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Abstract

The neutron transport equation describes the neutron population and the nu-
clear reactions inside a nuclear reactor core. First, this equation is introduced
and its assumptions are stated. Then, the stationary neutron diffusion equation
which is the most useful approximation of this equation, is studied. This approxi-
mation leads to a differential eigenvalue problem. To solve the neutron diffusion
equation, a h≠p finite element method is investigated. To improve the efficiency
of the method a Restricted Additive Schwarz preconditioner is implemented.

Once the solution for the steady state neutron distribution is obtained, it is used
as initial condition for the time integration of the neutron diffusion equation. To
test the behaviour of the method, rod ejection accidents are numerically simu-
lated. However, a non-physical behaviour appears when a cell is partially rodded:
this is, the rod cusping effect, which is solved by using a moving mesh scheme.
In other words, the mesh follows the movement of the control rod. Numerical
results show that the rod cusping effect is corrected with this scheme.

After that, the simplified spherical harmonics approximation, SPN, is developed
to solve the steady state problem. This approximation extends the spherical har-
monics approximation, PN, in one dimensional geometries to multidimensional
geometries with strong assumptions. It improves the diffusion theory results but
does not converge as N tends to infinity. The advantages and limitations of this
approximation are tested on several one-, two- and three-dimensional reactors.

Finally, the spatial homogenization in the context of the finite elementmethod is
studied. Homogenization consists in replacing heterogeneous subdomains by ho-
mogeneous ones, in such a way that the homogenized problem provides fast and
accurate average results. Discontinuous solutions were proposed in the General-
ized Equivalence Theory. Here, a discontinuous Galerkin finite element method
where the jump condition for the neutron flux is imposed in a weak sense us-
ing interior penalty terms is introduced. Also, the use of discontinuity factors
for the correction of the homogenization error when using the SPN equations is
investigated.
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Resumen

La ecuación del transporte neutrónico describe la población de neutrones y las
reacciones nucleares dentro de un reactor nuclear. Primero, introducimos esta
ecuación y las aproximaciones de la misma. Entonces, estudiamos la ecuación de
la difusión neutrónica, la aproximación al transporte más utilizada. Para el caso
estacionario, esta aproximación da lugar a un problema diferencial de valores
propios. Para resolver la ecuación de la difusión se ha desarrollado un método de
elementos finitos h≠p. Paramejorar la eficiencia delmétodo se ha implementado
un precondicionador del tipo Restricted Additive Schwarz.

Una vez hemos obtenido la distribución neutrónica en estado estacionario, us-
amos esta solución como condición inicial para integrar la ecuación de la difusión.
Para probar el comportamiento del método propuesto, hemos simulado numéri-
camente ejecciones accidentales de barras de control. Sin embargo, cuando una
celda tiene parcialmente introducida una barra de control aparece un compor-
tamiento no físico, el efecto rod cusping. Para mitigar este efecto proponemos
un esquema de malla móvil, es decir, la malla sigue el movimiento de las barras
de control. Los resultados muestran que el efecto rod cusping disminuye con el
esquema expuesto.

Después, desarrollamos la aproximación de armónicos esféricos simplificados,
SPN, para simular el comportamiento del núcleo del reactor el problema en estado
estacionario. Esta aproximación extiende los armónicos esféricos en geometrías
unidimensionales, PN, a geometrías multidimensionales usando fuertes aproxi-
maciones. Las ecuaciones SPN mejoran la teoría de la difusión pero no convergen
cuando N æ Œ. Probamos las ventajas y limitaciones de esta aproximación en
diversos reactores.

Finalmente, estudiamos la homogenización espacial en el contexto de los elemen-
tos finitos. La homogenización consiste en cambiar subdominios heterogéneos
por homogéneos, de forma que el problema homogeneizado da eficientemente
resultados promedios. La Teoría Generalizada de la Equivalencia para la homog-
enización propone factores de discontinuidad. Así pues, se ha introducido un
método de elementos finitos de Galerkin discontinuo donde la condición de dis-
continuidad se impone de forma débil usando términos de penalización. También,
hemos investigado el uso de factores de discontinuidad para la corrección de er-
rores de homogenización cuando se usan la ecuaciones SPN.
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Resum

L’equació del transport neutrònic descriu la població de neutrons i les reaccions
nuclears dins del nucli d’un reactor nuclear. Primer, introduïm aquesta equació i
les seues principals aproximacions. Aleshores, estudiem l’equació de la difusió
neutrònica, l’aproximació al transport neutrònic més utilitzada. Aquesta equació
genera un problema diferencial de valors propis. Per a resoldre l’equació de la di-
fusió s’ha desenvolupat unmètode d’elements finits h≠p. Permillorar l’eficiencia
del mètode s’ha implementat un precondicionador del tipus Restricted Additive
Schwarz.

Una vegada hem obtingut la distribució neutrònica en estat estacionari, usem
aquesta solució coma condició inicial per integrar l’equació de la difusió depenent
del temps. Amb la voluntat de provar el comportament del mètode proposat, hem
simulat numèricament expusions accidentals de barres de control. Però, quan un
node té parcialment introduïda una barra de control apareix un comportament
no físic, l’efecte rod cusping. Per mitigar aquest efecte proposem un esquema de
malla mòbil, és a dir, la malla segueix el moviment de les barres de control. Els
resultats numèrics mostren que l’efecte rod cusping disminueix amb l’esquema
exposat.

Després, desenvolupem l’aproximació d’harmònics esfèrics simplificats, SPN, per
a resoldre el problema en estat estacionari. Aquesta equació estén l’aproximació
d’harmònics esfèrics en geometries unidimensionals, PN, a geometries multi-
dimensionals usant fortes aproximacions. Les equacions SPN milloren la teoria
de la difusió però no convergeixen quan N æ Œ. Provem els avantatges i limita-
cions d’aquesta aproximació en diversos reactors.

Finalment, estudiem l’homogeneïtzació espacial en el context dels elements
finits. L’homogeneïtzació consisteix en canviar subdominis heterogenis per ho-
mogenis, de forma que el problema homogeneïtzat dóna eficientment resultats
mitjos. La Teoria Generalitzada de l’Equivalència per a l’homogeneïtzació pro-
posa factors de discontinuïtat. Així, s’ha introduït unmètode d’elements finits de
Galerkin discontinu on la condició de discontinuïtat per al fluxneutrònic s’imposa
de forma dèbil usant termes de penalització. També, hem investigat l’ús de fac-
tors de discontinuïtat per a la correcció dels errors d’homogeneïtzació quan usen
les equacions SPN.
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1
Introduction

1.1 Motivation and Objectives

In thesis, it is proposed the development of a high order finite elementmethod to
solve the neutron transport equation. Different approximation to this equation
are developed as the diffusion equation and the simplified spherical harmonics.
A fast and accurate solution of these equations is basic for the design and safe
operation of nuclear reactor and other nuclear system.

The thesis objectives can be summarized as follows.

1. To implement a finite element code with h ≠ p adaptivity to solve the diffu-
sion equation in steady state. The code must be able to deal with multidi-
mensional geometries of all kind.

2. To optimize the resolution of the eigenvalue through the study of different
refinement strategies and the application of different eigenvalue solvers.

3. To solve the time dependent diffusion equation.

4. To develop approximations of the neutron transport equation with a higher
angular discretization as the simplified spherical harmonics equation.

5. To study pin-wise and assembly-wise spatial homogenization techniques
in the context of the finite element method.

1



Chapter 1. Introduction

1.2 Thesis Outline

The thesis dissertation is organized in 7 chapters and 2 appendices. Next chapter
is dedicated to introduce the neutron transport equation and the basic neutron
reactor physics concepts andmagnitudes. Then, the stationary neutron diffusion
equation is studied in Chapter 3, the most used approximation of this equation.
To solve the neutron diffusion equation a h ≠ p≠ finite element method is in-
vestigated. Also, to improve the efficiency of the method a Restricted Additive
Schwarz preconditioner is developed in Section 3.8.

