic equivalent charge of alkaline 

solution (Q = 16.4 meq.L-1) is about 2.5 times higher than the anionic equivalent charge 

of acid solution (Q = 6.41 meql.L-1). The relation between the equivalent charge and 

the main transport properties provided by CVC curves was discussed previously and 

indicated that the same relation is suitable for the results of HEDP solutions. In 

addition, the concentration of hydroxyl groups in the alkaline solution may have led to 

an increase of ilim and a decrease of R1. Hydroxyl groups have greater mobility in anion 

exchange membranes (136). Finally, there is a relation between the charge of the ion, 

its concentration, its diffusion coefficient and the limiting current density, as stated by 

the Peer Equation (Equation 34) (142). 

𝑖𝑙𝑖𝑚 =  
𝑧𝑘. 𝐷𝑘 . 𝐹. 𝐶𝑘

𝛿. (𝑡𝑚 − 𝑡𝑠)
 Equation 34 

 

In Equation 34, Ck is the bulk concentration of an ion, F is the Faraday constant, 

zk is the charge of the ion k, Dk is its diffusion coefficient, δ is the thickness of the 

diffusion boundary layer, tmj and tsj are the transport numbers of j species in the 
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membrane and in the solution, respectively. The electric resistance of an electrolyte is 

inversely proportional to its conductivity. The alkaline solution presented greater 

conductivity than the acid solution, which is directly related to its diffusion coefficient, 

to the mobility of the ion and its charge. Therefore, the results indicated that the 

combined contribution of mobility, charge and diffusion coefficient of HHEDP3- is 

greater than for H2HEDP2- and H3HEDP-. The formation of H3HEDP- and H4HEDP was 

discussed previously and may justify the changes in the transport properties for pH 2 

since they appeared to have smaller mobility. Similar behavior was observed in the 

study of Pismenskaya et al (143) who evaluated the conductivity of the species of 

phosphoric acid through different anion-exchange membranes and obtained higher 

conductivities for unprotonated species. 

 

Table 14. Main characteristics of 5.1 mmol.L-1 HEDP solutions. 

Composition VI VII 

HEDP (mmol.L-1) 5.10 5.10 

K+ (mmol.L-1) 0.0 26.3 

pH 2.3 10.1 

Current-voltage curve parameters 

Ilim (mA.cm-2) 0.33 0.84 

R1 (Ω.cm²) 761 144 

R3 (Ω.cm²) 3000 1450 

Plateau length (V) 0.50 1.14 

Molar concentration (mmol.L-1):  

K+ 0.0 24.8 

HHEDP3- 6.15 x10-5 4.61 

OH- 2.82 x10-9 0.127 

HEDP4- 1.82 x10-13 0.611 

H2HEDP2- 1.73 1.14 x10-3 

H+ 3.37 6.55 x10-8 

H3HEDP- 2.94 9.75 x10-11 

H4HEDP 0.58 0.0 

Anionic equivalent charge (meq.L-1): 

Q-
 eq 6.41 16.4 

 

4.1.1.3 Effect of chloride addition 

 

In order to evaluate the effect of Cl- anions on the transport properties through 

HDX200 membrane, potassium chloride was added to the solutions HEDP:Cu2+ = 7:1, 
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as detailed in Table 15. The HEDP:Cu2+ ratio was maintained constant and the pH was 

adjusted to 10 by using a potassium hydroxide 50 % m/v solution. 

 

Table 15. Composition of HEDP:Cu2+ = 7:1 solutions after KCl addition in different concentrations. 

ID Composition (mmol.L-1) KCl (mmol.L-1) pH 

VIII 5.1 HEDP + 0.71 Cu2+ 0.94 10 

IX 5.1 HEDP + 0.71 Cu2+ 5.10 10 

X 5.1 HEDP + 0.71 Cu2+ 10.2 10 

XI 0.71 HEDP + 0.10 Cu2+ 0.94 10 

 

The effect of chloride addition on the chronopotentiometric curves is shown in 

Figure 43. 

 

 
 

Figure 43. Chronopotentiometric curves obtained for solutions with different Cl- 
concentrations. 

 

For 0.45 mA.cm-2, the chloride addition in solutions with lower molar 

concentrations (solutions V and XI) reduced and delayed the instabilities registered at 

overlimiting regimes. The instabilities are usually attributed to the change of transport 

mechanism from diffusion to an overlimiting mechanism that becomes important for 

higher current densities. When introducing chlorides which have a lower charge 

density, the potential fields between the heterogeneous membrane and the solution 



Chapter 4: Results and Discussion                                                                114 

will be more uniformly dispersed, resulting in lower hydrodynamic instabilities when 

compared with species with higher charge density. 

The chloride addition to the solutions with higher molar concentrations (solutions 

VIII, IX and X) led to modifications in the appearance of the chronopotentiometric 

curves for 2.39 mA.cm-2. The presence of chloride ions increased the equivalent 

charge and raised the limiting current density. It is observed in Figure 43 that, for 

2.39 mA.cm-2, the solution with higher amount of Cl- ions (solution X) did not show any 

inflexion point (ohmic regime) while ion transport in the remaining solutions (I, VIII and 

IX) was being controlled by the diffusion mechanism. 

The influence of chloride anions can be noticed by analyzing the CVC curves 

presented in Figure 44. 

 

 
 

 

Figure 44. Current-voltage curves for HEDP:Cu2+ = 7:1 solutions with addition of chloride in 
different concentrations. 

 

The increase of chloride concentration enhanced the limiting current density and 

reduced the electrical resistance both in the ohmic region and in overlimiting regimes. 

The Cl- concentration is higher than the HHEDP3- concentration in solutions IX and X, 

as it can be observed in Table 16. 
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Table 16. Characteristics of solutions after chloride addition. 

Composition VIII IX X XI 

HEDP (mmol.L-1) 5.10 5.10 5.10 0.71 

Cu2+ (mmol.L-1) 0.71 0.71 0.71 0.10 

K+ (mmol.L-1)  29.0 34.0 37.8 4.96 

Cl- (mmol.L-1) 0.94 5.10 10.20 0.94 

pH 10.07 10.19 9.97 9.98 

CVC properties   

ilim (mA.cm-2) 1.32 1.59 2.31 0.14 

R1 (Ω.cm²) 127.0 121.0 57.2 686.0 

R3 (Ω.cm²) 610.0 546.0 350.0 4869.0 

Plateau (V) 0.54 0.53 0.59 1.46 

Molar concentration (all in mmol.L-1): 

K+ 28.91 34.04 37.50 4.95 

HHEDP3- 3.89 3.84 3.99 0.57 

Cl- 0.94 5.04 10.12 0.96 

[CuHEDP]2- 0.71 0.71 0.71 0.10 

SO4
2- 0.59 0.57 0.56 0.10 

HEDP4- 0.45 0.52 0.37 0.05 

KSO4
- 0.12 0.14 0.15 0.00 

OH- 0.12 0.13 0.09 0.08 

Anionic equivalent charge  (meq.L-1) 

Q-
 eq 17.27 21.46 26.37 3.34 

 

In solutions IX and X, the equivalent charge is more influenced by the presence 

of Cl- anions which promoted the changes in the CVC curves. From Table 16, it is 

noted that chloride addition promoted a slight increase in the plateau length which was 

previously discussed based on the relation between the Stokes radius and the 

activation of electroconvection. 
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4.1.2 Homogeneous membrane 

 

The transport properties of HEDP anions and copper-HEDP chelates through 

the PC200D anion exchange membrane (homogeneous) were evaluated and the 

results were compared with those obtained with the heterogeneous membrane. The 

comparison between both membranes was planned based in the fact that the 

homogeneous membrane is specifically designed for the transport of medium size 

organic anions (≈ 200 g.mol-1). Therefore, the transport properties of anions through 

the PC200D was expected to be somehow different from the HDX200 membrane. 

Synthetic solutions containing HEDP and CuSO4.5H2O with different 

HEDP:Cu2+ ratios were used, according to the presented in Table 17. 

 

Table 17. Composition of the solutions used in chronopotentiometric tests with PC 200D 
membrane. 

ID Q-
eq 

(meq.L-1) 

Solution composition 

(mmol.L-1) HEDP:Cu2+ pH 

  HEDP Cu2+ Cl- 

X 26.4 5.10 0.71 10.20 7:1 10 

IX 21.5 5.10 0.71 5.10 7:1 10 

VIII 17.3 5.10 0.71 0.94 7:1 10 

I 16.9 5.10 0.71 0.00 7:1 10 

VII 16.4 5.10 0.00 0.00 - 10 

II 9.4 2.80 0.71 0.00 4:1 10 

III 2.9 0.71 0.71 0.00 1:1 10 

V 2.7 0.71 0.10 0.00 7:1 10 

 

The evaluation of the ion transport was performed by means of the construction 

of chronopotentiometric curves and CVC curves. The chronopotentiometric curves 

obtained for the solutions presented in Table 17 for an average current density of 

0.33 mA.cm-2 are presented in Figure 45. 
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Figure 45. Chronopotentiometric curves obtained for the solutions listed in Table 17 at an 

average current density of 0.33 mA.cm-2 using the PC 200D membrane. 

 

 The behavior of the systems according to the anionic equivalent charge was 

similar to the observed for the HDX 200 membrane. At 0.33 mA.cm-2, the curves for 

the solutions I, VII, VIII, IX and X did not present any inflexion point. The curves showed 

typical characteristic of ion transport due to migration and there was no formation of 

concentration gradients in the DBL. The curve obtained for solution II presented the 

same features, except that the ohmic resistance was higher. This may be related to its 

lower equivalent charge and its lower acid:metal ratio. The curve for solution V 

presented a well-defined inflexion point, showing a diffusion controlled transfer. The 

curve for solution III (HEDP:Cu2+ = 1) presented the highest potential drop and the 

system was under overlimiting regimes. It is noteworthy that the anionic equivalent 

charge for solution III is slightly higher than the Q-
eq

 for solution V. Nevertheless,  

system III is more polarized, probably affected by the presence of chelates as the main 

specie. The mentioned tendencies were similar to the observed previously for the HDX 

membrane. In addition, the precipitation of insoluble compounds was not observed 

neither in the chronopotentiograms or visually. 

 Differently from the HDX membrane, the obtained chronopotentiograms showed 

the presence of two transition times for practically all evaluated solutions at overlimiting 

regimes. During the previous tests using the HDX membrane, the appearance of two 

(III) 

(V) 

(II) (I, VII, VIII, IX, X) 
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transition times was observed for determined conditions at current densities values 

near to the limiting currents. The emergence of two transition times was related to the 

transfer of species having different mobility which, consequently, presented different 

interactions with the quaternary amine fixed group.  

 The structure of the PC 200D membrane is composed of two different functional 

groups, being one strongly basic (quaternary amine) and one weakly basic (tertiary 

amine) (117). Thus, different interactions between the counterions from the solution 

and both fixed ions can be expected. The chronopotentiogram obtained for solution I 

is shown in Figure 46. 

 

 
Figure 46. Chronopotentiometric curves obtained at different current densities for solution I, 

5.1 mmol (HEDP).L-1 + 0.71  mmol (Cu2+).L-1, with the PC 200D membrane. 

 

 Figure 46 shows that during under-limiting regimes, the shape of the curve 

followed the typical behavior. At i > ilim, the curves presented two transition times. The 

first transition time tended to zero while the second transition time appeared after the 

sharp increase of the membrane potential drop. Similar behaviors were observed for 

solutions VIII, IX, X and II, with the same features: two transition times close to each 

other, near the ion depletion region and taking place at overlimiting regimes. This 

behavior may be associated with different interactions between the predominant 

counterion and the fixed amine groups.  
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 Considering the same principle previously mentioned in which one single fixed 

group interacts differently with different anions, it is possible that one single anion (the 

specie which represents the major part of the equivalent charge) can interact differently 

with two different fixed amines. Therefore, the first transition time could be related to 

the transport of the predominant specie firstly through the group having greater activity 

(quaternary amine) and the second transition time could be associated with the 

interaction between the majoritarian equivalent charge (HHEDP3-) and tertiary amine. 

It is important to consider that the evaluated systems represent complex solutions 

containing different anionic species. Thus, complementary chronopotentiometric tests 

were performed using a salt solution containing Na2SO4 (5.1 mmol.L-1) in pH 5 and in 

pH 10. Both chronopotentiograms are shown in Figure 47. 

 

  

(a) (b) 

Figure 47. Chronopotentiograms obtained for Na2SO4 (5.1 mmol.L-1) solutions in (a) pH 10 
and (b) pH 5 using the PC 200D membrane. 