In Chapter 4 the solution for the steady state neutron distribution is used as ini-
tial condition for the time integration of the neutron diffusion equation. To test
the behaviour of the time integration, rod ejection accidents are numerically sim-
ulated. However, a non-physical behaviour appears when a cell is partially rodded,
the rod cusping effect, which is solved using a moving mesh scheme. Numerical
results show that the rod cusping effect is corrected with this scheme. Chapter 5
develops the simplified spherical harmonics approximation, SPN, to solve the
steady state problem. This approximation extends the spherical harmonics ap-
proximation, PN, in one dimensional geometries to multidimensional geometries
with strong assumptions. The advantages and limitations of this approximation
are tested on several one-, two- and three-dimensional reactors.

Chapter 6 is devoted to the spatial homogenization in the context of the finite ele-
ment method. Homogenization consists in replacing heterogeneous subdomains
by homogeneous ones, in such a way that the homogenized problem provides
fast and accurate average results. Discontinuous solutions were proposed in the
Generalized Equivalence Theory. Here, a discontinuous Galerkin finite element
method where the jump condition for the neutron flux is imposed in a weak sense
using interior penalty terms is introduced. Also, the use of discontinuity factors
for the correction of the homogenization error when using the SPN equations
is investigated. Finally, the main conclusions and results of the dissertation are
summarized in Chapter 7.

Appendix A develops the analytic solution of a bidimensional homogeneous reac-
tor in the diffusion approximation with two energy groups. Finally, Appendix B
is dedicated to compile all the information related to the numerical benchmarks
used along the dissertation.
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2
The Neutron Transport Equation

The nuclear physics inside a nuclear reactor core is governed by the transport of
neutrons and the interactions between neutrons and nucleus. Therefore, the de-
sign, analysis and control of a nuclear reactor requires solving the neutron trans-
port equation in an approximated manner. The solution of the neutron transport
equation determines the neutron distribution in the reactor and hence, it permits
to validate and verify the safety parameters.

The root of transport theory goes back more than a century to the Boltzmann
equation, first formulated for the study of the kinetic theory of gases. Until the
1940s with the development of nuclear chain reactors the interest arose in solving
neutron particle transport problems in the broad range of geometrical configura-
tions found in nuclear reactors and radiation shielding applications.

The behaviour of a nuclear reactor is modelled by means of the neutron distribu-
tion in the reactor core as a function depending on the neutron position,direction,
energy and time. Within the transport theory the neutrons are considered classi-
cal point particles in the sense that they are zero dimensional points determined
by means of their position and its velocity. In other words, particles are consid-
ered points that travel in straight lines between collisions and neutron-neutron
interactions are neglected.

There are mainly two types of calculations associated with the neutron transport
equation. First, static calculations to determine the Lambda modes associated
with a given configuration of the reactor. This is a generalized eigenvalue prob-
lem associated with a differential operator with given boundary conditions. The
determination of the fundamental mode allows us to describe the behaviour of
the reactor in steady state. The second type of calculations are those made for

3



Chapter 2. The Neutron Transport Equation

the determination of a transient from a perturbation made on a stationary con-
figuration of the reactor, using for that the time dependent neutron transport
equation.

This chapter is organized as follows. We start with the cross sections definition
in Section 2.1. Then, the elemental magnitudes in reactor physics are introduced
in Section 2.2. After that, we present the time dependent transport equations in
its integro-differential form in Section 2.3. Finally, Section 2.4 derives the steady
state neutron transport equation and the criticality problems.

2.1 Cross Section Definition

Before the transport equation can be stated, the probability distribution laws
governing the neutrons and nuclei iteration must be reviewed. The probability of
a nuclear reaction taking place is expressed in terms of microscopic cross sections
as

‡ ©
R

nvNn
(2.1)

which denotes the probable reaction rateR, forn neutrons travelling with speed v

in a material withNn nucleus per unit volume. The units of ‡ are area that refers
to the concept of cross-sectional area of interaction presented to the neutron by
the nucleus for a particular reaction process. However, this cross-sectional area
can bemuch greater than the geometric cross section of the nucleus. Microscopic
cross section are usually measured in barns for historical reasons, 1 barn = 10

≠24

cm2 (Stacey, 2007).

The macroscopic cross section is defined as

� © Nd‡ =
flN0
A

‡ , (2.2)

where Nd is the density number, N0 = 6.022 ◊ 10
23 is the Avogadro’s number,

fl is the material density and A is the atomic number. The macroscopic cross
section represents the probability of iteration of a neutron per unit path length,
and thus, it has units of 1/cm. From now on, all cross section mentioned in this
thesis are macroscopic avoiding the details of the interaction process inside the
core. Moreover, the nuclear reactions are considered instantaneous because their
real duration is less than 10

≠6s (Demazière, 2014). The only exception of any
practical significance is in the fission reaction in which a small fraction of the
fission products decay by neutron emission after some delay.
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2.1 Cross Section Definition

The fission cross section, �f (r̨, E
Õ
, t), is a measure of the probability that a neu-

tron and a nucleus interact to form a compound nucleus which then splits into
two lighter nuclei, called fission fragments. Such splitting is accompanied by the
release of new neutrons and “ rays. It is assumed that the neutrons are isotropi-
cally emitted. The probability that a compound nucleus will be formed is greatly
enhanced if the relative energy of the neutron and the original nucleus, plus the
reduction in the nuclear binding energy, corresponds to the difference in energy
of the ground state and an excited state of the compound nucleus, so that the
energetics are just right for formation of a compound nucleus in an excited state
(Stacey, 2007).

The neutrons shortly emitted after the scission (≥ 10
≠7) are called prompt neu-

trons. The fission fragments are usually neutron-rich and in excited states and
thus decay into less excited atoms via —

≠ decay or “ emission. Such neutrons
emitted by —

≠ decay of the fission fragments are called delayed neutrons and
the corresponding fission fragments are named neutron precursors. Many pre-
cursors of delayed neutrons exist, each having its own neutron decay constant,
⁄p. Usually, similar precursors, in terms of their decay constant, are grouped into
several groups described by their average properties. Six groups are typically used.
The fraction of delayed neutron, —p, represents the number of delayed neutron
belonging to group p divided by the total number of neutrons emitted. The total
fraction of delayed neutrons, —, is given by

— =

Npÿ

p=1
—p . (2.3)

This delayed fraction is small, ranging from 0.0065 for U-235 to about 0.0021 for
Pu-239. ‰ indicates the spectrum of the neutrons produced by fission such that
‰dE indicates the fraction of neutrons emitted with and energy between E and
E + dE. This spectrum fulfils,

⁄ Œ

0
dE ‰(E) = 1 (2.4)

Finally, ‹(E) represents the average number of neutrons emitted per fission.

The absorption cross section, �a(r̨, E, t), is the probability that a neutron gets
captured by a nucleus. The most relevant of this nuclear reactions are the radia-
tive capture where only a gamma ray is emitted. Also, the absorption of a neutron
that begins a fission reactor is taken into account in this cross section.

The scattering reaction occurs when a neutron collides on a nucleus and changes
its energy and/ordirection after the collision. For scattering cross section,�s(r̨, �̨·

5



Chapter 2. The Neutron Transport Equation

�̨
Õ
, E æ E

Õ
, t), both elastic and inelastic cross sections exist. Elastic scattering

interactions are governed by the laws of conservation of momentum and kinetic
energy. Inelastic scattering results in a loss of kinetic energy of the neutron due
to an increase of the energy state of the nucleus.

Based on the definitions given above, the total cross section is introduced as

�t(r̨, E, t) = �a(r̨, E, t) +

⁄

(4fi)

d�̨
Õ

Œ⁄

0

dE
Õ
�s(r̨, �̨ · �̨

Õ
, E æ E

Õ
, t) , (2.5)

where �t is the probability of a neutron to have an iteration of any kind with a
nucleus if it travels one centimetre.

The energy dependence of cross section is very strong. As reasonably low energies
of incident neutrons, cross sections are frequently quite smooth in energy. How-
ever as the neutron energy increases, the cross section frequently are dominated
by resonance peaks that results from unstable states of the compound nucleus
formed by the target nuclide and the neutron. The resonances may be scattering ,
capture and fission depending on weather the state decays by neutron or gamma
emission or results in a fission (Lewis and Miller, 1984).