 

 The chronopotentiograms obtained for Na2SO4 solutions presented a similar 

tendency as observed for the synthetic rinsing water: the presence of two transition 

times next to each other and located near the ion depletion region, for i > ilim. The 

speciation diagram constructed for the Na2SO4 solutions in their initial state indicated 

that SO4
2- is the predominant anion (5.0 mmol.L-1) followed by a small amount of 

NaSO4
- (0.2 mmol.L-1) and OH- ( 0.1 mmol.L-1) in pH 10. Considering the proximity of 

the transition times and the predominance of SO4
2-, it is more likely that each transition 

time is related to the interaction of SO4
2- with quaternary and tertiary amines. The 

analogous behavior found for pH 5 suggests that the occurrence of two inflexion points 

is not related to the transport of OH-. 
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 By comparing Figure 47 and Figure 46, the differences during the steady-state 

period are noticeable. The curves obtained for Na2SO4 solutions showed indication of 

electroconvection during the steady-state region, which is verified by the occurrence 

of oscillations and instabilities in the membrane potential after 50 s. On the other hand, 

these instabilities were not observed in the curves obtained for solution containing 

copper chelates, as observed in Figure 46. This is probably attributed to the molecular 

weight of each solution. Solutions containing compounds with smaller molecular weight 

are more likely to activate electroconvection. The increase of the molecular weight 

enhances gravitational convection and water splitting over electroconvection. This may 

be observed when comparing the steady-state of three different solutions for the same 

pH. A solution containing copper chelates, a HEDP solution and a sulfate solution 

(molecular weight: chelate > HEDP > sulfate) were compared and the 

chronopotentiograms at overlimiting regimes are shown in Figure 48. 

 

 
Figure 48. Chronopotentiometric curves at overlimiting regimes (i = 2.6 mA.cm-2) for three 

different solutions in pH 10 using the PC 200D membrane. 

 

 From Figure 48, it is observed that the typical instabilities attributed to 

electroconvection are more chaotic for the Na2SO4 solution. HEDP acts as an 

intermediate compound and presents a mechanism that seems to be a mixture of the 

oscillations from electroconvection and a characteristic of gravitational convection, i.e., 
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a peak in the membrane potential followed by a decrease in the Um value. The water 

splitting rate usually depends strongly on the applied current density. Thus, although it 

was not possible to quantify the water splitting effect, its activation cannot be neglected. 

The curves obtained for the solution containing 0.71 mmol (HEDP).L-1+0.1 mmol 

(Cu2+).L-1 were not shown in Figure 48 but they also presented strong effect of 

electroconvection. Although this solution contained chelates, its equivalent charge was 

6 times lower than the solution containing 5.1 mmol (HEDP).L-1+0.71 mmol (Cu2+).L-1, 

which may have favored the onset of electroconvection. 

 Other important characteristics taken from Figure 48 are the ohmic potential 

drop over polarized and non-polarized systems (37). The lowest ohmic drop over 

non-polarized systems was obtained for the Na2SO4 solution, followed by the HEDP 

solution and lastly the solution containing chelates. The potential drop over polarized 

system was higher for the solution containing chelates (1.7V), followed by the Na2SO4 

solution (1.1V) and the HEDP solution (0.8V). The results of the potential drop over 

non-polarized systems are related to the ohmic resistance of the solution before the 

concentration polarization. The potential drop over polarized systems takes into 

account the resistance of the diffusion layer during concentration polarization (37). 

 A different tendency was noticed for the solution containing HEDP:Cu2+ = 1, as 

shown in the chronopotentiograms of Figure 49. When the applied current was higher 

than the limiting current density, it was impossible to distinguish the classical transition 

from the ohmic region to the onset of concentration gradients. The transition times 

could be estimated only by the maximum of the first derivative method. After 

determining the transition times for each current density higher than the limiting one, it 

was noticed that all the transition times tended to zero. In typical monopolar membrane 

systems, the transition times usually decrease when the applied current density is 

increased, differently from the observed in Figure 49. In addition, there was no 

indication of two transition times, as verified for the other solutions. A similar behavior 

was reported by Marder et al. (109) when evaluating the transport of polynuclear 

anions across an anion-exchange membrane. The authors suggested the hypothesis 

of the quasi-instantaneous formation of a bipolar layer because of water splitting 

products at the membrane surface, similarly to the observed for bipolar membranes 

(108,109). It is seen in Figure 49 that for i > 2.ilim all the curves present the same slope 

and transition times tending to zero. For Wilhelm et al. (108), the transition time tending 

to zero represents the instant at which the water splitting is activated and the 
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counterions at the membrane surface are partially exchanged with the water splitting 

products. According to the Marder et al. (109), this behavior could represent an 

unfavorable condition for the transport of polynuclear anions. From the results shown 

in Figure 49, an eventual situation in which the acid/metal ratio achieved 1 and the 

water splitting was enhanced by the intensity of the electrical current and by the 

presence of weakly basic fixed groups could be the most unfavorable for the transport 

of chelates though the PC 200D membrane.   

 

 
Figure 49. Chronopotentiograms obtained at different current regimes for the solution 
containing 0.71 mmol(HEDP).L-1 + 0.71 mmol(Cu2+).L-1 in pH 10 using the PC 200D 

membrane. 

 

 When comparing the results obtained for the PC 200D membrane with the HDX 

membrane, the ohmic resistance was higher for the PC 200D membrane, as indicated 

in Figure 50, except for the solution containing 5.1 mmol(HEDP).L-1. It is noteworthy 

that in order to compare the ohmic resistance of two different membranes, a corrected 

membrane potential was calculated, as suggested by Belova et al. (107). The 

corrected membrane potential eliminates the effects of the membrane thickness and 

of the distance between the reference electrodes that could interfere in the results. 
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Figure 50. Chronopotentiometric curves obtained for the solution containing 5.1 

mmol(HEDP).L-1 + 0.71 mmol(Cu2+).L-1 + 0.94 mmol(Cl-).L-1 at 2.6 mA.cm-2. 

 

 Although PC 200D is a homogeneous membrane, it has different ion exchange 

groups and, therefore, the typical behavior of homogeneous membranes may differ 

from the expected when comparing homogeneous and heterogeneous membranes 

having the same fixed group. The construction of current-voltage curves allowed the 

evaluation of other parameters related to the ion transport through the PC 200D 

membrane. The CVCs for all evaluated solutions are presented in Figure 51. 
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Figure 51. CVC curves obtained for the PC200D anion-exchange membrane with different 

solutions. 

 

 To facilitate the interpretation of the results from Figure 51, the most important 

properties of the CVC curves were summarized and are presented in Table 18. 

Table 18. Parameters taken from the CVC curves presented in Figure 51. 

Solution 
Q-  

(meq.L-1) 

ilim 

(mA.cm-2) 

R1 

(Ω.cm²) 

Λ3 

(mS.cm-1) 

2.8 mmol (HEDP).L-1 +                      

0.71 mmol (Cu2+) .L-1 
9.35 0.44 788 1.3 

5.1 mmol (HEDP).L-1 +               

0.71 mmol (Cu2+) .L-1 (Solution A) 
16.78 1.11 219 4.6 

5.1 mmol (HEDP).L-1 16.41 0.93 99 10.1 

0.71 mmol (HEDP).L-1 +                 

0.10 mmol (Cu2+) .L-1 
2.67 0.13 915 1.1 

0.71 mmol (HEDP).L-1 +                 

0.71 mmol (Cu2+) .L-1 
2.91 0.10 1725 0.6 

Solution A + 0.94 mmol (Cl-).L-1 17.27 0.97 156 6.4 

Solution A + 5.10 mmol (Cl-).L-1 21.46 1.10 206 4.8 

Solution A + 10.20 mmol (Cl-).L-1 26.37 1.76 148 6.8 
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 From the data presented in Figure 51 and in Table 18, it is observed that the 

highest limiting current density and the lowest ohmic resistance were obtained for the 

solution 5.1 mmol (HEDP).L-1 + 0.71 mmol (Cu2+).L-1 + 10.2 mmol (Cl-).L-1. This 

solution had the highest equivalent charge and the highest concentration of chloride 

and free HEDP anions. 

 The lowest limiting current density and highest ohmic resistance were obtained 

for the solution containing 0.71 mmol (HEDP).L-1 + 0.71 mmol (Cu2+).L-1 (HEDP:Cu2+ 

= 1). The CVC curve for this solution presented similar characteristics to the CVC 

obtained for 0.71 mmol (HEDP).L-1 + 0.10 mmol (Cu2+).L-1 (HEDP:Cu2+ = 7 at low 

concentration). Is it noteworthy that the solution with 1:1 ratio presented an equivalent 

charge slightly higher than the latter solution. Nevertheless, its ohmic resistance was 

almost 2 times greater. This suggests that the formation of chelates may have had an 

important effect in the CVC properties. 

 The properties of the solution which composition was 2.8 mmol (HEDP).L-1 + 

0.71 mmol (Cu2+).L-1 (HEDP:Cu2+ = 4) presented intermediate characteristics between 

the 7:1 solutions (at higher concentration) and the 1:1 solutions.  

 The effect of chloride addition in the CVC properties was noticed when the 

chloride concentration was equal to 10.2 mmol.L-1. This behavior could be observed 

because the properties of the curves for solutions “5.1 mmol (HEDP).L-1 + 0.71 mmol 

(Cu2+).L-1”, “5.1 mmol (HEDP).L-1 + 0.71 mmol (Cu2+).L-1 + 0.94 mmol (Cl-).L-1” and “5.1 

mmol (HEDP).L-1 + 0.71 mmol (Cu2+).L-1 + 5.10 mmol (Cl-).L-1” were similar. 

 The abovementioned results suggest that the relation between the anion 

equivalent charge (Q-) and both parameters R1 and ilim that was previously reported for 

the heterogeneous membrane is suitable for the homogeneous membrane. In addition, 

the formation of chelates seemed to cause similar consequences in the transport 

properties as those observed for the heterogeneous membrane. The relation between 

equivalent charge, R1 and ilim for the homogeneous membrane can be seen in Figure 

52. 
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Figure 52. Limiting current density (ilim) and electrical resistance (R1) in ohmic region as a 
function of anionic equivalent charge (Q-) for the evaluated solutions with homogeneous 

anion-exchange membrane. 

 

 From Figure 52, it is observed that the limiting current density increased when 

the equivalent charge was higher and, consequently, the ohmic resistance decreased. 

The increase in the limiting current density was a consequence of the higher amount 

of negative charges available in the diffusion boundary layer. The decrease on the 

ohmic resistance occurred because of the higher conductivity presented by the 

solutions with higher Q-. 

 At under limiting regimes, the transport properties of both anion-exchange 

membranes were compared and presented in Table 19. 
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Table 19. Comparison between the transport properties of both AEM at underlimiting regimes. 

Solution composition  

(mmol.L-1) 
Q- 

(meq.L-1) 

ilim (mA.cm-2) R1 (Ω.cm²) 

HEDP Cu2+ Cl- HDX200 PC200D HDX200 PC200D 

5.1 0.71 10.2 26.4 2.31 1.76 57.2 147.8 

5.1 0.71 5.1 21.5 1.59 1.10 121.0 206.4 

5.1 0.71 0.94 17.3 1.32 0.97 127.0 155.5 

5.1 0.71 - 16.8 1.17 1.11 95.0 219.0 

5.1 - - 16.4 0.84 0.93 144.0 99.0 

2.8 0.71 - 9.4 0.30 0.44 416.0 788.0 

0.71 0.71 - 2.91 0.14 0.10 1091.0 1725.0 

0.71 0.10 - 2.67 0.14 0.13 751.0 915.2 

 

 From Table 19, it is noticed that although both membranes presented similar 

behaviors, the ohmic resistance for the homogeneous membrane was higher than the 

obtained values for the heterogeneous membrane. In addition, the limiting current 

density was slightly lower for the homogeneous membrane. This tendency appears to 

be contrary to the results obtained by other authors (38,84). According to the theory, 

enhanced transport properties for homogeneous membranes are generally expected, 

because of the equal distribution of fixed groups through the membrane area. On the 

other hand, the presence of non-conducting regions in heterogeneous membranes 

increases the electrical resistance and reduces the effective area and the limiting 

current density.  

 However, there are other factors that may affect the ohmic resistance of an 

ion-exchange membrane. According to Belova et al (107), when the properties of two 

different membranes are compared, it is convenient to eliminate the ohmic resistance 

by using a corrected value of membrane potential. As previously mentioned, the 

corrected Um eliminates the effects of the membrane thickness and of the distance 

between the reference electrodes, that may influence the obtained results. The 

evaluated anion-exchange membranes have different homogeneity degrees, but also 

have different fixed groups. For Choi and Moon (144), the presence of tertiary amines 

as fixed groups may increase the membrane resistance, especially in the pH range 

between 9 and 11, which is the range of pKa values of tertiary amines. In this situation, 

the protonation of tertiary amines may convert charged amines into their neutral form. 
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Considering that all the evaluated solutions were prepared at pH 10, the higher ohmic 

resistance presented by the PC 200D membrane may be related to the presence of 

tertiary amine groups in its structure. 