The complex behaviour of neutron cross sections cannot be calculated from first
principles using properties of the nucleus (Weinberg, Wigner, and Wigner, 1958).
Hence, data must be determined empirically as a function of energy for each nu-
clide and for each reaction. The determination of the neutron cross sections has
required years of effort in measuring, calculating and evaluating cross sections
for hundreds of isotopes. These efforts are collected in evaluated nuclear data files
(ENDF) containing sections of all reactions of importance, as well as energy and
angular distributions of the resulting secondary particles. Nowadays, the most
comprehensive compilation of experimental results is EXFOR computer library
(McLane, 2000) that contains themajor evaluated nuclear data files: United States
Evaluated Nuclear Data File (END/B-VII.1), Joint Evaluated File of NEA Countries
(JEFF-3.2), Japanese Evaluated Nuclear Data Library (JENDL-4.0) and Russian
Evaluated Nuclear Data File (BROND-3.1), among others.

2.2 Elementary magnitudes in reactor physics

The definition of the distribution of neutrons requires seven independent vari-
ables: three spatial coordinates, r̨, two angles specifying the particle direction of
travel, �̨, the particle energy, E, or the particle velocity, v, and time t.
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2.2 Elementary magnitudes in reactor physics

The neutron density probability distribution, N(r̨, E, �̨, t), is defined such that
N(r̨, E, �̨, t) dV d�̨ dE is the expected number of neutrons in a differential vol-
ume element dV about r̨ travelling in the cone of directions d�̨ around �̨ with
energies betweenE andE+dE at time t. Formost purposes, it ismore economical
to formulate the transport problems in terms of the angular flux,

Â(r̨, E, �̨, t) © ‚N(r̨, E, �̨, t) . (2.6)

The angular flux can be defined as the total path travelled during dt by all particles
in the differential phase space volume dV d�̨ dE.

Usually, the direction of the particles is not important in the calculation of reac-
tion rates. Then, the scalar flux is defined as the integral of Â over all directions,

„(r̨, E, t) =

⁄

(4fi)

d�̨ Â(r̨, �̨, E, t) . (2.7)

The scalar neutron flux can be interpreted as the number of neutrons per unit
area, energy and time. However, it does not represent a flow of neutrons through
a surface, it corresponds to the total length travelled by all neutrons per unit
time and volume. As the macroscopic cross section, �–(r̨, E) is defined as the
probability per unit path length that a particle of energy E will cause a reaction
of type –. The total number of reactions per unit time in dV dE d�̨ is

R = �–(r̨, E, t)„(r̨, E, �̨, t) . (2.8)

The net current vector is defined as

J̨(r̨, E, t) ©

⁄

(4fi)

d�̨ �̨ Â(r̨, �̨, E, t) . (2.9)

For a given position, energy and time the product

Jn(r̨, E, t) © n̨ · J̨(r̨, �̨, E, t) =

⁄

(4fi)

d�̨ (n̨ · �̨)Â(r̨, �̨, E, t) (2.10)

gives the net number of particles crossing per unit area of surface per unit time,
per unit energy and in the positive direction of the normal vector. In some situa-
tions it is desirable to divide the current into partial currents of neutrons crossing
the surface in the positive and negative directions,

Jn(r̨, E, t) = J
+
n (r̨, E, t) ≠ J

≠
n (r̨, E, t) , (2.11)
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where

J
+
n =

⁄

�̨·n̨>0
d�̨ n̨ · �̨ Â , (2.12)

J
≠
n =

⁄

�̨·n̨<0
d�̨ n̨ · �̨ Â , (2.13)

2.3 Neutron transport equation

Oncewe have described themainmagnitudes in the neutron transport physics we
can study the neutron transport equation. This equation is stated as the balance
of the neutron distribution in a control volume. In this way, the increment of
the neutron distribution is equal to the sum of emission densities in the control
volume (Lewis and Miller, 1984),

1

v

ˆÂ

ˆt
= ≠ �̨ · Ǫ̀ Â(r̨, E, �̨, t) ≠ �t(r̨, E, t)Â(r̨, E, �̨, t) + qex(r̨, E, �̨, t)

+

Œ⁄

0

dE
Õ

⁄

(4fi)

d�̨
Õ
�s(r̨, E

Õ
æ E, �̨Õ · �̨, t) Â(r̨, E

Õ
, �̨Õ, t)

+ (1 ≠ —)‰(E)

⁄

(4fi)

d�̨
Õ

Œ⁄

0

dE
Õ
‹�f (r̨, E

Õ
, t) Â(r̨, E

Õ
, �̨

Õ
, t)

+

Npÿ

p=1
⁄p

‰(E)

4fi
Cp(r̨, t).

(2.14)

The left hand side, 1
v

ˆÂ
ˆt , represents the rate of increment in the neutron distri-

bution. The first term on the right hand of the equation, �̨ · Ǫ̀ Â(r̨, E, �̨, t), takes
into account the neutron advection flowing out the phase control volume, where
�̨ is the unit vector denoting the direction of the going neutrons. The second
term, �t(r̨, E, t) Â(r̨, E, �̨, t), describes the rate at which neutrons are absorbed
or scattered to other energies or directions. qex(r̨, E, �̨, t) denotes the emission
density of neutrons of a possible external source. The fourth term describes the
neutrons introduced into the volume element by scattering from other energies
and directions. The fifth term indicates the number of prompt neutrons intro-
duced into the volume element by fission processes that assumes isotropic fission
distribution. The quantity of delayed neutrons appearing in the volume from the
precursors decay is taken into account by the last term.
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2.3 Neutron transport equation

The concentration of delayed neutron precursors in each precursors group p sat-
isfies the following balance equation

ˆCp

ˆt
(r̨, t) = —p

Œ⁄

0

dE

⁄

(4fi)

d�̨ ‹�f (r̨, E, t) Â(r̨, E, �̨, t) ≠ ⁄pCp(r̨, t), (2.15)

where ‹ is the average number of neutrons arising from fission, and p = 1, . . . , Np.

The transport equation is an integro-differential equation in both the steady-
state and time dependent forms. The time dependent solution is unique and
non-negative provided all cross sections, sources and non negative initial and
boundary condition (Lewis and Miller, 1984).

Now, the energy variable is discretized intoG intervals as show in Figure 2.1 that
states the multigroup formalism. In this Figure, EG = 0 and E0 is a sufficiently
large energy. The neutrons in group g are taken to be just those with energies
between Eg and Eg≠1 where Eg < Eg≠1. Our objective is to obtain the transport
equation in terms of the group angular flux defined as,

Âg(r̨, �̨) =

Eg≠1⁄

Eg

dE Âg(r̨, �̨, E) . (2.16)

We suppose that within each energy group the angular flux can be approximated
as the product of a known normalization function of energy f(E) and the group
flux

Â(r̨, �̨, E) ¥ f(E)Âg(r̨, �̨) , (2.17)

where the energy-dependent spectral weighting function f(E) is normalized as
Eg≠1⁄

Eg

dEf(E) = 1 . (2.18)

It has to be emphasized that the quantities that need to be preserved when trans-
forming the neutron transport equation with the multi-group formalism are the

Figure 2.1: Discretization of the energy into G energy groups.
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Chapter 2. The Neutron Transport Equation

reaction rates and neutron currents. In a similar way, the spatial homogenization
studied in Chapter 6 aims to preserve the same quantities. If equation (2.14) is
integrated for each energy group, the multigroup neutron transport equation is
written as

1

vg

ˆÂg

ˆt
= ≠ �̨ · Ǫ̀ Âg(r̨, �̨, t) ≠ �tg(r̨, t)Âg(r̨, �̨, t) + qex, g

+

Gÿ

gÕ=1

⁄

(4fi)

�s, gÕæg(r̨, �̨Õ · �̨, t) Âg(r̨, �̨Õ, t) d�̨
Õ

+

Gÿ

gÕ=1
(1 ≠ —)

‰g

4fi
‹g�fgÕ(r̨, t)„gÕ(r̨, t)

+

Npÿ

p=1
⁄p

‰g

4fi
Cp(r̨, t)