 Figure 53 presents the comparison between two CVC curves obtained for the 

5.1 mmol (HEDP).L-1 + 0.71 mmol (Cu2+).L-1+ 0.94 mmol (Cl-).L-1  solution with the 

heterogeneous and the homogeneous membrane. It can be noticed that the transition 

from Region I (ohmic) to Region II (diffusion) is smoothed for the PC 200D membrane, 

while the transition from Region II to Region III (overlimiting) is well defined for both 

membranes. 

 

 
Figure 53. CVC curves obtained for both membranes with a solution containing 5.1 mmol 

(HEDP).L-1 + 0.71 mmol (Cu2+).L-1+ 0.94 mmol (Cl-).L-1. 

 

 The smoother behavior of the transition from Region I to Region II may occur 

because the two transition times registered in the chronopotentiograms are very close 

to each other. If the transition times were separated enough, probably it would be 

possible to distinguish two plateaus in the CVCs. However, the proximity of the 

transition times may be responsible for overlapping the two plateaus, resulting in the 

smoother transition observed in the CVCs. The less defined transition from Region I to 

Region II caused a lack of relation between the anionic equivalent charge and the 

plateau length. It was noted that the increase of the equivalent charge caused a 
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decrease of the electrical resistance in the Region III, such as observed for the 

HDX 200 membrane. However, the relation between the plateau length and the 

equivalent charge according to the Stokes radius seen in the results obtained for the 

HDX 200 membrane could not be established for the PC 200D membrane. 

 

4.2 Electrodialysis 

 

4.2.1 Selective separation 

 

The selective separation tests were performed in order to evaluate the 

selectivity of each membrane for HEDP when competing with chloride ions for transport 

across the anion-exchange membrane. Solutions with different organic/inorganic anion 

molar ratios were evaluated. Firstly, LSV tests were carried out using the 

homogeneous PC 200D membrane, to establish the current density to be applied for 

each solution. The PC 200D membrane was chosen because the results from the 

chronopotentiometric tests showed that the limiting current density for PC 200D 

membrane was slightly lower than the ilim for HDX 200 in all evaluated conditions. 

Therefore, electrodialysis experiments were carried out at a current density established 

for PC 200D to prevent the operation at overlimiting regimes. The obtained LSV curves 

for each system are presented in Figure 54. 
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Figure 54. LSV curves obtained for each solution using the homogeneous PC 200D 

anion-exchange membrane. 

 

 From the LSV curves, the chosen current density for each solution was 

determined according to Table 20.  

 

Table 20. Established current density to be applied in electrodialysis tests for each system. 

Solution Current density (mA.cm-2) 

5.1 mmol (HEDP).L-1  

5.1 mmol (HEDP).L-1 + 0.94 mmol (Cl-).L-1 

5.1 mmol (HEDP).L-1 + 5.10 mmol (Cl-).L-1 

5.1 mmol (HEDP).L-1 + 10.20 mmol (Cl-).L-1 

0.42 

0.48 

0.71 

1.20 

 

 The electrodialysis tests were carried out during 6 h and the percent extraction 

was determined for HEDP and for chloride anions for each membrane every 2 h. The 

results are presented in Figure 55. 
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5.1 mmol (HEDP).L-1  5.1 mmol (HEDP).L-1 + 0.94 mmol (Cl-).L-1 

  

5.1 mmol (HEDP).L-1 + 5.10 mmol (Cl-).L-1 5.1 mmol (HEDP).L-1 + 10.2 mmol (Cl-).L-1 

Figure 55. Percent extraction for HEDP and chloride for all evaluated solutions with HDX 200 
and PC 200D membranes. 

 

For all systems, the total demineralization rate was calculated based on the 

conductivity of the solutions in their initial state and at a given time. The separation 

factor (SF) was determined for each system to indicate which anion has greater 

selectivity for each evaluated system. The results are shown in Figure 56. 
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5.1 mmol (HEDP).L-1 5.1 mmol (HEDP).L-1 + 0.94 mmol (Cl-).L-1 

  

5.1 mmol (HEDP).L-1 + 5.10 mmol (Cl-).L-1 5.1 mmol (HEDP).L-1 + 10.2 mmol (Cl-).L-1 

Figure 56. Demineralization rate (DR) and separation factor (SF) for all evaluated solutions 
with HDX 200 and PC 200D membranes. 

 

From the results presented in Figure 55 and Figure 56, it is noticed that for all 

evaluated systems, the calculated separation factor was smaller than 1 (SF<1), which 

indicates that both membranes have greater selectivity for chloride, even when the 

chloride concentration was smaller than the HEDP concentration. Nevertheless, the 

SF factor for PC 200D membrane was always higher than the SF for HDX 200 

membrane, showing that PC 200D has greater selectivity for HEDP in comparison with 

HDX 200. For all evaluated systems, SF decreased throughout time. This suggests 

that the transfer of chloride plays major role with time. Chloride extraction from the 

central compartment is higher than HEDP extraction and the amount of chloride that 

achieved the anodic compartment was greater than the amount of HEDP anions, that 

may have held in the membrane phase. This may be attributed to their lower mobility 

or to eventual bonds between HEDP and the membrane fixed groups. Table 21 shows 

the mass balance for each evaluated solution in terms of the amount of extracted 
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compound that achieved the anodic compartment and the amount that remained in the 

membrane phase after 6 h. 

 

Table 21. Extraction of HEDP and chloride for each evaluated system. 
 

Solution Compound 

% of extracted that 

achieved anode 

(6 h) 

Estimative of % of 

compound 

remaining in the 

membrane phase 

(6 h) 

HDX 200 PC200D HDX 200 PC200D 

5.1 mmol (HEDP).L-1 HEDP 75 100 25 0 

5.1 mmol (HEDP).L-1 + 

0.94 mmol (Cl-).L-1 

HEDP 55 62 45 38 

Chloride 100 70 0 30 

5.1 mmol (HEDP).L-1 + 

5.10 mmol (Cl-).L-1 

HEDP 62 78 38 22 

Chloride 100 100 0 0 

5.1 mmol (HEDP).L-1 + 

10.2 mmol (Cl-).L-1 

HEDP 74 80 26 20 

Chloride 76 66 24 34 

 

From Table 21, it is observed that chloride anions have greater facility to be 

transferred from central to anodic compartment. The SF factors presented in Figure 56 

take into account not only the percent extraction of each compound but also the 

amount of the compound that was able to achieve the anodic compartment. Therefore, 

even in the situations shown in Figure 55, where the HEDP extraction was similar or 

higher than the chloride extraction, it is seen in Table 21 that a higher amount of HEDP 

anions remained in the membrane phase while the chloride anions were almost totally 

transported to the anodic compartment. As consequence, the SF decreased 

throughout time, showing that the transport of chloride was preferential in comparison 

with HEDP. Table 21 

For the homogeneous PC 200D membrane, when [Cl-] > [HEDP], SF tended to 

be smaller, showing preferential transport for Cl-. On the other hand, when [Cl-] ≤ 

[HEDP], SF achieved its highest values (about 0.9), indicating that the transport 

competition between both anions becomes more evident. The highest SF (0.91) was 

obtained for the solution containing 5.1 mmol (HEDP).L-1 + 5.10 mmol (Cl-).L-1 with 

PC 200D membrane. The lowest SF was obtained for the solution containing 5.1 mmol 
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(HEDP).L-1 + 10.2 mmol (Cl-).L-1 at 6 h (SF = 0.46). In this situation, the percent 

extraction of chloride was the highest (E%Cl = 84 %). The results indicate that the 

preferential transport for chloride is increased when the chloride concentration is higher 

than the HEDP concentration. 

The heterogeneous HDX 200 membrane presented a different behavior. The 

highest SF was obtained for the solution containing 5.1 mmol (HEDP).L-1 + 10.2 mmol 

(Cl-).L-1 and the SF decreased with the decrease of chloride concentration. For the 

mentioned solution, the behavior of SF and the demineralization rate were similar for 

both membranes (Figure 56). The addition of chloride caused higher demineralization 

rates and higher HEDP extraction for all evaluated solutions using both membranes. 

This may be due to the higher conductivity and higher current densities caused by 

chloride addition. However, for HDX 200 membrane, a slight increase of SF factor was 

also observed, probably due to the lower percentage of chloride that achieved the 

anodic compartment (Table 21).  

In previous studies, Prochaska and Woźniak-Budych (119) achieved higher 

recovery ratio of fumaric acid in comparison with chloride anions when using the 

PC 200D membrane and Kim and Moon (145) obtained higher acid lactic recovery 

using a small-organic-anion selective membrane similar to PC 200D. On the other 

hand, Pessoa-Lopes, Crespo and Velizarov (117) compared the selectivity of two 

competing anions, sulfate and arsenate, across the PC 200D membrane. The results 

obtained by the authors are in good agreement with the results shown in Figure 56. 

The separation factor calculated by the authors indicated a higher selectivity for sulfate 

anions (SF<1). However, the calculated SF for PC 200D was higher than the SF for 

the other membranes evaluated by the authors (Neosepta ACS and AXE 01). On the 

other hand, authors (117) reported that the SF started to increase throughout time, 

after sulfate depletion. This behavior was not observed in the abovementioned 

experiments, probably because the maximum percent extraction achieved for chloride 

was 84 %.   

 

 

4.2.2 Electrodialysis in batch system 

 

Long-term electrodialysis tests were carried out in a laboratory-scale batch 

system. In the batch system, the central compartment was connected to a 10 L 
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reservoir containing the synthetic wastewater. The electrodes compartments were 

filled with a K2SO4 solution while the concentrate compartments were filled with a KCl 

solution. This configuration was chosen in order to: (i) evaluate the maximum 

concentration that could be achieved; (ii) evaluate the ion migration separately from 

each compartment; (iii) evaluate the behavior of the system in long-term tests and (iv) 

calculate the energetic consumption and the current efficiency for each specie. The 

results were compared for both tested membranes. 

Previously to ED tests, the limiting current density for the PC 200D membrane 

was determined by means of the construction of current-voltage curves. The limiting 

current density for the HDX 200 membrane was used according to previous 

studies (24,131). Figure 57 shows the current-voltage curve obtained in triplicate for 

the auxiliary cation-exchange membrane (PC SK) and Figure 58 shows the CVC curve 

in triplicate for the anion-exchange PC 200D membrane. 

 

 
Figure 57. Current-voltage curve obtained for the synthetic rinsing water with the PC SK 

cation-exchange membrane. 
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Figure 58. Current-voltage curve obtained for the synthetic rinsing water with the PC 200D 

anion-exchange membrane. 

 

 In addition, the limiting current was evaluated by plotting the electrical resistance 

of the stack versus the reciprocal current density, also in triplicate, as shown in Figure 

59. 

 
Figure 59. Overall electrical resistance versus the reciprocal current density obtained for the 
synthetic rinsing water in a stack assembled with the “PC” homogeneous membrane pairs. 
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 The determination of the limiting current from the construction of the curve 

shown in Figure 59 is said to be useful for multi cell-pair stacks because it shows the 

overall behavior, including the cathode and anode poles. According to the theory (17), 

when the limiting current density is achieved, a small increment in the applied current 

causes a sharp increase in the overall electrical resistance. This tendency is observed 

by a noticeable inflexion point in the dU/dI x I-1 curve, or the point at which a minimum 

dU/dI is achieved before starting a new increase. In Figure 59, this behavior apparently 

was noticed at current densities near 6.75 mA.cm-2. 

 However, Figure 57 and Figure 58 showed that the limiting current density 

established for the ion-exchange membranes was 1.63 mA.cm-2 and 1.41 mA.cm-2 for 

the cation and the anion-exchange membrane, respectively. Therefore, the limiting 

current density was chosen according to the lowest of all values, i.e., 1.41 mA.cm-2, 

limited by the anion-exchange membrane. During the electrodialysis tests performed 

with the homogeneous membranes, 80 % of the established ilim was applied 

(i = 1.13 mA.cm-2).  

 The electrodialysis tests were performed in a stack composed of heterogeneous 

or homogeneous membranes and the results were compared. Initially, the tests were 

performed to evaluate the behavior of the stack while the ions from a greater volume 

(central compartment - 10 L) were concentrated in a smaller volume (concentrate 

compartments - 1 L each). Thus, the time was not fixed before the beginning of the 

tests. The pH and the conductivity of all compartments was monitored throughout the 

tests and the results for each stack is shown in Table 22. 

 

Table 22. Conductivity and pH of the solutions before and after electrodialysis tests. 

   Anode 
Anion 

concentrate 
Central 

Cation 

concentrate 
Cathode 

p
H

 

PC 

membranes 

Initial 5.77 5.66 10.52 5.66 5.77 

Final 2.05 2.06 3.21 12.23 11.97 

HDX 

membranes 

Initial 4.44 6.32 9.97 6.32 4.44 

Final 2.01 1.91 3.34 12.58 12.08 

C
o

n
d

u
c
ti

v
it

y
 

(µ
S

.c
m

-1
) 

PC 

membranes 

Initial 3240 1787 1755 1787 3240 

Final 4690 4520 819 10009 5080 

HDX 

membranes 

Initial 3060 1887 1803 1887 3060 

Final 5770 8740 578 19740 6280 



Chapter 4: Results and Discussion                                                                138 

 As it can be seen in Table 22, the pH and the conductivity followed a typical 

behavior expected for an electrodialysis test with the configuration presented in Figure 

26. In the electrodes compartments (anode and cathode), an increase of the 

conductivity was observed. The pH of the anode compartment decreased, contrary to 

the observed for the cathode compartment. The observed tendency for the pH and 

conductivity in electrodes compartments is attributed to the redox reactions that take 

place at the electrodes interfaces, according to Equation 35 (at the cathode interface) 

and Equation 36 (at the anode interface) 

 

2𝐻2𝑂 + 2𝑒− →  𝐻2 + 2𝑂𝐻− Equation 35 

 

𝐻2𝑂 → 2𝐻+ + 1
2⁄  𝑂2 + 2𝑒− Equation 36 

 

 In both concentrate compartments, an increase of the conductivity was noticed. 

This increase occurs due to the transport of ions from the central compartment towards 

the concentrate and because of the transport of H+/OH- from the electrodes 

compartments towards the concentrate compartments. The transport of H+/OH- is 

responsible for the sharp alterations in the pH values of the concentrate compartments. 

It is observed in Table 22 that the pH of concentrate compartments follows the same 

tendency of their respective electrode compartment, because of the effect of the 

products of redox reactions.    

 The central compartment presented a decrease of both monitored parameters. 

The conductivity decreased because of the ion extraction. The removal of OH- from 

the synthetic rinsing water was responsible for the decrease of the pH from about 10 

to about 3. In addition, the transport of protons from the anode cannot be totally 

neglected. It has been reported in the literature (96) that protons from the anode may 

reach the central compartment across the anion-exchange membrane because of their 

smaller size and due to the Grotthuss mechanism.  

 The conductivity of the treated solution is the parameter that defines the total 

demineralization rate achieved. The calculated demineralization rate for both systems 

(using PC membranes and HDX membranes) is presented in Figure 60. 
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Figure 60. Demineralization rate of the treated solution for both electrodialysis systems. 

 

 For the heterogeneous HDX membrane, the maximum demineralization rate 

was 69.4 %, achieved 160 h after the beginning of the test. The maximum 

demineralization rate for the homogeneous PC membrane was 60 % and it was 

achieved at 281 h. 

 The extraction of ions from the central compartment was also evaluated for each 

specie separately, being: free HEDP, [Cu(HEDP)] chelates, chloride, sulfate and 

potassium. Figure 61 shows the extraction of the species in the stack assembly with 

PC membranes. At the beginning of the test, the extraction of chloride was higher than 

the other anions. A competition between the transport of HEDP, copper chelates and 

sulfate was noticed until 86 h test. Between 86 h and 187 h, the concentration gradient 

and the conductivity gradient between the anion concentrate and the central 

compartment was high enough to initiate a backward migration of chloride. In this 

period, the concentration of chloride decreased in the anion concentrate and increased 

in the central compartment, resulting in the negative extraction values observed in 

Figure 61. At 187 h, the conductivity of the anion concentrate was 4 times higher than 

the central compartment.  

The backward diffusion of chloride from the anion concentrated seemed to start 

competing with the migration of the other anions in the opposite direction. Although the 
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chloride anions were returning to the central compartment, the demineralization rate 

continued increasing, as was presented in Figure 60, until 281 h, when it started to 

decrease, indicating that the ion backwards diffusion was more evident than the 

migration. The most probable reason for chloride anions being affected over the other 

species is because of its greater diffusion coefficient, its higher mobility, its smaller size 

and its higher affinity for the membrane in comparison with the other anions. 

 

 
Figure 61. Percent extraction of ions from the treated solution throughout time in the 

electrodialysis batch system assembled with PC membranes.  

 

 After 342 h, the anion extraction followed the order: sulfate > HEDP > 

[Cu(HEDP)] and the maximum extraction of the species were 61 %, 32 % and 18 %, 

respectively. It is important to mention that the potassium extraction was carried out by 

the auxiliary cation-exchange membrane towards the cation concentrate. Therefore, 

the extraction of potassium had no influence over the other species. 

 For comparative purposes, the extraction of ions was determined for the stack 

assembled with the HDX membranes and the results are presented in Figure 62. The 

extraction of the anionic species followed a similar behavior throughout the 180 h: Cl- ≈ 

SO4
2- > HEDP > [Cu(HEDP)]. After 180 h, the maximum demineralization rate was 

achieved (as shown in Figure 60) and the maximum extraction for each specie, 

following the mentioned order, was: 71 %, 77 %, 52 % and 38 %. 



Chapter 4: Results and Discussion                                                                141 

 
Figure 62. Percent extraction of ions from the treated solution throughout time in the 

electrodialysis batch system assembled with HDX membranes. 

  

 The HDX membrane presented higher extractions for all evaluated anions. The 

extraction of sulfate was 26 % higher, the extraction of HEDP was 62 % higher and the 

extraction of chelates was 110 % higher in comparison with the PC membrane 

assembly.  

In addition, the concentration of HEDP and copper in the anion concentrate was 

evaluated for both membranes in the end of tests. For PC anion-exchange membrane, 

the concentration of copper was 1.1 times higher than the original synthetic solution 

and the concentration of HEDP was 2.8 times higher. For HDX 200 membrane, the 

concentration of copper was 3.2 times higher and the concentration of HEDP was 5.9 

times higher than the original synthetic rinsing water. The mentioned results indicate 

that the HDX membrane was more efficient to recover copper chelates and HEDP than 

the PC membrane. However, the PC membrane stack was operating at lower current 

density, as previously shown during the determination of the limiting current density. In 

order to analyze the transport of ions taking into account the different aspects of each 

system, the current efficiency, the energy consumption per kg and the percent 

extraction of each ionic specie were determined for both systems. The current 

efficiency shows the fraction of the total applied current that is being used to transport 

a determined specie toward the anion concentrate compartment. 
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Speciation diagrams were constructed with the aid of Hydra-Medusa software 

based on the results of the chemical analysis and on the pH of the collected sample, 

in order to determine the ionic species and their concentration for each collected 

sample. The speciation diagram for the electrodialysis test performed with HDX 

membranes at 8 h is shown in Figure 63 and the concentration of each specie taken 

from the diagram is presented in Table 23. 

 

 
Figure 63. Speciation diagram for the solution from the central compartment in 8 h using the 

HDX membranes. The diagram was constructed using Hydra-Medusa software. 

 

Table 23. Concentration of each specie taken from the diagram presented in Figure 63. 

Ion 
Concentration 

(mmol.L-1) 

K+ 17.9 

HHEDP3- 3.6 

CuHEDP2- 0.7 

Cl- 1.1 

SO4
2- 0.6 

HEDP4- 0.3 

KSO4
- 0.07 

OH- 0.09 

KCl 0.004 

H2HEDP2- 0.003 
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 The same procedure was repeated to determine the concentration of all ionic 

species for tests with HDX membrane at 0 h, 8 h, 34 h, 86 h, 117 h, 166 h and 177 h 

and for PC membranes at 0 h, 8 h, 34 h, 86 h, 187 h, 228 h and 342 h. The obtained 

values were used to calculate the energy consumption and the current efficiency 

according to Equation 29 and Equation 30 previously presented in item 3.4.2.3. The 

results of current efficiency are presented in Table 24 and the calculated energy 

consumption is presented in Table 25. 

 

Table 24. Current efficiency (%) calculated for the electrodialysis batch systems operating 
with PC 200D membrane and HDX 200 membrane. 

 
Time 

(h) 
HHEDP3- Cl- [Cu(HEDP)]2- SO4

2- H2HEDP2- HEDP4- Total 

P
C

 2
0

0
D

 

8 0 0 0 0 * 0 0 

34 4.6 9.3 5.0 4.1 * 31.8 54.8 

86 0 6.4 3.7 3.0 * >40 >40 

187 36.2 1.4 2.4 4.9 * * 45.0 

228 55.6 0.1 3.9 4.4 * * 64.0 

342 * 0 * 3.5 3.9 * 7.4 

H
D

X
 2

0
0
 

8 20.3 12.3 0 19.4 * 13.2 65.2 

34 19.7 9.4 1.9 9.3 * 0 40.3 

86 29.5 6.4 3.2 6.4 * 12.7 58.2 

117 39.5 4.4 2.9 6.2 * * 53.0 

166 36.3 3.8 6.8 4.6 * * 51.5 

177 50.2 3.9 6.4 4.5 0.8 * 65.8 

* These values were not calculated because they were affected by the pH of the solution. 

 

 The most important tendencies observed from the results presented in Table 24 

will be discussed below. 

By analyzing the PC 200D membrane, there was no ion extraction at the 

beginning of the test. After 34 h, the higher values of current efficiency were obtained 

for HEDP species. The total current efficiency achieved for the anion-exchange 

membrane was between 45 % and 64 %. The current efficiency for the removal of 

chelates was kept between 2.4 % and 5.0 %, similar to the values calculated for sulfate 

and chloride. Until 86 h, the highest current efficiency was obtained for the 
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deprotonated specie HEDP4-. However, the deprotonated anion represented a minor 

fraction of the HEDP in solution, as shown in Table 23. Therefore, even small amounts 

of HEDP4- transported through the anion-exchange membrane resulted in a high 

calculated current efficiency. After 86 h, the highest current efficiency was obtained for 

HHEDP3-, which was the specie with higher concentration. Between 86 h and 342 h, it 

is important to highlight the current efficiency obtained for chloride anions. The low 

values are a consequence of the backwards diffusion of chloride to the central 

compartment.    

The values indicated with an asterisk in Table 24 could not be calculated 

because they were somehow affected by the pH. For example, the anion H2HEDP2- is 

the product of the reaction shown in Equation 37. 

H+ + H3HEDP3- ↔ H2HEDP2- log K = 6.9                 Equation 37 

Thus, the H2HEDP2- anion was formed only when the solution in the central 

compartment achieved pH ≤ 6.9. The same behavior can be applied for HHEDP3- and 

HEDP4-. The protonation and deprotonation reactions at given pH values also 

influenced the calculation for these anions. Figure 64 illustrates the evolution of free 

HEDP species during the electrodialysis with the PC membranes. 

 
Figure 64. Evolution of the protonation and deprotonation of free HEDP during the 

electrodialysis with PC membranes. 
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 From Figure 64 it is noticed that until 86 h, the two species of HEDP are 

HHEDP3- and HEDP4-. Since the concentration of HEDP4- was very low in comparison 

with the other species, the transport of HEDP4- resulted in high current efficiencies 

calculated for this specie. In pH 9, the formation of the H2HEDP2- anion starts to take 

place and in pH 7, practically the total amount of HHEDP3- is converted into H2HEDP2-. 

Lastly, it is important to analyze the evolution of [Cu(HEDP)]2- chelates. Table 

24 showed that the current efficiency for copper chelates could not be determined at 

the end of the electrodialysis. In Figure 65, the evolution of [Cu(HEDP)]2- during batch 

electrodialysis is detailed along with the speciation diagram constructed for a generic 

HEDP:Cu2+ = 7 system, shown in Figure 66. 

 

 
Figure 65. Evolution of copper chelates during the electrodialysis with PC membranes. 
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Figure 66. Speciation diagram constructed for a generic system containing HEDP:Cu2+ = 7. 

 

 From Figure 65 and Figure 66, it is observed that after 187 h, the formation of 

CuHHEDP- and the release of free copper ions may have occurred and hindered the 

estimation of the current efficiency for copper chelates in the end of electrodialysis. 

Furthermore, an eventual release of the chelates would be undesirable for this 

application.  

In order to evaluate the occurrence of the release of Cu2+ ions, the final solution 

from cation concentrate was analyzed by EDX spectroscopy. In addition, the 

membranes were removed from the system after electrodialysis and were immersed 

separately in beakers containing 100 mL of a H2SO4 (0.1 mol.L-1) solution during 24 h. 

The H2SO4 solution was analyzed by means of EDX spectroscopy as well. The results 

showed that the concentration of Cu2+ in the final cation concentrate solution was 

negligible. However, the analysis of the H2SO4 solutions that was used as leaching 

agent for the ion-exchange membranes showed 39 mg(Cu2+).L-1 in the cation 

exchange membrane and 43 mg(Cu2+).L-1 in the anion exchange membrane. The 

presence of copper in the cation-exchange leaching suggests that the chelate release 

may have happened although copper ions did not reach the cation concentrate 

compartment. In addition, the concentration of copper in the anion-exchange 

membrane may suggest the possibility of release of chelates inside the 

anion-exchange membrane, which is in agreement with the low concentration of 

copper achieved in the anion concentrate compartment previously discussed.  