(2.19)

and the concentration on neutron precursors

ˆCp

ˆt
(r̨, t) = —p

Gÿ

gÕ=1

⁄

(4fi)

d�̨ ‹�fgÕ(r̨, t) ÂgÕ(r̨, �̨, t) ≠ ⁄pCp(r̨, t) . (2.20)

10



2.3 Neutron transport equation

The energy integrated quantities are defined as

„g(r̨, t) =

Eg≠1⁄

Eg

„(r̨, E, t) dE , (2.21)

1

vg(E)
=

Eg≠1⁄

Eg

1

v(E)
f(E) dE , (2.22)

�tg(r̨, �̨, t) =

Eg≠1⁄

Eg

�t(r̨, E, t)f(E) dE , (2.23)

�s, gÕæg(r̨, �̨
Õ
· �̨, t) =

Eg≠1⁄

Eg

dE

EgÕ≠1⁄

EÕ
g

dE
Õ
�s(r̨, E

Õ
æ E, �̨

Õ
· �̨, t)f(E) , (2.24)

‹g�f, g(r̨, t) =

Eg≠1⁄

Eg

‹�f (r̨, E, t)f(E) dE , (2.25)

‰g =

Eg≠1⁄

Eg

‰(E) dE , (2.26)

qex, g =

Eg≠1⁄

Eg

qexf(E) dE . (2.27)

Before multigroup transport calculations can be carried out, values of the multi-
group cross sections �a g, ‹�f g and �s ggÕ must be available. As indicated by the
definitions in equations (2.22) through (2.25). However, the evaluation of group
cross sections requires that both the detailed energy dependence of the cross sec-
tion and the spectral weighting function f(E) be known. These date are given in
the evaluated data files. In this way,f(E) is guessed depending on the characteris-
tics of the system under analysis and the computationalmodels that are available
for the description of that system. Usually a guess of the neutron flux spectrum
is chosen as the normalization function where three energetic zones are distin-
guished, fission energies, slowing-down energies and decimalisation energies;
(Demazière, 2014). The exact energy dependent spectral weighting function used
is outside the scope of this thesis.
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Chapter 2. The Neutron Transport Equation

2.3.1 Boundary Conditions

To solve the Partial Differential Equation (PDE) given by the transport equation
(2.14) or equation (2.19) in the domain V surrounded by the surface �, boundary
conditions are needed to be known a priori. Specifically, the flux distribution
entering V across �̨ or at least a relation between the incoming and outgoing
fluxes must be known. The most usual boundary condition are summarized as:

• Vacuum boundary or free surface boundary conditions are expressed

Â(r̨B, �̨in) = 0, for �̨in · n̨ < 0, r̨B œ � . (2.28)

• Albedo boundary conditions: The incoming flux on the boundary is equal
to a known isotropic albedo coefficient – times the outgoing flux in the
direction corresponding to a spectral reflection.

Â(r̨B, �̨in) = – Â(r̨B, �̨out), for �̨in · n̨ < 0, rB œ � , (2.29)

where, if the outgoing direction �̨out is represented as a sum between its
component normal to the surface at the boundary point and a tangential
component by the incidence angle �̨out, ‹, i.e.

�̨out = |�̨out · n̨| n̨ + �̨out, ‹ , (2.30)

the ingoing direction, �̨in, is then given as

�̨in = ≠|�̨out · n̨|n̨ + �̨out, ‹ . (2.31)

• Specular reflective boundary conditions can be defined as

Â(r̨B, �̨in) = Â(r̨B, �̨out) for �̨in · n̨ < 0, rB œ � . (2.32)

This boundary condition is an special case of albedo boundary conditions
with – = 1, as all outgoing particles are reflected back like a perfect mirror.

• White boundary conditions: All neutrons leaving the system through the
boundary are isotropically emitted back into the domain.

Â(r̨B, �̨in) =

s

�̨·n̨>0
d�̨ |�̨ · n̨| Â(r̨B, �̨)

s

�̨·n̨>0
d�̨ |�̨ · n̨|

=
J

+
(r̨B)

fi
,

for �̨in · n̨ < 0, rB œ � .

(2.33)
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2.4 Steady State Neutron Transport Equation

2.4 Steady State Neutron Transport Equation

A reactor is said to be critical if there is a self-sustaining time-independent chain
reaction in the absence of external sources of neutrons, qex = 0. If such an equi-
librium cannot be established, the asymptotic distribution of neutrons, called the
fundamental mode, will not be in steady state and will either increase or decrease
exponentially. The system is then supercritical or subcritical, respectively.

The keff form of the criticality problem or the lambda modes problem is writ-
ten dividing the fission source of neutrons by ⁄. Hence, the multigroup neutron
transport equation in steady state can be written

�̨ · Ǫ̀ Âg(r̨, �̨) + �tg(r̨) Âg(r̨, �̨)

=

Gÿ

gÕ=1

⁄

(4fi)

d�̨
Õ
�s, gÕæg(r̨, �̨Õ · �̨) ÂgÕ(r̨, �̨Õ)

+
1

⁄

Gÿ

gÕ=1
‰g

⁄

(4fi)

d�̨
Õ
‹g�fgÕ(r̨) ÂgÕ(r̨, �̨

Õ
) ,

g = 1, . . . , G.

(2.34)

Equation (2.34) is a differential eigenvalue problem, where ⁄ is the eigenvalue
and (Â1, Â2, . . . , ÂG) is the eigenvector. The fundamental eigenvalue, the one
with the largest magnitude or keff, shows the criticality of the reactor core and its
corresponding eigenfunction describes the steady state neutron distribution in
the core. Next sub-critical eigenvalues and their corresponding eigenfunctions
are interesting because they have been successfully used to develop modal meth-
ods to integrate the time dependent neutron diffusion equation in Miró et al.,
(2002). Also the sub-critical modes have been used to classify BWR instabilities
by March-Leuba and Rey, (1993) and Ginestar et al., (2011).

Clearly the system is critical if this largest eigenvalue is keff = 1. A value keff < 1

implies that the system is subcritical because not enough neutrons are produced
by fission. In the other way, keff > 1 implies that the system is supercritical. Also
keff can be interpreted as the asymptotic ratio of the number of neutrons in one
generation and the number in the next (Lewis and Miller, 1984). Despite the
lambda modes equation is the most used equation in order to solver the critical
state of a reactor, some other eigenvalue problems exist that are useful for similar
applications (Ronen, Shvarts, andWagschal, 1976; Velarde,Ahnert, andAragonés,
1978; Carreño et al., 2017).
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Chapter 2. The Neutron Transport Equation

2.4.1 Neutron Diffusion Equation

The main approximation of the neutron transport equation is the neutron diffu-
sion equation that states that the neutron current is proportional to the gradient
of the scalar neutron flux by means of a diffusion coefficient. This approximation
is analogous to the Fick’s law in species diffusion and to the Fourier law in heat
transfer.

J̨g(r̨) = DgǪ̀„g(r̨), (2.35)

where J̨g is the current vector for the group g.

Integrating equation (2.34) over all directions and applying approximation (2.35),
the neutron diffusion equation is written as

≠ Ǫ̀ ·

1
DgǪ̀ „g(r̨)

2
+ �tg(r̨) „g(r̨)

=

Gÿ

gÕ=1
gÕ ”=g

�s, gÕæg(r̨) „
Õ
g(r̨) +

1

⁄

Gÿ

gÕ=1
‰g‹g�fgÕ(r̨) „gÕ(r̨) ,

g = 1, . . . , G.

(2.36)

Diffusion theory provides a valid description of the neutron flux when their three
main assumptions made in its derivation are satisfied. The first condition is that
absorption is much less likely than scattering. This condition is satisfied for most
of the moderating and structural materials found in a nuclear reactor but not for
the fuel and control elements. The second condition is the linear spatial variation
of the neutron distribution. This condition is satisfied a few mean free paths
away from the boundary of large, compared to the mean free path, homogeneous
media. The third condition is an isotropic scattering distribution. It is satisfied
for scattering from heavy nuclei (Stacey, 2007).