One of the hypothesis for the release of copper chelates inside the 

anion-exchange membrane (or on its interface) is the possibility of enhanced water 
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splitting as overlimiting mechanism. During the latest hours, the equivalent charge of 

the treated solution tends to be smaller than the initial state and the system may 

activate overlimiting transfer mechanisms. As reported in the literature, weakly basic 

groups (as the tertiary amines from the PC 200D structure) present a higher tendency 

to activate water splitting over electroconvection (92,93,144). The activation of water 

splitting reactions on the PC 200D surface could promote a sharp pH decrease due to 

the accumulation of protons in the DBL. In fact, the decrease of the pH throughout 

electrodialysis was found to be more pronounced with the PC 200D than with the 

HDX 200. The available protons could enhance the formation of [CuH(HEDP)]- and 

Cu2+ ions. 

 The determination of the current efficiency for HDX membrane showed a similar 

tendency. The highest current efficiencies were obtained for HHEDP3- ions, probably 

because their concentration was higher than the other species. The overall current 

efficiency obtained for the anion-exchange membrane was between 40 % and 66 %. 

The same protonation and deprotonation reactions affected the determination of 

current efficiency for H2HEDP2- and HEDP4- species. The current efficiency obtained 

for copper chelates was between 2 % and 7 %, which was expected because of their 

lower concentration and lower mobility.  

 The main differences between the two evaluated membranes were the ion 

extraction at the beginning of the test and the evolution of chelates throughout 

electrodialysis. For the HDX membrane, the extraction of ions was possible to be 

determined since the beginning of the test. In addition, when analyzing the evolution 

of copper chelates, it is seen that their current efficiency increased with time. To 

analyze the effect of the pH in the formation of [Cu(HEDP)]2-, the evolution of copper 

chelates during the electrodialysis was evaluated based on the composition and the 

pH of the collected samples. The results are shown in Figure 67. 
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Figure 67. Evolution of copper chelates during the electrodialysis with HDX membranes. 

  

 From Figure 67, the release of Cu2+ ions would be expected after approximately 

150 h, when the pH achieved values lower than 5. Thus, the same leaching procedure 

was performed for the cation-exchange membrane (HDX 100) and for the 

anion-exchange membrane (HDX 200) and the H2SO4 solutions were forwarded to 

chemical analysis by EDX spectroscopy. The results indicated a possible release of 

copper from chelates due to the pH decrease in the bulk solution. The leaching solution 

from the cation exchange membrane presented 76 mg (Cu2+).L-1. On the other hand, 

the leaching solution from the anion exchange membrane presented 25 mg (Cu2+).L-1, 

which was less than the amount of copper found in the leaching of PC 200D 

membrane. 

 Lastly, the energy consumption calculated per kg for each specie and the overall 

energy consumption are summarized in Table 25. The overall consumption was similar 

for both anion-exchange membranes, with average values between 30 kW.h and 

50 kW.h. For the PC 200D membrane, it can be noticed a disparate value of 

464 kW.h.kg-1 for chloride which is associated with the energy consumption required 

to overcome the backwards diffusion. In addition, the anionic species with lower 

concentration presented a higher energy consumption to be transferred.  
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Table 25. Energy consumption (kW.h.kg-1) calculated for the electrodialysis batch systems 
operating with PC 200D membrane and HDX 200 membrane. 

 
Time 

(h) 
HHEDP3- Cl- [Cu(HEDP)]2- SO4

2- H2HEDP2- HEDP4- 
Stack 

(kW.h) 

P
C

 2
0

0
D

 

8 - - - - * - 1.4 

34 43.8 32.4 20.7 96.2 * 3.8 6.6 

86 - 35.3 26.8 54.5 * 2.3 13.8 

187 5.1 136.6 38.4 27.8 * * 30.3 

228 5.3 463.6 24.3 10.7 * * 40.1 

342 * - * 27.4 11.5 * 62.2 

H
D

X
 2

0
0
 

8 14.5 46.2 0 21.8 * 29.9 2.4 

34 13.4 54.5 71.6 40.5 * - 7.3 

86 9.2 81.6 43.1 60.7 * 28.5 21.6 

117 7.3 127.1 50.2 66.2 * * 37.2 

166 9.0 168.2 24.5 101.1 * * 66.1 

177 6.6 167.4 26.5 105.6 22.7 * 53.8 

* These values were not calculated because they were affected by the pH of the solution. 

 

 

4.2.3 General discussion on the study of ion transport through the 

anion-exchange membranes 

 

The study of ion transport across two different anion-exchange membranes was 

carried out by means of chronopotentiometric methods and electrodialysis tests. The 

evaluation focused on HEDP anions and on Cu(II)-HEDP chelates, comparing the 

obtained results for both membranes. To summarize the partial conclusions obtained, 

the most important topics are presented as follows. 

There is a relation between the anionic equivalent charge of the solutions and 

the main properties of ion transport across ion-exchange membranes, i.e., the ohmic 

resistance, the establishment of concentration gradients in the DBL, the limiting current 

density and the potential drop over polarized and non-polarized systems. This relation 

has been reported in the literature for other membrane systems (130) and generally 

the increase in the equivalent charge improves the transport properties. Solutions with 

higher equivalent charge tend to present lower ohmic resistance, establishment of 



Chapter 4: Results and Discussion                                                                150 

concentration gradients in the DBL at higher current densities, higher limiting current 

density and lower potential drop over polarized and non-polarized systems. This 

tendency was also observed during the development of this study. However, the 

presence of chelates affected the transport properties. Solutions with similar values of 

equivalent charge presented hindered results when the contribution of chelates was 

higher. This tendency was observed during the chronopotentiometric tests for both 

evaluated membranes. The solution which results suggested higher resistance to be 

transferred across the anion-exchange membranes contained an acid/metal ratio of 1 

regardless of its equivalent charge. 

The chronopotentiometric curves did not show indications of precipitation of 

insoluble compounds. During the batch long-term electrodialysis, indications of 

membrane fouling were not observed. 

During the chronopotentiometric tests, two transition times were registered 

under two different circumstances. For the HDX 200 membrane which contains only 

quaternary amine fixed groups, two transition times were noticed under specific 

conditions, only for the HEDP:Cu2+ = 4 solution. The transition times were registered 

in i ≈ ilim and both of them were well defined, being sufficiently distant from each other. 

In addition, they were formed during the establishment of the concentration gradients 

represented by the sharp increase in the membrane potential values. The appearance 

of two transition times under these conditions was associated with the transport of two 

anions having different mobility across the membrane.  

For the PC 200D membrane which contains quaternary and tertiary amine 

groups, two transition times were registered for almost all evaluated systems, except 

for the HEDP:Cu2+ = 1 solution. Their characteristics were different from the observed 

for the HDX 200 membrane. They were registered at overlimiting regimes (i > ilim), very 

close to each other, immediately before the establishment of the steady-state achieved 

after the ion depletion in the DBL. Their presence was associated with the different 

interactions between the predominant anion of each solution and the two different fixed 

groups. 

The chronopotentiometric curves obtained at overlimiting regimes for the 

HEDP:Cu2+ = 1 solution using the PC 200D membrane showed characteristics that 

may be related to the formation of a bipolar layer at the membrane surface that may 

represent an unfavorable condition for the transfer of [Cu(HEDP)]2- chelates. The 

results from the long-term electrodialysis test performed with the PC 200D membrane 
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indicated a recovery rate of copper chelates of 1.1 and suggested that a release of the 

copper from chelates may have occurred in the bulk solution and at the membrane 

surface. Other indication of higher water splitting rates for the PC 200D membrane was 

the pH decrease in the central compartment that was more abrupt for PC 200D 

membrane. The presence of copper in the cation-exchange membranes also suggests 

the occurrence of copper release from chelates due to water splitting. 

The evaluation of the overlimiting regimes in the chronopotentiometric curves 

obtained for the HDX 200 membrane showed a relation between the equivalent charge 

and the plateau length according to the Stokes radius theory which states that anions 

with greater size activate electroconvection at lower potential values. This relation was 

not observed for the PC 200D membrane, probably because the two transition times 

suppressed the transition from the ohmic region to the diffusion-controlled region. On 

the other hand, for the PC 200D membrane a relation between the overlimiting 

mechanism and the molecular weight of the solution could be established. Solutions 

with lower molecular weight tended to activate electroconvection. The increase of the 

molecular weight favored the occurrence of other mechanisms, probably gravitational 

convection. The water splitting rate may not be despised. Although its effect in the 

chronopotentiometric curves could not be clearly distinguished, it may have affected 

the transport of chelates in electrodialysis batch tests. 

 Both membranes presented higher selectivity for small inorganic anions, but the 

PC 200D membrane showed higher selectivity for HEDP anions than the HDX 200 

membrane. The higher selectivity is not related only with the ion extraction, but also 

with the amount of anionic species that are able to achieve the anodic compartment. 

For the PC 200D, a greater amount of HEDP anions were able to achieve the anodic 

compartment, which increased the calculated separation factor for this membrane. The 

selectivity for smaller inorganic anions was also observed during the electrodialysis 

tests, accordingly to the results from the selective separation tests. In general, the 

anion extraction follows the order of mobility: inorganic > HEDP > chelates. 

 The HDX 200 membrane showed higher limiting current density and lower 

ohmic resistance than PC 200D for all the solutions containing chelates. Although the 

HDX 200 membrane is heterogeneous, it contains only strongly basic ion-exchange 

groups. The different behavior presented by the PC 200D membrane may be related 

to the presence of tertiary amine groups in its structure, especially in the range of pKa 

values of tertiary amines. 



Chapter 4: Results and Discussion                                                                152 

 The electrodialysis test carried out with the HDX 200 membrane achieved 

higher demineralization rate in a shorter period. The conductivity gradient established 

during the tests using the PC 200D membrane hindered the ion transport and the 

system began to consume electrical energy in order to surpass the backwards diffusion 

of chloride anions.  

 The average current efficiency for both systems was between 40 % and 65 %. 

However, the latest test period with the PC 200D membrane showed an unfeasible 

extraction because of the chloride backwards diffusion. 

 The three methodologies used for evaluating the properties of ion transport 

across both membranes showed the relation between the presence of chelates in the 

solutions and the fixed ion-exchange group. The chronopotentiometric curves and the 

selective separation tests showed that PC 200D membrane presented higher 

selectivity, higher limiting current density, higher electroconvection rates and lower 

ohmic resistance for solutions containing HEDP with no chelates. On the other hand, 

the presence of copper chelates seemed to affect the ion transport through the 

PC 200D membrane more than the HDX 200 membrane. The interactions between 

copper chelates and the weakly basic groups seemed to interfere in the efficiency of 

the transport under i ≤ ilim regimes (causing higher ohmic resistance and lower limiting 

current density) and under overlimiting regimes (causing higher water splitting rates, 

release of copper ions and formation of bipolar layer at membrane surface). 

 

4.2.4 Electrodialysis in continuous system 

 

Electrodialysis was performed in long-term concentration tests using the 

laboratory-scale system previously presented in Figure 28. The electrodialysis system 

was modified to a three-reservoirs configuration, in order to obtain a concentrated 

solution and simultaneously produce uncontaminated water. The configuration 

presenting a single reservoir for both cation and anion concentrate is more similar to 

the large-scale electrodialysis systems than the system with separate concentrate 

compartments. In addition, the continuous system was assembled with three 1L 

compartments in order to reduce the issues found during the batch electrodialysis 

tests. For example, the pH changes that weakened the chelates and the impossibility 
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of concentrating the total amount of ions from the central compartment in the 

concentrate compartment without backwards diffusion.  

Figure 68 shows the conductivities of concentrate and dilute solutions 

throughout the operating time. At the end of each operating cycle, the total 

demineralization rate was calculated. It is observed that, after each of the 5 operating 

cycles, the total demineralization rate was higher than 90 %, which is also noticed from 

the conductivity of the dilute solutions that achieved values below 200 µS.cm-1. 

 

 
Figure 68. Conductivity of the solutions from the concentrate compartment, dilute 

compartment and the total demineralization rate (DR) at the end of each operating cycle. The 
grey arrows indicate the beginning of a new operating cycle. 

 

During the sixth operating cycle, the demineralization rate decreased to about 

45 %. This behavior may be attributed to the conductivity gradient formed between the 

concentrate and the dilute compartment. Note that, at the beginning of the sixth cycle, 

the conductivity in the concentrate compartment was near 18 mS.cm-1. The high ion 

concentration in the concentrate compartment favors the diffusion from the concentrate 

towards the dilute compartment. When the diffusion becomes more important than 

migration, the ion removal from the dilute compartment is suppressed.  The percent 

extraction of each component of the synthetic rinsing water is presented in Figure 69. 
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Figure 69. Percent extraction of copper, HEDP, potassium, chloride and sulfate from the 

dilute compartment at the end of each operating cycle. 

 

The results from Figure 69 showed a similar tendency as those presented in 

Figure 68.  During the first three operating cycles, the percent extraction for all ions 

showed to be near 90 %. During the fourth cycle, sulfate anions started to present a 

decreasing tendency. It is noteworthy that the duration of each operating cycle was 

longer than the immediately previous cycle. This indicates that, the greater conductivity 

gradient between the concentrate and the dilute compartment decreases the mobility 

of ions towards the concentrate. In the sixth operating cycle, the percent extraction of 

all components was lower than 70 %. In addition, the percent extraction of sulfate 

anions could not be established, because of the back diffusion of sulfate to the dilute 

compartment. 

The percent concentration depicts the effectiveness of the electrodialysis in 

concentrating each component from the solution. The obtained results from copper, 

HEDP and chloride anions are presented in Figure 70. The greater concentration rate 

of chloride anions may be attributed to their higher mobility in solution and inside the 

membrane. Copper concentration was less efficient than chloride and HEDP anions 

concentration because copper is transferred as organic chelates, which present 

greater size and lower mobility than the other anions. In Figure 70, the concentration 
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of sulfate and potassium were not taken into account because both ions were also 

transferred to concentrate from the electrode compartment. 

 

 

Figure 70. Percent concentration for copper, HEDP and chloride during electrodialysis test. 

 

The composition of the obtained concentrate solution in comparison with the 

synthetic rinsing water and the copper bath in presented in Figure 71. It is important to 

observe that the increase on the concentration of sulfate and potassium is influenced 

by the transport of ions from the electrode compartments towards the concentrate 

compartments. In addition, the conductivity of the electrodes compartment decreased 

throughout time because of the combination between the auto-ionization of water, the 

reduction of hydrogen and the oxidation of oxygen. The reactions that take place at the 

cathode surface are shown in Equation 38 and Equation 39. 

 

2H+ + 2e-  H2 Equation 38 

2H2O  2H+ + 2OH- Equation 39 

2H2O + 2e-  H2 + 2OH- Equation 40 

 

 At the same time, the reactions that take place at the anode surface are 

presented in Equation 39 and in Equation 41. 
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2OH-  H2O + ½ O2 +2e- Equation 41 

2H2O  2H+ + 2OH- Equation 38 

H2O  2H+ + ½ O2 + 2e- Equation 42 

 

 The evolution of the global reaction from Equation 40 and Equation 42 

decreased the conductivity of the electrodes compartment. Therefore, K2SO4 was 

periodically added to the electrodes compartment to adjust the conductivity and reduce 

the ohmic drop. The addition of K2SO4
 also contributed for the increase of the 

concentration of potassium and sulfate in the concentrate compartment, as shown in 

Figure 71. 

 

 
Figure 71. Composition of the initial synthetic rinsing water, of the copper bath and of the 

obtained concentrated solution after ED test. 

 

The composition of the treated solutions after each of the operating cycles is 

presented in Table 26. 
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Table 26. Composition of the treated solutions after each electrodialysis operating 
cycle. 

Solution 
Concentration (mg.L-1) 

pH λ (μS.cm-1) 
Cu2+ HEDP K+ Cl- SO4

2- 

Dilute (1st cycle) 5 118 20 1 2 3.72 145 

Dilute (2nd cycle) 5 117 30 2 4 3.77 174 

Dilute (3rd cycle) 6 142 39 1 9 3.79 180 

Dilute (4th cycle) 3 99 41 2 15 4.06 163 

Dilute (5th cycle) 3 267 54 2 23 4.46 183 

Dilute (6th cycle) 15 351 348 12 235 7.22 1083 

Concentrated 259 6773 18700 342 16460 8.95 23700 

 

In Figure 72, the visual aspect of the solutions before and after electrodialysis 

is presented. The synthetic rinsing water was the initial solution used in both dilute and 

concentrate compartments before beginning the electrodialysis test. The “treated 

solution” shown in Figure 72 is one of the solutions from the dilute compartment after 

achieving a conductivity below 200 µS.cm-1. Finally, the concentrate is the solution 

obtained after all operating cycles and which composition was presented in Table 26.  

 

 
Figure 72. Visual aspect of the synthetic rinsing water used at the beginning of ED, 
the treated solution after one ED operating cycle and the final concentrate obtained 

after ED. 

 

Synthetic 
rinsing water 

Treated solution Concentrated 
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From the aforementioned results, after 5 operating cycles, the concentration 

gradient between the concentrate and the dilute compartment caused an undesirable 

backward diffusion. As a consequence, an energy waste may occur, since the applied 

energy would be used to overcome the backwards diffusion and to transfer mainly 

sulfate and potassium which are not the anions of major interest. 

Thus, a similar electrodialysis test was carried out with 5 complete operating 

cycles. The demineralization rate and the final composition of the treated solutions and 

the concentrate solution were compared to the previous test. Figure 73 shows the 

conductivity of the diluted solutions after each of the 5 cycles, the demineralization rate 

achieved at the end of each cycle and the increase of the conductivity of the 

concentrate solution during the test. Figure 74 shows the extraction of copper, HEDP, 

sulfate, potassium and chloride from the diluted compartment at the end of each of the 

5 operating cycles. 

 
Figure 73. Conductivity of the treated solutions and the concentrate solution during the 

long-term electrodialysis test performed in continuous system for 5 operating cycles. The 
demineralization rates at the end of each cycle is indicated below the conductivity of dilute 

solutions. 
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Figure 74. Percent extraction of copper, HEDP, potassium, chloride and sulfate from the 

dilute compartment during the long-term electrodialysis test performed in continuous system 
for 5 operating cycles. 

 

Figure 73 and Figure 74 show that the behavior of the system was similar to the 

observed previously, achieving demineralization rates and ion extraction near 90 % for 

all treated solutions. In addition, the backwards diffusion could be suppressed which 

improved the system efficiency. The composition of the solutions obtained after the 

five-cycle electrodialysis test is shown in Table 27.  

Table 27. Composition of the treated solutions and the final concentrated solution 
after the five-cycle electrodialysis test. 

Solution DR (%) λ (μS.cm-1) pH 
Concentration (mg.L-1) 

Cu2+ HEDP K+ Cl- SO4
2- 

I 91.1 153 3.66 4.3 131 25 <1 2.2 

II 90.1 170 3.81 6.6 150 38 <1 5.1 

III 89.3 183 3.58 7.0 207 46 <1 6.2 

IV 91.1 153 4.16 8.2 102 45 4.9 11.9 

V 88.9 192 4.11 9.9 132 18 2.1 18.2 

Concentrate -  15840 9.21 229 5749 10926 351 8656 

 

By comparing the results from Table 26 and Table 27, it is observed that the 

treated solutions presented similar compositions. The recovery of chloride, HEDP and 
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copper also showed to be similar for both conditions. The results indicated that, during 

the 6th cycle performed in the first test, the recovery of K+ ions played a major role. In 

addition, an important amount of energy was spent in the competition between the ion 

transfer from the dilute to the concentrate compartment and the backwards diffusion. 

Therefore, the five-cycle electrodialysis seemed to present more effectiveness in 

recovering copper chelates and HEDP from the synthetic rinsing waters. 

For this reason, the concentrate obtained after the five-cycle continuous 

electrodialysis test was selected to prepare the electroplating solutions that will be 

discussed in section 4.3. In addition, the treated solutions are able to be reused in the 

rinsing tanks. 

 

4.2.4.1 Analysis of the membrane electrochemical properties 

 

The properties of the HDX 200 anion-exchange membrane were evaluated 

before and after electrodialysis test and after two different cleaning procedures. In 

Figure 75, it is presented the visual aspect of the membrane before electrodialysis and 

its structure visualized by means of SEM micrographs.  

Backscattered electron images presented in Figure 75 show that the HDX200 

membrane has three different phases. The first phase is a structural reinforcement 

which can be completely visualized in Figure 75 (c) and is indicated by I in Figure 75 

(b) and (d). The second phase is represented by the ion exchange particles, indicated 

by II in Figure 75. The fixed ionic group in the HDX200 membrane is the quaternary 

ammonium which could be observed by the presence of nitrogen in the EDS analysis. 

The third phase is the inert binder, indicated by III in Figure 75. Through the SEM/EDS 

analysis, it is seen that the structure of the HDX200 anionic membrane is characterized 

by clearly distinct conductive and nonconductive regions. 
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(a) (b) 

  

(c) (d) 

Figure 75. Visual aspect (a) and backscattered electron images of HDX200 membrane. 
Figure (b) shows the membrane surface, Figure (c) shows the membrane reinforcement and 

Figure (d) presents the membrane cross section. In Figures (b) and (d), I represent the 
reinforcement fibers, II indicates the ion exchange particles and III indicates the inert binder. 

 

The visual aspect of the HDX 200 membrane immediately after the long-term 

continuous electrodialysis test and after the acid-cleaning procedure is shown in Figure 

76. 

 

I 

II 

III 

I 

II 

III 
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(a) (b) 

Figure 76. Anion-exchange membrane after electrodialysis test (a) and after 
H2SO4-cleaning procedure (b). 

 

The evaluated anion-exchange membranes were removed from the 

electrodialysis tests in the continuous system. Both membranes were placed between 

the dilute and the concentrate compartment during the electrodialysis tests. Each of 

them was forwarded to a different cleaning procedure, being one alkaline and one acid. 

Both acid and alkaline cleaning procedures were capable of removing the 

superficial encrustation from the anion-exchange membrane. To evaluate the 

electrochemical properties of the membrane, current-voltage curves for the evaluated 

samples were constructed and their shape is presented in Figure 77. In order to 

facilitate the analyses of the obtained results, the main properties of the CVC curves 

are summarized in Table 28. 
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Figure 77. Current-voltage curves obtained for the membrane samples. 

 

Table 28. Properties of the CVC curves for the anion-exchange membrane samples.  

AEM R1 (Ω.cm²) ilim (mA.cm-²) Lpl (V) R3 (Ω.cm²) R3/R1 

Virgin 183 0.62 1.54 2386 13.0 

After ED 583 0.22 0.23 1408 2.4 

H2SO4 – cleaned 435 0.34 0.34 1034 2.4 

KOH - cleaned 435 0.34 0.13 608 1.4 

 

From Figure 77 and Table 28, it is noticed that after electrodialysis, the ohmic 

resistance of the membrane increased about 3 times in comparison with the virgin 

membrane and its limiting current density was about 3 times lower. It is also noteworthy 

that the plateau length decreased after electrodialysis test. The mentioned modification 

regarding to the ohmic resistance, the limiting current density and the plateau length 

may be attributed either to deposition or chemical binding between the organic 

compound and the membrane functional groups (115). In practice, an increase of the 

ohmic resistance could lead to higher energy consumption and a decrease in the 

limiting current density could favor overlimiting mechanisms, including an 

enhancement of the formation of water splitting products.  

 After each of the cleaning procedures, it was observed a slight improvement of 

the CVC characteristics. Generally, the alkaline cleaning is more suitable for cleaning 

anion-exchange membranes (146). Nevertheless, both procedures presented similar 
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efficiency for recovering part of the membrane properties. After the cleaning 

procedures, it was observed an increase of 54 % of the limiting current density and a 

decrease in the ohmic resistance of about 25 %. 

 The chronopotentiometric curves for all tested samples are presented in Figure 

78. 

  
Virgin AEM After ED 

  
H2SO4 – cleaned KOH - cleaned 

  
Figure 78. Chronopotentiometric curves obtained for the four anion-exchange membrane 

samples. 

 

In Figure 77 and in Figure 78, it may be observed that changes occurred in the 

region associated with the diffusion-controlled transport. In the CVCs presented in 

Figure 77, the plateau length was reduced in the three curves related to the 

anion-exchange membrane after the electrodialysis tests. This indicates that the 

activation of the overlimiting mechanism was faster in these situations. In the 

chronopotentiometric curves shown in Figure 78, this behavior is noticed because the 

potential growth related to the formation of concentration gradients at the diffusion 

boundary layer was less defined and the transition times decreased. This may suggest 

that the overlimiting mechanism suppresses the diffusion transfer. As reported by 

Elattar et al. (147), the plateau length of a CVC may be affected by the nature of the 

electrolyte and by the membrane surface. Since all the chronopotentiometric tests 

were performed using the same electrolyte, it is possible that the operating time or the 



Chapter 4: Results and Discussion                                                                165 

interactions between the fixed groups and the HEDP or its chelates modified some of 

the active ion-exchange sites. Structural modifications of anion-exchange membranes 

due to ageing were observed by Choi and Moon (144). The storage, the performance 

at overlimiting conditions and the reactions with weak acids may modify the quaternary 

ammonium fixed groups into weakly basic groups, such as tertiary or secondary 

amines, which present higher catalytic activity for water splitting (148).  