Then, as a modern nuclear reactor consists of thousands of small elements, many
of them highly absorbing diffusion theory is not strictly valid. However diffusion
theory is widely used in nuclear reactor analysis and makes accurate predictions.
The key is that a more accurate transport approximations are used to make useful
diffusion theory where it would be expected to fail. The many small elements
in a large regions are replaced by homogenized mixture with effective averaged
cross sections and diffusion coefficients, thus creating a computational model
for which diffusion theory is valid.
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3
h-p-Finite Element Method for
the Static Neutron Diffusion

Equation

3.1 Introduction

The neutron diffusion equation is an approximation of the neutron transport
equation that states that the neutron current is proportional to the gradient of
the neutron flux by means of a diffusion coefficient. For a given configuration
of a nuclear reactor core, it is always possible to force its criticality dividing the
neutron production rate by a positive number, ⁄, obtaining a neutron balance
equation. This equation is known as the Lambda modes problem (Henry, 1975;
Ginestar, 1995),

L� =
1

⁄
M� , (3.1)

whereL is the neutron loss differential operator andM is the neutron production
operator.

Different methods have been proposed to spatially solve the neutron diffusion
equation. Core-level codes traditionally use nodalmethods. In thesemethods, the
diffusion equation is integrated over large homogenized regions known as nodes
to obtain a balancewith average surface currents andfluxes as unknowns. Modern
nodal methods usually rely on the Nodal Expansion Method, NEM, (Finnemann,
1975; Singh, Mazumdar, and Pandey, 2014) and the Analytical Nodal Method,
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ANM, (Smith, 1979; Hébert, 1987) to overcome the problem in the recalculation
of coupling coefficients. Also, a nodal collation method based on the expansion
of the neutron in terms of orthogonal polynomials has been extensively used to
deal with rectangular geometries (Verdú et al., 1994; Verdú et al., 1999; Ginestar,
Marín, and Verdú, 2001; Verdú et al., 2005). The Finite VolumeMethod, FVM, has
also been considered to calculate the neutronic steady state of a nuclear power
(Bernal et al., 2014).

Finite element methods have been also used to study reactors with rectangular
geometry, as PWR and BWR reactors (Hébert, 2008) and hexagonal geometries as
VVER reactors (González-Pintor, Ginestar, and Verdú, 2009). Adaptivity is one
of the main advantages in the use of the finite element method. h-adaptable
meshes have been proposed to be used to obtain the static configuration of a
nuclear reactor core with the use of triangular finite elements (Baker et al., 2013)
and rectangular elements (Wang, Bangerth, and Ragusa, 2009). Also unstructured
grid schemes (Theler, 2013) have been developed to solve the problem in non
standard geometries.

Here, an h-p finite elementmethod is used to obtain the dominant Lambdamodes
associated with a configuration of a reactor core. In order to increase the accu-
racy of the solution of the finite element method, it is necessary to refine the
mesh used. Twomain different refinement techniques exist such as h-refinement
and p-refinement. In h-refinement, the cells of the mesh are spatially subdivided
into smaller ones, keeping the original element boundaries intact. p-refinement
increases the polynomial degree of the basic functions used in the expansions
of the high order finite element method increasing the exactitude of the solu-
tion. Most of the literature, for example Wang and Ragusa, (2009), advises to use
h-refinement in regions where the solution is rough or possesses singularities.
Otherwise, the p-refinement is advised in regions where the solution is smooth.
Sometimes, it is possible to combine efficiently the h- and p-refinements and
call it the h-p-refinement. In this procedure both the size of elements h and their
degree of polynomial p are altered. To select which cells are refined an error es-
timator is used. Thus, all the process is automatic leading to Automatic Mesh
Refinement (AMR). Also, with the h-refinement is possible to solve the neutron
diffusion equation with cross sections assembly averaged for the majority of fuel
assemblies and pin-cell averaged for a particular fuel assembly of interest.

The h-p finite element method has been implemented using the open source fi-
nite elements library deal.II (Bangerth, Hartmann, and Kanschat, 2007; Bangerth
and Kayser-Herold, 2009). With the help of the library, the code proposed is di-
mension independent and can manage different cell sizes and different types
of finite elements. In order to solve the resulting algebraic eigenvalue problem
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3.2 The Finite Element Method

from the spatial discretization of the Lambda modes problem the SLEPc library
(Hernandez, Roman, and Vidal, 2005) is used.

The rest of the chapter is organized as follows. Next the spatial discretization
using the finite element method using the two energy groups approximation of
the neutron diffusion equation is developed. Then, the multigroup treatment
inside the FEM is summarized. Once the Lambda modes problem is written in
algebraic matrix form, the eigenvalue problem is solved in Section 3.4. To solve
the problem with the desired accuracy and automatically refine the meshes, it
is necessary to define an error estimator as shown in Section 3.5. In Section 3.6,
some numerical results of the code are presented. Finally, two optimizations of
the code as the matrix-free methods and a preconditioning study are explained
in Sections 3.7 and 3.8. This chapter rewrites the methods and results presented
in Vidal-Ferràndiz et al., (2014) and Vidal-Ferràndiz et al., (2017).

3.2 The Finite Element Method

The Lambda modes equation in the approximation of two groups of energy is
considered. This equation, if it is assumed that there is no upscattering from the
thermal to the fast group, can be expressed as (Henry, 1975),

A
≠Ǫ̀(D1Ǫ̀) + �a1 + �12 0

≠�12 ≠Ǫ̀(D2Ǫ̀) + �a2

B A
„1
„2

B

=
1

⁄

3
‹�f1 ‹�f2

0 0

4 3
„1
„2

4
,

(3.2)
whereDg, g = 1, 2 are the diffusion coefficients, �ag, �fg and �12 are the macro-
scopic cross sections of absorption, fission and scattering, respectively. „1 and
„2 are the fast and thermal neutron fluxes, respectively. The weak formulation of
this equation is obtained by pre-multiplying by a test function, ÏT

=
!
Ï1, Ï2

"
,

and integrating over the domain, �, defining the reactor core,
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⁄

�

!
Ï1 Ï2

"
A

≠Ǫ̀(D1Ǫ̀) + �a1 + �12 0

≠�12 ≠Ǫ̀(D2Ǫ̀) + �a2

B A
„1
„2

B

dV

=
1

⁄

⁄

�

!
Ï1 Ï2

" 3
‹�f1 ‹�f2

0 0

4 A
„1
„2

B

dV . (3.3)

The vectorial identity, Ǫ̀ ·

1
uǪ̀v

2
=

1
Ǫ̀u

2
·

1
Ǫ̀v

2
+ u

1
Ǫ̀ · Ǫ̀v

2
, is applied and

expression (3.3) is rewritten as
⁄

�
Ǫ̀Ï1D1Ǫ̀„1dV ≠

⁄

�
Ǫ̀ ·

1
Ï1D1Ǫ̀„1

2
dV +

⁄

�
Ï1 (�a1 + �12) „1dV

+

⁄

�
Ǫ̀Ï2D2Ǫ̀„2dV ≠

⁄

�
Ǫ̀ ·

1
Ï2D2Ǫ̀„2

2
dV +

⁄

�
Ï2�a2„2dV

≠

⁄

�
Ï2�12„1dV =

1

⁄

3⁄

�
Ï1‹�f1„1dV +

⁄

�
Ï1‹�f2„2dV

4
. (3.4)

Using Gauss Divergence theorem,
s

� Ǫ̀ · F̨dV =
s

� F̨dS̨, to eliminate second
order derivatives,

⁄

�
Ǫ̀Ï1D1Ǫ̀„1dV ≠

⁄

�
Ï1D1Ǫ̀„1dS̨ +

⁄

�
Ï1 (�a1 + �12) „1dV

+

⁄

�
Ǫ̀Ï2D2Ǫ̀„2dV ≠

⁄

�
Ï2D2Ǫ̀„2dS̨ +

⁄

�
Ï2�a2„2dV

≠

⁄

�
Ï2�12„1dV =

1

⁄

3⁄

�
Ï1‹�f1„1dV +

⁄

�
Ï1‹�f2„2dV

4
, (3.5)

is obtained, where � is the boundary of the domain defining the reactor.

Finally, the reactor domain� is divided into cells or subdomains�k (k = 1, . . . , K)

where it is assumed that the nuclear cross sections remain constant due to a pre-
vious spatial homogenization strategy. The cross sections for each cell k are de-
noted by the superscript (k). For further details about the homogenization strate-
gies the reader is referred to Chapter 6. �k is also defined as the corresponding
subdomain surface which is part of the reactor frontier �. Equation (3.5) is rewrit-
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ten as
Kÿ

k=1

3
D

(k)
1

⁄

�k

Ǫ̀Ï1Ǫ̀„1dV ≠ D
(k)
1

⁄

�k

Ï1Ǫ̀„1dS̨ + (�
(k)
a1 + �

(k)
12 )

⁄

�k

Ï1„1dV

+ D
(k)
2

⁄

�k

Ǫ̀Ï2Ǫ̀„2dV ≠ D
(k)
2

⁄

�k

Ï2Ǫ̀„2dS̨ + �
(k)
a2

⁄

�k

Ï2„2dV

≠ �
(k)
12

⁄

�k

Ï2„1dV

4
=

1

⁄

Kÿ

k=1

3
‹�

(k)
f1

⁄

�k

Ï1„1dV + ‹�
(k)
f2

⁄

�k

Ï1„2dV

4
.

(3.6)

It has to be noted that there are several surface integrals over the boundary of the
subdomains, �k, that rely on the boundary conditions and that will be studied
in Section 3.2.1. The solution „g is approximated through an usual trial solution
as sum of shape functions, Nj , multiplied by their corresponding coefficients
associated with the support points values „̃gj .

„g ¥

NDoFsÿ

j=0
Nj „̃gj , (3.7)

where NDoFs is the total number of degrees of freedom or nodes.

In the same way, a continuous Galerkin method (Zienkiewicz, Taylor, and Zhu,
2005) is used assuming that the test functions belong to the finite set of shape
functions. Introducing these expressions in equation (3.6) and eliminating redun-
dant coefficients to obtain continuous solutions using a condensation process
(see, for example, González-Pintor, Ginestar, and Verdú, (2009) for more details)
in terms of global coefficients, the procedure leads to an algebraic eigenvalue
problem of the form

3
L11 0

L21 L22

4 A
„̃1
„̃2

B

=
1

⁄

3
M11 M12

0 0

4 A
„̃1
„̃2

B

, (3.8)
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where the matrices elements are given by

L11(ij) =

Kÿ

k=1
D

(k)
1

⁄

�k

Ǫ̀NiǪ̀NjdV ≠ D
(k)
1

⁄

�k

NiǪ̀NjdS̨ + (�
(k)
a1 + �

(k)
12 )

⁄

�k

NiNjdV ,

L22(ij) =

Kÿ

k=1
D

(k)
2

⁄

�k

Ǫ̀NiǪ̀NjdV ≠ D
(k)
2

⁄

�k

NiǪ̀NjdS̨ + �
(k)
a2

⁄

�k

NiNjdV ,

L12(ij) =

Kÿ

k=1
≠�

(k)
12

⁄

�k

NiNjdV , (3.9)

M11(ij) =

Kÿ

k=1
‹�

(k)
f1

⁄

�k

NiNjdV ,

M12(ij) =

Kÿ

k=1
‹�

(k)
f2

⁄

�k

NiNjdV .

These integrals only have non-zero value when shape functionsNi andNj collide
inside the same cell, therefore highly sparse global matrices are obtained.

3.2.1 Boundary conditions

Implemented boundary conditions are zero-flux, zero-current and albedo bound-
ary conditions. This last case are mixed boundary conditions of the form,

n̨Ǫ̀„g(x̨) +
1

Dg

1 ≠ “

2(1 + “)
„g(x̨) = 0 , x̨ œ � . (3.10)

where n̨ is a normal vector to the boundary pointing outwards, “ is the albedo
factor going from 0, leading to vacuum boundary conditions, to 1.0, giving zero
current frontier conditions.

If zero-flux boundary conditions are assumed the nodal values on the frontier
are explicitly fixed to zero. Thus, their related shape function are not in the al-
gebraic problem of equation (3.8) because their flux is restricted to zero. On the
other hand, if the boundary conditions are zero-current boundary conditions the
surface integral terms are equal to zero and the finite element formulation takes
care of these conditions without restrictions in the nodes. Zero-current boundary
conditions take care of symmetry conditions in the neutron diffusion equation.
Albedo boundary conditions are treated in a weak form by pre-multiplying the
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condition by the test function and integrating over the surface of the domain,

≠ Dg

⁄

�
ÏgǪ̀„gdS̨ =

1

2

1 ≠ “

1 + “

⁄

�
Ïg„gdS̨ . (3.11)

Hence, the boundary integrals that appear in equation (3.9) are substituted by,

Kÿ

k=1
≠Dg

⁄

�k

NiǪ̀NjdS̨ =

Kÿ

k=1

1

2

1 ≠ “

1 + “

⁄

�k

NiNjdS̨, g = 1, 2 . (3.12)

3.2.2 Reference element

As it has been already mentioned, the whole reactor domain is discretized into
subdomains also called cells. In order to define these subdomains always over
the same reference cell an affine mapping is used to map each physical element
to the reference element. An example of this process for a bidimensional cell is
shown in Figure 3.1.

ξ

+1

–1

–1 +1

1 2

34

η

x

y

(x1, y1) (x2, y2)

(x3, y3)

(x4, y4) A ne
 Transformation

Figure 3.1: Affine transformation mapping the physical element into the reference element.

This change of variables relates physical coordinates (x, y), with the coordinates
of the reference domain (›, ÷) and it is given by

x(›, ÷) =
1

4
((1 ≠ ›)(1 ≠ ÷)x1 + (1 ≠ ›)(1 + ÷)x2

+ (1 + ›)(1 ≠ ÷)x3 + (1 ≠ ›)(1 + ÷)x4) , (3.13)

y(›, ÷) =
1

4
((1 ≠ ›)(1 ≠ ÷)y1 + (1 ≠ ›)(1 + ÷)y2

+ (1 + ›)(1 ≠ ÷)y3 + (1 ≠ ›)(1 + ÷)y4) . (3.14)
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This affine mapping helps to compute the integrals defining the matrix elements
taking into account the Jacobian of the transformation |Jk

|. Since

dV = dxdy =

-----

ˆx
ˆ›

ˆy
ˆ›

ˆx
ˆ÷

ˆy
ˆ÷

----- d›d÷ = |Jk
|d›d÷ . (3.15)

3.2.3 Lagrange finite elements

For simplicity, Lagrange finite elements (Zienkiewicz, Taylor, and Zhu, 2005) are
used. These elements have their nodes distributed forming a regular mesh over
the cell. Their shape functions are defined with Lagrange polynomials for every
dimension. These polynomials have a value of unity at the corresponding nodal
point and zero at the other nodes and they satisfy all inter-element continuity
conditions. Lagrange polynomials are defined as

l
p
I (›) =

(› ≠ ›1) . . . (› ≠ ›I≠1)(› ≠ ›I+1) . . . (› ≠ ›p+1)

(›I ≠ ›1) . . . (›I ≠ ›I≠1)(›I ≠ ›I+1) . . . (›I ≠ xp+1)
=

p+1Ÿ

k=0
k ”=I

› ≠ ›k

›I ≠ ›k
,

(3.16)
where p is the polynomial degree of the expansion which characterizes the finite
element method, and ›i is the position of every node in the element. Multidi-
mensional versions of these elements are obtained by tensor product of one-
dimensional elements. Thus, in two coordinates, if the node is labelled by its
column and row number I, J ,

NI,J(›, ÷) = l
p
I (›)l

p
J(÷) . (3.17)

Figure 3.2 shows the shape functions of some one-dimensional Lagrange ele-
ments and an example of these shape functions in a bidimensional element is
displayed in Figure 3.3. The number of nodes in each cell, which is function of
the finite element degree p, is the number of degrees of freedom in each cell. The
total number of degrees of freedom of the problem is calculated multiplying the
number of nodes per cell by the number of cells and removing the repeated nodes
in the interface between cells. Finally, it should be noted that to compute the
integrals of the weak formulation in each cell a Gauss quadrature is used (Golub
andWelsch, 1969). The degree of the quadrature is selected with p+2 quadrature
points, ensuring an exact integration inside the approximation of polynomial
shape functions.
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Figure 3.2: Example of unidimensional shape functions used, linear and quadratic.