To evaluate possible alterations in the membrane structure, FTIR-ATR analises 

were performed after the alkaline cleaning procedure. The infrared spectrum for virgin 

and cleaned HDX 200 membranes are shown in Figure 79. 

 

r

 
Figure 79. IR spectra of the HDX 200 membrane. The orange spectrum represents the virgin 
membrane and the black spectrum represents the HDX 200 membrane after 130 h test and 

after alkaline cleaning. 

 

 Both spectra presented in Figure 79 have similar aspects, which may indicate 

that few changes have occurred in the membrane structure during the electrodialysis 

tests. The spectrum related to the membrane after cleaning presented a peak in 1644 

cm-1 and a group of peaks between 1150 cm-1 and 1250 cm-1 that were not present in 

the spectrum of the virgin membrane.  

 According to Karas et al. (149), the two largest peaks at 2916 cm-1 and 

2849 cm-1 are assigned to C-H bonds. The vibrational lines that correspond to 

quaternary ammonium groups may be found at 1471 cm-1 and 1376 cm-1 and they can 

be observed for both membranes. Weakly basic groups are identified at wavelengths 

Quaternary 

ammonium 
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834 cm-1 and 1300 cm-1. However, they were not observed in the spectra presented in 

Figure 79. On the other hand, Zenobi et al. (150) reported that the ATR-FTIR spectra 

for HEDP presents a band at 1644 cm-1 related to the vibration of dissolved carbonate 

and water. A similar band was observed for the HDX-after-cleaning spectrum and it is 

identified with a green arrow in Figure 79. In addition, a group of characteristic bands 

related to P-O bonds are found near 1150 cm-1. This region is identified with a green 

circle in Figure 79 and it is possible to notice the differences between the spectrum for 

the virgin membrane and the spectrum for the cleaned membrane. Therefore, it seems 

that the differences observed in Figure 77 and in Figure 78 are more related to the 

occurrence of strong bonds between the HEDP and the fixed groups than to the 

conversion of quaternary ammonium groups into weakly basic groups. 

 

4.2.4.2 Analysis of HEDP degradation 

 

The degradation of HEDP into orthophosphate during electrodialysis was 

evaluated for long-term tests in continuous system. Samples of the solution from the 

concentrate compartment were collected at the end of each operating cycle and the 

concentration of orthophosphate was analyzed by means of ion chromatography. As it 

is presented in Figure 80, all the samples from the concentrate compartment presented 

a percent degradation lower than 2 %.  
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Figure 80. Degradation of HEDP into orthophosphate in the samples of the concentrate 

compartment after each of the operating cycles for long-term electrodialysis carried out in 
continuous system. 

 

 The degradation of HEDP was evaluated because the conversion of organic 

phosphorus into orthophosphate could release the chelates and, therefore, could 

reduce the recovery of copper chelates. The results from Figure 80 suggested that the 

electrodialysis process did not cause HEDP degradation in the concentrate solution 

after long-term tests. 

 

4.3 Electrodeposition tests 

 

The concentrate solution from the five-cycle electrodialysis test carried out in the 

continuous system was used to prepare the electroplating solutions. Firstly, deposition 

tests were performed using the HEDP-based copper bath prepared according to the 

composition proposed by Vargas (23). Then, electrolytes containing the HEDP-based 

bath and the concentrate from electrodialysis were prepared with different amounts of 

concentrate. The copper coatings obtained from the depositions with the mixed 

electrolytes were compared to the coatings obtained with the HEDP-based bath 

solution. This procedure was performed in order to simulate the replacement of ions 

from the original bath that may be lost due to drag-out. 
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Before the electrodeposition tests, each test specimen was pretreated according 

to the procedure previously presented in Figure 32. Then, the test specimens were 

weighed and measured. According to Vargas (23), the current density to be applied in 

the electrodeposition tests is 0.3 A.dm-2. Therefore, the area of the test specimens and 

the suitable current density for each of them was calculated. The test specimens were 

weighed after the deposition tests and the mass of deposited copper per cm² was 

established. The effective area of the test specimens, the calculated current density 

and the mass of copper per cm² are summarized in Table 29. 

 

Table 29. Test specimens for copper deposition and their respective electrolyte, effective 
area, applied current and weight of copper deposited. 

Test 

specimen 
Electrolyte Area (cm²) Current (mA) 

Copper 

coating 

(mg.cm-²) 

I 
HEDP bath 

17.71 53.13 0.72 

II 17.94 53.83 0.63 

III 
10 % recovered 

17.91 53.73 0.63 

IV 17.82 53.45 0.44 

V 
20 % recovered 

17.44 52.33 0.26 

VI 17.93 53.80 ND 

VII 
30 % recovered 

17.59 52.76 0.45 

VIII 18.03 54.09 0.50 

IX 
40 % recovered 

18.01 54.03 0.96 

X 17.96 53.89 0.79 

XI 
50 % recovered 

17.99 53.97 0.97 

XII 17.56 52.68 1.24 

XIII 
100 % recovered 

17.62 52.85 0.19 

XIV 17.64 52.93 0.52 

 

The average area of the test specimens was 17.8 ± 0.2 cm². The calculated 

current to be applied was 53.4 ± 0.6 mA, thus a current of 53 mA was applied in all 

deposition tests. Table 30 presents the calculated compositions of the electrolytes 

used for copper depositions tests, based on the theoretical composition of the original 

bath. 
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Table 30. Composition of the mixed electrolytes, calculated based on the theoretical 
composition of the original bath. 

Solution 

% of 

concentrate 

from ED 

Composition (mg.L-1) 
HEDP:Cu2+ 

ratio 

Cu2+ HEDP K+ Cl- SO4
2-  

100/0* 0 4500 105000 7000 7000 6807 7.2 

90/10 10 4073 95075 7393 6335 6992 7.2 

80/20 20 3646 85150 7785 5670 7177 7.2 

70/30 30 3219 75225 8178 5005 7362 7.2 

60/40 40 2791 65300 8570 4340 7547 7.2 

50/50 50 2364 55375 8963 3676 7732 7.2 

0/100 100 229 5749 10926 351 8656 7.7 

* theoretical composition 

The obtained coatings were analyzed by means of visual tests, SEM/EDS 

microscopy and adherence tests. The adherence tests were established in the 

Laboratory of Corrosion and Protection of the Institute for Technological Research, 

based on technical standards for metallic and organic coatings. The adherence of the 

test specimens was evaluated qualitatively according to the ASTM D3359-07 (151) 

and the NBR 11003/2009 (152) standards. 

The visual tests showed bright and uniform coatings in all the deposition tests, 

except for the electrodeposition performed with 100 % of the concentrate from 

electrodialysis. The latter showed a burned coating, as presented in Figure 81. The 

visual aspect of all test specimens before and after the adherence test is shown in 

Annex 1. 
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Original bath 50% ED concentrate 100% ED concentrate 

      

Figure 81. Visual aspect of three test specimens after deposition tests. 

 

The results from the adherence tests showed that the test specimens may be 

classified in 5B or 4B, according to ASTM D3359-07 (151) standard, which means that 

they presented less than 5 % of percent area removed. The coatings may be classified 

as X0, Y0 and Y1, as stated in NBR 11003/2009 (152), which means “no detachment in 

the intersection (X0)”, “no detachment along the cut (Y0)” and “detachment up to 1 mm 

along the cut (Y1)”. The latter is applied to the test specimen submitted to deposition 

with the mixed electrolyte containing 20 % of concentrate. 

The tests specimens submitted to deposition with electrolytes containing 0 %, 

10 %, 30 %, 40 % and 50 % of concentrated from ED showed 0 % of percent area 

removed and may be classified as 5B. The coatings performed with the electrolyte 

containing 20 % may be classified as 4B since they presented less than 5 % of percent 

area removed. The copper coating obtained with the solution containing only the 

concentrate from electrodialysis had a burned aspect. However, the test specimen 

presented 0 % of percent area removed. 

Complementary analyzes were carried out by optical microscopy and SEM 

microscopy using the test specimens coated with the original bath and with the “50 % 

ED concentrate” electrolyte. Figure 82 shows the microscopy of the test specimen 

coated with the original bath. The gray region refers to the Zamak substrate and the 

copper coating is observed at the substrate surface.  
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Figure 82. Optical microscopy of test specimen coated using the original copper bath 

showing the copper layer (500x). 

 

Figure 83 presents the backscattered electron image of the test specimen 

coated using the original bath. It is possible to observe the coating at the substrate 

surface. Measurements performed in five different points (yellow points) indicated that 

the average thickness of the copper layer is 3.4 µm. This is in good agreement with 

the thickness of copper layers found in the literature required for cyanide strike baths 

of about 1.6 µm (153). 
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Figure 83. Backscattered electron image obtained by SEM of the test specimen coated with 
the original bath showing the Zamak substrate and the copper coating. The yellow circles 

indicate the regions where the thickness of the copper layer was estimated. 

 

Figure 84 presents two backscattered electron images of the copper coating 

obtained using the original bath. Figure 84 (a) shows a uniform coating and Figure 

84 (b) depicts the presence of pores with an average diameter of 0.5 µm. It can be 

noticed that the pores are evenly distributed over the surface, present a well-defined 

round shape and have similar sizes. They are probably formed because of the reaction 

of hydrogen reduction at the cathode surface. 
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Figure 84. Backscattered electron image obtained by SEM of the copper coating showing (a) 
a uniform coating and (b) the presence of pores formed from the hydrogen reduction at the 

cathode surface. 
 

Lastly, the mapping EDS analysis shown in Figure 85 presented the distribution 

of aluminum, zinc and copper through the test specimen. Aluminum, copper and zinc 

are found in the substrate because of the composition of the Zamak alloy. The higher 

density of copper at the surface of the test specimen shows the copper coating. Figure 

85 (d) shows the overlapping of the three metals.  

  

(a) Aluminum (b) Zinc 

  

(c)Copper (d) Aluminum, zinc and copper 
overlapped 

Figure 85. Mapping EDS of the test specimen coated with the original bath showing the 
distribution of aluminum, zinc and copper. 



Chapter 4: Results and Discussion                                                                174 

The same analyses were performed with the test specimen coated with a mixed 

electrolyte containing 50 % v/v of the concentrate from electrodialysis. The optical 

microscopy showing the copper coating is presented in Figure 86. It is observed that 

apparently a uniform coating could be obtained. 

 
Figure 86. Optical microscopy of test specimen coated using the electrolyte containing 50 % 

v/v of the concentrate from electrodialysis, showing the copper layer (500x). 

 

The backscattered electron image obtained for the test specimen coated using 

the mixed electrolyte is presented in Figure 87 among with the mapping EDS indicating 

the overlapped distribution of aluminum, zinc and copper. 
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(a)                                                                   (b) 
Figure 87. Backscattered electron image obtained by SEM (a) of the test specimen coated 

with the mixed electrolyte and mapping EDS (b) showing the overlapped distribution of 
aluminum, zinc and copper. 

 

 Figure 88 shows the backscattered electron images of the copper coating 

obtained using the mixed electrolyte (50 % original bath + 50 % concentrate from ED). 

Although Figure 88 (a) presents a uniform coating, it is observed in Figure 88 (b) that 

the coating had a porous aspect. The pores were randomly distributed and had an 

average diameter of 1.9 µm. 

 

      
Figure 88. Backscattered electron images obtained by SEM of the copper coating using the 
mixed electrolyte showing (a) a uniform coating and (b) the presence of pores formed from 

the hydrogen reduction at the cathode surface. 
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In addition, the yellow arrows in Figure 88 (b) indicate the formation of three 

dimensional volumes of copper, which may explain the differences in the weight of 

copper deposited previously shown in Table 29. 

Figure 89 details the mapping EDS analysis for the distribution of aluminum, 

zinc and copper separately. 

 

  

(a) Aluminum (b) Zinc 

 

(c) Copper 

Figure 89. Mapping EDS of the test specimen coated with the mixed electrolyte showing the 
distribution of aluminum, zinc and copper.  
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The microscopy analyses carried out in the copper coating obtained from the 

mixed (50/50) electrolyte showed that the obtained coating seems to have similar 

uniformity than the coating obtained from the original bath, but a greater number of 

micropores, as detailed in Figure 90. 

 

  
(a)                                                                   (b)    

Figure 90. Backscattered electron images obtained by SEM showing the coated surface near 
the X-shaped cut of the test specimen coated with (a) 100 % original bath and (b) 50 % 

concentrate from ED. 

 

Previously, the visual tests showed that both coatings had similar uniformity and 

bright. The adherence tests indicated that all the electrolytes were able to produce 

coatings classified as 4B and 5B according to the ASTM standard (151) and classified 

as X0, Y0 and Y1 according to the NBR 11003/2009 standard (152), which suggested 

similar properties between the original bath and all the mixed electrolytes. The 

thickness of the copper coating for the 50 % mixed electrolyte could not be established 

from the obtained backscattered electron images presented in Figure 87. Thus, SEM 

analyses with Focused Ion Beams (FIB) were performed to access the coated 

substrate, as shown in Figure 91 and in Figure 92. 
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Figure 91. Backscattered electron image obtained by SEM showing a transversal cut of the 

test specimen coated using the mixed electrolyte. 