(I, J)

IJ

1

1

Figure 3.3: A shape function for a 2D Lagrangian element, (I = 2, J = 5, p = 4).
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3.3 Multigroup treatment

Even though the two energy groups discretization of the diffusion equation is
the most popular choice for full reactor calculations, it is also possible to solve
the diffusion equation for an arbitrary number of groups, G.

This equation has a well-defined block structure due to the neutron energy dis-
cretization of the problem. The equation for the energy groups has the following
form

Lgg„g +

Gÿ

h=1
h”=g

Lgh„h =
1

⁄

Gÿ

h=1
Mgh„h , g = 1, . . . , G, (3.18)

where

Lgg„g := ≠Ǫ̀

1
DgǪ̀„g

2
+ �r,g„g,

Lgh„g := ≠�s,hæg„h, (3.19)
Mgh„g := ‰g‹�f,h„h.

Here „g is the neutron flux for the g-th energy group, Dg is the diffusion co-
efficient, �r,g is the macroscopic removal cross section (absorption plus out-
scattering), �s,gæh is the macroscopic scattering cross section from group g to h,
‹�f,g is the fission cross section,‰g is the neutron energy spectrum of fission and
⁄ is the multiplicative factor defined before. The cross sections and the diffusion
coefficient are space dependent functions, usually defined as piecewise constants
because of a previous homogenization procedure has been used (see Chapter 6
for more details).

3.3.1 Finite Element Method discretization

Using a similar procedure to the one explained in Section 3.2, the multigroup dif-
fusion equation leads to the following algebraic generalized eigenvalue problem

L„̃ =
1

⁄
M„̃ , (3.20)
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where each block is composed by,

Lgg(ij) =

Kÿ

k=1
Dg

⁄

�k

Ǫ̀NiǪ̀NjdV ≠ Dg

⁄

�k

NiǪ̀NjdS̨ + �r,g

⁄

�k

NiNjdV ,

Lgh(ij) =

Kÿ

k=1
�s,hæg

⁄

�k

NiNj dV , for g ”= h , (3.21)

Mgh(ij) =

Kÿ

k=1
‰g‹�f,h

⁄

�k

NiNj dV .

3.4 Eigenvalue Solver

In the most general case, the eigenvalue problem (3.20) is traditionally solved
using the power iterationmethodwith a combination of inner andouter iterations
(Ferguson andDerstine, 1977). The inner iterations update the neutron flux, from
faster to slower energy groups, using a fixed source as follows

Lgg„̃
(i)
g = Q

(i≠1)
g , (3.22)

where the fixed source for group g,Qg, is generatedusing the updatedneutron flux
for the up-scattering terms and the previous neutron flux for the down-scattering
and for the fission terms

Q
(i≠1)
g =

g≠1ÿ

h=1
Lgh„̃

(i)
h +

Gÿ

h=g+1
Lgh„̃

(i≠1)
h +

1

⁄(i≠1)

Gÿ

h=1
Mgh„̃

(i≠1)
h . (3.23)

Once the inner-iteration has finished,byperforming eitherone single loop through
the energy groups or iterating until convergence, the outer iteration updates the
eigenvalue by using the actual flux and the previous flux with the previous eigen-
value, as follows

⁄
(i)

= ⁄
(i≠1) ||M„̃

(i)
||

||M„̃(i≠1)||
, (3.24)

where || · || is the norm in (L
2
(�))

G
:=

G˙ ˝¸ ˚
L

2
(�) ◊ . . . ◊ L

2
(�). For this general sce-

nario, the solution of equation (3.22) is themost demanding step from the compu-
tational point of view. Thus, the preconditioning of a finite element discretization
of equation (3.22) is essential in order to accelerate the whole algorithm.
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3.4.1 Two energy group optimization

Ausual situation is accountedwhere the Lambdamodes problem is approximated
using only two energy groups and assuming that the neutrons are born from fis-
sion in the fast group,‰1 = 1.0, ‰2 = 0.0, and there is no up-scattering,�s2æ1 = 0.
Thus, we obtain a block lower triangular form of the operator that can be used
to solve the system more efficiently. This scenario is widely considered because
it provides a good approximation, at low cost, for simulating standard LWR type
reactor cores.

This problem can be solved more efficiently than the general multigroup approx-
imation if the generalized eigenvalue problem (3.8) is reduced to an ordinary
eigenvalue problem,

L≠1
11

!
M11 ≠ M12 L≠1

22 L21
"

„̃1 = ⁄ „̃1 , (3.25)

which is solved for the n dominant eigenvalues and their corresponding eigenvec-
tors using a Krylov-Schurmethod (Stewart, 2002) from the library SLEPc (Hernan-
dez, Roman, and Vidal, 2005). Other methods as the Implicit Restarted Arnoldi
Method (IRAM) (Verdú et al., 1999) and the Jacobi Davidsonmethods (Verdú et al.,
2005) have also been used in the literature. To avoid the calculation of the inverse
of sparse matrices, that leads to dense matrices, for each matrix-vector product
requested by the eigenvalues problem solver (EPS), two linear systems associated
with matrices L11 and L22 are solved. These systems are solved by means of an
iterative scheme as the preconditioned conjugate gradient method (Saad, 2003).
Particularly, a reversed Cuthill-McKee reordering (Cuthill and McKee, 1969) is
performed to reduce the bandwidth of the matrices, together with an incomplete
LU factorization, ILU(0), of the matrices, which is used as preconditioning. For
more information about preconditioning these systems the readers is referred to
Section 3.8.

Once the ordinary eigenvalue problem involving „̃1 is solved, the thermal group
is calculated as

„̃2 = L≠1
22 L21„̃1 . (3.26)

3.4.2 Normalization

Once the fluxes are obtained other practical magnitudes are computed as the
neutron power that is defined as a weighted sum of the neutron fluxes

P = Ÿ

Gÿ

g=1
�fg|„g| . (3.27)
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3.5 Refinement and error estimator

The thermal power is proportional to the neutron power generated by the reactor
since it is assumed that every fission generates a constant average amount of
energy, Ÿ. The absolute value is introduced in this definition to generalize the
neutron power for the subcritical modes where the fluxes have positive and neg-
ative values. In addition, the eigenvectors should be normalized through some
criteria. The most usual one is

1

Vt

Gÿ

g=1

⁄

�
�fg |„g| dV = 1 . (3.28)

If values for �fg are not available it is common to use ‹�fg in equation (3.28)
instead. This approximation considers that ‹ is constant for all the materials in
the core and all energy groups.

3.5 Refinement and error estimator

After the problem is solved, it is convenient to estimate if the obtained solution
has enough accuracy and if, this is not the case, to refine the mesh accordingly. In
this way, two types of refinements are considered, a uniform refinement, where
all cells are refined, and an adaptive refinement, where only part of the cells
are refined. To choose which cells are refined a modified version of the error
estimator proposed in Kelly et al., (1983) is used. This estimator, ÷k, is extended
for non-constant diffusion coefficients in Wang, Bangerth, and Ragusa, (2009)
and generalized for a multigroup approximation as

÷k =

Ú
hk

24

Gÿ

g=1

3
�

(k)
fg

⁄

Tk

1
DgǪ̀„g

2
dS̨

4
, (3.29)

where Tk denotes all interior boundaries of the element k and hk is the adi-
mensional cell size. In other words, we are using the jump in the net current
weighted by the fission cross sections as the error estimator in the neutron power.
Even though, this is an error estimator for the Poisson’s equation, i.e.Ò2

Ï = f ,
this indicator is widely used as a heuristic refinement indicator and it is consid-
ered a good choice in the absence of actual estimators for a particular equation
(Bangerth and Kayser-Herold, 2009).