 

 
Figure 92. Focused ion beams image showing a transversal cut of the test specimen coated 

using the mixed electrolyte. 

 

Pt 

Cu 

Copper 
coating 

Copper coating 

Zamak 
microstructure 
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From the FIB analysis, an average thickness of 0.74 µm was established for the 

obtained coating. The transversal section also showed the occurrence of micropores 

in the depth of the coating and in the copper-Zamak interface. 

The development of electrolytes must take into account that baths must present 

a degree of flexibility in terms of composition for industrial applications. The tested 

mixed electrolytes seemed to produce suitable copper coatings, considering the range 

of concentration presented previously in Table 30. In a large-scale application, it is 

possible that the replacement of part of the volume of the original bath for the 

concentrate produced by electrodialysis would not achieve 50 % in volume, mainly 

because of a number of contaminants and variables that are difficult to be totally 

predicted in laboratory-scale. However, the obtained results showed that 

electrodialysis was a feasible technique to produce a treated water that may be reused 

as rinsing water and simultaneously produce a concentrate solution that may be used 

to replace drag-out losses from the bath. 
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4.4 General Discussion 

 

 The objective of this study was to propose the treatment of a model solution 

which simulated the rinsing waters from a cyanide-free copper plating bath by using 

electrodialysis. The study was subdivided into three stages. Firstly, the transport of 

Cu(II)-HEDP chelates through two different anion-exchange membranes was 

evaluated. The effect of the HEDP:Cu2+ ratio, the pH, the addition of chloride and the 

interaction between the mobile counterions and the strongly/weakly basic 

ion-exchange groups were studied. The affinity of both anion-exchange membranes 

for the organic acid was analyzed by means of electrodialysis experiments carried out 

in a three-compartment reactor. Tests performed in a laboratory-scale batch system 

allowed the estimative of the extraction, the current efficiency and the energy 

consumption for each specie in the evaluated solution. From the results obtained 

during first stage of the present study, it was verified that the interactions between 

copper chelates and the weakly basic groups interfered in the efficiency of the ion 

transport through the PC 200D membrane. Therefore, the strongly basic membrane, 

HDX 200, was selected to perform the concentration tests at the later stage. 

 The electrodialysis experiments, performed in the laboratory-scale continuous 

system, were able to produce treated solutions and a concentrate solution. The 

average composition of the treated solutions was 7 mg(Cu2+).L-1; 144 mg(HEDP).L-1; 

34 mg(K+).L-1; 4 mg(Cl-).L-1 and 9 mg(SO4
2-).L-1, with an average conductivity of 

170 µS.cm-1. The treated solutions could be reused in the rinsing tanks, promoting 

water reclamation. The composition of the concentrate solution was 229 mg(Cu2+).L-1; 

5749 mg(HEDP).L-1; 10926 mg(K+).L-1; 351 mg(Cl-).L-1 and 8656 mg(SO4
2-).L-1, with a 

conductivity of 15.84 mS.cm-1. The concentrated solution was used to prepare mixed 

electrolytes (plating solutions), simulating the replacement of the original bath due to 

drag-out losses. The plating solutions were prepared by adding the concentrate 

obtained by electrodialysis to the original bath in the following proportions (v/v): 0 %, 

10 %, 20 %, 30 %, 40 %, 50 % and 100 %. After the electrodialysis tests, the properties 

of the anion-exchange membrane were analyzed and two cleaning procedures were 

performed, which were able to restore partially the original features of the membrane. 

 Lastly, Zamak test specimens were coated in an electroplating cell using the 

mixed electrolytes prepared with the concentrate from electrodialysis. The copper 
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coatings were evaluated by means of visual tests, adherence tests and SEM/EDS 

microscopy. The mixed electrolytes containing up to 50 % of the concentrate were able 

to produce bright, uniform and adherent copper coatings. The SEM analyses indicated 

that the occurrence of micropores in the coatings may increase with the increase of 

the concentrate obtained by electrodialysis. In industrial scale, the addition of the 

concentrate solution may not achieve 50 % v/v, because of a number of contaminants 

and variables that depend on each manufacturing unity and are difficult to be totally 

predicted in laboratory-scale. Nevertheless, the results indicated that the concentrate 

solution may be used to replace drag-out losses from the bath. Thus, the application 

of electrodialysis may be a feasible alternative for recovering water and inputs from the 

evaluated solution, reducing the waste (and wastewater) generation and saving natural 

resources.  
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5 CONCLUSIONS 

 

From the evaluation of the transport of chelates through the anion-exchange 

membrane containing strongly basic groups, the main conclusions were: 

o A general relation at underlimiting regimes was observed: the increase in 

the equivalent charge increased the limiting current density and decreased 

the ohmic resistance. The exception is the solution containing only chelates 

which presented the highest ohmic drop at the beginning of the application 

of the electric current and the highest potential drop in polarized state. The 

beginning of concentration polarization was noted for the lowest current 

density among all the studied systems. 

o The chronopotentiometric curves did not show indications of precipitation of 

insoluble copper hydroxides. 

o Under specific conditions, it was possible to distinguish the transport of 

HHEDP3- and [Cu(HEDP)]2-.  

o When i ≈ ilim, solutions with higher equivalent charge activated the 

overlimiting mechanisms at lower potential values and decreased the 

plateau length. 

o The addition of counterions with smaller Stokes radius (chloride) caused an 

increase of the plateau length. Chloride anions distributed the electrical 

potential fields more evenly at the membrane-solution interface, reducing 

the hydrodynamic instabilities at overlimiting regimes. Other effects of 

chloride addition were the increase in the ilim and decrease of the resistance. 

o During overlimiting regimes, the increase of the equivalent charge produced 

a decrease in the resistance. Counterions presenting higher Stokes radius 

(HHEDP3-) favored the intensity of electroconvection.  

o The solution containing HEDP in pH 10 presented higher ilim, lower ohmic 

resistance, lower resistance at overlimiting regime and higher plateau length 

than the solution containing HEDP in pH 2. 
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From the evaluation of the transport of chelates through the anion-exchange 

membrane containing weakly and strongly basic groups: 

o The same relations during underlimiting regimes were noticed: the increase 

in the equivalent charge increased the limiting current density and 

decreased the ohmic resistance. The exception was the solution containing 

only chelates which presented the highest ohmic drop at the beginning of 

the application of the electric current and the highest potential drop in 

polarized state. 

o Two transition times were observed for all evaluated solutions during 

overlimiting regimes. The first transition time represents the interaction 

between the counterion and the quaternary amine and the second transition 

time was associated with the interaction between the counterion and the 

tertiary amine groups. 

o The transition from ohmic region to the diffusion-controlled region in the 

CVCs was smoothed and it was not possible to establish a relation between 

the equivalent charge and the plateau length. 

o On the other hand, a relation between the molecular weight and the type 

overlimiting mechanism could be suggested.  

o The chronopotentiogram for the solution containing only chelates presented 

a characteristic similar to the development of a bipolar layer at the 

membrane interface, which may be an unfavorable condition for the 

transport of chelates. 

Other conclusions obtained from the evaluation of ion transport across both 

anion-exchange membranes were: 

o The ohmic resistance was higher for the PC 200D membrane while the ilim 

was shown to be smaller due the presence of weakly basic groups. 

o Both evaluated membranes presented higher selectivity for inorganic 

counterions. Nevertheless, the selectivity of PC 200D membrane for 

non-chelated HEDP was higher than HDX 200 membrane. 
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o The separation factor was influenced by the counterions that were able to 

achieve the anode compartment. For the PC 200D membrane, the 

separation factor decreased with the increase of chloride. For the HDX 200 

membrane, the presence of chloride enhanced the transfer of HEDP. 

o The batch electrodialysis tests were able to achieve a demineralization rate 

of 60 % after 281h for the PC 200D membrane and 69.4 % after 160 h for 

the HDX 200 membrane. 

o The maximum extraction of anions achieved for PC 200D membrane was: 

61 % (SO4
2-), 32 % (HEDP) and 18 % (copper chelates) after 342 h. For 

HDX 200 membrane, the obtained extraction rates were: 71 % (Cl-), 77 % 

(SO4
2-), 52 % (HEDP) and 38 % (chelates) after 180 h.  

o The concentration rates achieved for the PC 200D membrane were 1.1 for 

copper and 3.2 for HEDP. For the HDX 200 membrane, the concentration 

rates for copper and HEDP were 3.2 and 5.9, respectively. 

o The calculated current efficiency for HEDP and copper chelates was higher 

for HDX 200 membrane. 

o The overall energy consumption was similar for both membranes and was 

established between 30 kW.h and 50 kW.h. 

From the electrodialysis tests performed to obtain a concentrate solution, the 

main conclusions were: 

o Continuous electrodialysis tests could produce treated solutions with the 

following average composition: 7 mg(Cu2+).L-1; 144 mg(HEDP).L-1; 

34 mg(K+).L-1; 4 mg(Cl-).L-1 and 9 mg(SO4
2-).L-1, with an average 

conductivity of 170 µS.cm-1, a demineralization rate of 90.1 % and percent 

extractions near 90 % in 130 h and 5 operating cycles. The composition of 

the obtained concentrate was 229 mg(Cu2+).L-1; 5749 mg(HEDP).L-1; 

10926 mg(K+).L-1; 351 mg(Cl-).L-1 and 8656 mg(SO4
2-).L-1, with a 

conductivity of 15.84 mS.cm-1. 
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o The cleaning procedures could restore 54 % of the original limiting current 

density and 25 % of the ohmic resistance. The chronopotentiometric curves 

and the FTIR-ATR analysis suggested the occurrence of bonds with HEDP. 

o During the electrodialysis test, there was no degradation of HEDP into 

orthophosphate higher than 2 %. 

Lastly, the conclusions from the electrodeposition tests were: 

o The weight of deposited copper remained between 0.19 mg.cm-2 and 

1.24 mg.cm-2. 

o The visual tests showed that bright and uniform coatings could be obtained 

using mixed electrolytes containing up to 50 % (v/v) of the concentrate from 

electrodialysis. 

o The adherence tests indicated that all the obtained coatings might be 

classified as 5B and 4B according to the ASTM standard and as X0, Y0 and 

Y1 according to the Brazilian NBR standard. 

o The average thickness of the copper coating obtained for the original bath 

was 3.4 µm. The coating presented evenly distributed pores with a 

well-defined round shape and an average diameter of 0.5 µm. The coating 

obtained with the mixed electrolyte containing 50 % (v/v) of the concentrate 

from electrodialysis presented a higher number of pores in different sizes, 

randomly distributed with an average diameter of 1.9 µm. The average 

thickness of the coating was 0.74 µm. 

 

Therefore, an electrodialysis stack assembled with strongly basic 

anion-exchange membranes in a “Cathode-A-C-A-C-Anode” configuration and three 

reservoirs with similar volumetric capacities could be used to produce treated solutions 

and a concentrate that was added to the copper bath to compensate drag-out losses. 

The concentrate could be reused up to 50% v/v without affecting the quality of the 

coatings. The application of electrodialysis may be a feasible alternative for recovering 

water and inputs from the evaluated solution, reducing the waste (and wastewater) 

generation and saving natural resources.  
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APPENDIX 1 

 

 
(a)                                            (b) 

Figure 93. Visual aspect of the test specimens (a) after copper plating and (b) after the 
adherence test. Plating solution: 100 % HEDP-based bath. 

 

 

 

 
(a)                                           (b) 

Figure 94. Visual aspect of the test specimens (a) after copper plating and (b) after the 
adherence test. Plating solution: 90 % HEDP-based bath + 10 % concentrate solution. 
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(a)                                           (b) 

Figure 95. Visual aspect of the test specimens (a) after copper plating and (b) after the 
adherence test. Plating solution: 80 % HEDP-based bath + 20 % concentrate solution. 

 

 

 

 

 

 
(a)                                           (b) 

Figure 96. Visual aspect of the test specimens (a) after copper plating and (b) after the 
adherence test. Plating solution: 70 % HEDP-based bath + 30 % concentrate solution. 
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(a)                                           (b) 

Figure 97. Visual aspect of the test specimens (a) after copper plating and (b) after the 
adherence test. Plating solution: 60 % HEDP-based bath + 40 % concentrate solution. 

 

 

 

 
(a)                                           (b) 

Figure 98. Visual aspect of the test specimens (a) after copper plating and (b) after the 
adherence test. Plating solution: 50 % HEDP-based bath + 50 % concentrate solution. 
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(a)                                           (b) 

Figure 99. Visual aspect of the test specimens (a) after copper plating and (b) after the 
adherence test. Plating solution: 100 % concentrate solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