3.6 Numerical Results

To study the performance of the h-p finite element method exposed above to
determine the Lambda modes of a nuclear reactor, three different benchmark
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problems have been considered. To compare the performance of the method
using different types of meshes, refinement sizes and strategies, different errors
have been employed. These errors are defined in Table 3.1 where P̄i and P̄

ú
i are

the obtained power and the reference power in the i-th coarse cell (cell averaged),
respectively. Vi is the volume of the coarse cell i and Vt is the total volume of the
reactor. ⁄n is the n-th computed eigenvalue and ⁄

ú
n is the reference eigenvalue.

Table 3.1: Definition of the different errors employed to compare the accuracy of the different
methods.

Relative power Error Ái =
|P̄i ≠ P̄

ú
i |

|P̄ ú
i |

Mean Relative Error Á̄ =
1

Vt

ÿ

i

ÁiVi

Maximum Absolute Error Ámax = max|P̄i ≠ P̄
ú
i |

Relative Power Peaking error RPP =

max|P̄i| ≠ max
i

|P̄
ú
i |

max|P̄ ú
i |

Eigenvalue Error (pcm) �⁄ = 10
5

◊ |⁄n ≠ ⁄
ú
n|

To validate the results of the implemented code a 2D homogeneous reactor has
been studied, since an analytical solution can be found for this problem. Also
more realistic reactors, as the BIBLIS 2D reactor and the IAEA 3D reactor have
been studied. The number of eigenvalues requested has been set to 4 with a
relative tolerance of 10

≠7 in all the examples. The code has been written in C++
and executed in a computer with an Intel®i3-3220@ 3.30GHz processor with 12
Gb of RAM running Ubuntu GNU/Linux 14.04.

3.6.1 Homogeneous Reactor

First a theoretical reactor is considered. It consists of a two dimensional rectangu-
lar homogeneous material with zero flux boundary conditions Even though this
problem is completely theoretical, it is relevant because it can be solved analyti-
cally for all its eigenvalues. This analytical solution is developed in Appendix A.
The material cross sections for the (40 cm◊ 40 cm) rectangular reactor are shown
in Table 3.2 where it is assumed a constant ‹ = 2.5.

Table 3.3 shows the eigenvalue results using different number of cells and dif-
ferent polynomial degrees for the basis of the finite element method. The power
distribution for the dominant eigenvalue using a very coarsemesh (16 cells p = 1)
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Table 3.2: Cross section values for the homogeneous reactor.

D1 D2 �a1 �a2 �12 ‹�f1 ‹�f2
(cm) (cm) (1/cm) (1/cm) (1/cm) (1/cm) (1/cm)

1.32 0.2772 0.0026562 0.071596 0.023106 0.0074527 0.13236

Table 3.3: Eigenvalue results for the homogeneous reactor using uniform meshes.

Number Number 1st Mode 2nd Mode
of cells p of DoFs ⁄1 �⁄ ⁄2 �⁄

16 1 25 1.12178 2507 0.60706 7910

256 1 289 1.14528 157 0.68091 525

4096 1 4225 1.14675 10 0.68583 33

16 2 81 1.14660 25 0.68323 293

256 2 1089 1.14685 0 0.68615 1

16 3 169 1.14685 0 0.68611 5

16 4 289 1.14685 0 0.68616 0

Analytical 1.14685 0.68616

is shown in Figure 3.4a and the relative error in the powerdistribution,Ái, is shown
in Figure 3.4b. It should be noted that the maximum difference with the analyti-
cal solution is up to 11% but the averaged relative error (Á̄) is only about 3.04%.
Figure 3.5 compares the power distribution along the center line y = 20 cm for
the first two dominant eigenvalues. It is observed a good agreement with the
analytical solutions as the number of cells or the polynomial expansion degrees
are increased. It must be also noted that the eigenvalue error and the relative
power error are very low compared to the next, more realistic, benchmarks in
terms of the number of cells and degrees of freedom involved in the calculation.
This explains that the heterogeneity between cells is the main source of error.
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Figure 3.4: Fundamental mode power distribution and its error distribution for homogeneous
reactor with zero-flux boundary conditions.
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Figure 3.5: Power distribution along the line y = 20 cm for the homogeneous reactor.
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3.6.2 BIBLIS 2D Reactor

Here, a more realistic two-dimensional example is chosen, the BIBLIS 2D bench-
mark. This is a classical two-group neutron diffusion problem taken as a bench-
mark for different numerical codes (Hébert, 1985). It has 257 different assemblies
including 64 cells modelling the reflector. The definition of the benchmark can be
found in Appendix B.6. The reference values for the first mode are extracted from
Müller andWeiss, (1991). For the second mode the reference values are extracted
from the most converged solution computed, using 16448 cells with p = 4.

Figure 3.6 shows the neutron power distribution for the four dominant modes of
this reactor. Tables 3.4 and 3.6 display the eigenvalue results for uniform refined
meshes and h-refined meshes. Tables 3.5 and 3.7 show the power distribution
errors obtained using different meshes and different polynomial degrees, p, to-
gether with the CPU time needed to compute 4 eigenvalues1. Figure 3.7 displays
the error distribution, Ái, for 257 elements with p = 3 for the first mode. As
an example of automated adaptive refinement, Figure 3.8, displays the meshes
generated in 6 different iterations of the code using the error estimator defined
in (3.29). It is observed that the code refines the cells with the highest error that
are pointed out correctly by the error estimator. Also, it can be noted that the algo-
rithm refines the cells near the locations where thematerial changes, particularly
in the last iterations.

In Figures 3.9 and 3.10, the mean relative error for the two dominant eigenvalues
is displayed as a function of the execution time for different meshes and degrees
of the finite element method. From these Figures, it can be seen that the errors
follow a typical exponential convergence with the computation time. Also, it can
be concluded that the errors in the power distribution do not depend on which
eigenvalue is being calculated. These Figures and Tables show that the local or
uniform h-refinement is not a better strategy than increasing the polynomial uni-
formly because of the smoothness in the fluxes solutions and the computational
cost of the evaluation of the error estimator. For example, a coarse mesh with
257 elements with p = 3 gives better results, Á̄1 = 1.29% and �⁄1 = 25 pcm,
than a h-refined mesh with 4280 cells and p = 1, Á̄1 = 1.87% and�⁄1 = 65 pcm;
even though the cubic approximation is faster to be solved, 0.22 s against 0.51 s.
These results partially contradict the results given inWang,Bangerth, andRagusa,
(2009) because of the use here of full core reactor benchmarks where the solution
maintain a significant smoothness. In Figure 3.11, a convergence graph is shown

1To understand the velocity of the Krylov-Schur method implemented in C++, it is compared with an
standard eigenvalue solver as the eigs() function fromMatlabr. While eigs() takes 0.81 s to solve the
system for the p = 3 case without refinement, our code takes 0.22 s.
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for the relative power peaking error versus the time of execution. Although this
error is important nuclear reactor engineering, the power peaking relative error
shows a behaviour which is less smooth than the mean error between meshes
and different polynomial degrees of finite elements.

(a) 1st Mode. (b) 2nd Mode.

(c) 3rd Mode. (d) 4th Mode.

Figure 3.6: Power distribution for the four dominant modes of the BIBLIS reactor.
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Table 3.4: Eigenvalue results with uniform refined meshes in BIBLIS Reactor.

Number Number CPU time 1st Mode 2nd Mode
of cells p of DoFs (s) ⁄1 �⁄ ⁄2 �⁄

257 1 292 2.0e≠2 1.02179 331 1.01380 419

4112 1 4249 2.8e≠1 1.02490 20 1.01780 19

65 792 1 66 337 1.7e+1 1.02508 2 1.01797 2

257 2 1097 8.0e≠2 1.02540 30 1.01832 33

4112 2 37 417 2.0 1.02534 24 1.01809 10

16 448 2 66 337 1.7e+1 1.02510 0 1.01800 1

257 3 2416 2.2e≠1 1.02535 25 1.01822 23

4112 3 37 417 8.1 1.02510 0 1.01798 1

Reference 1.02510 1.01799

Table 3.5: Power distribution errors with uniform refined meshes in BIBLIS Reactor.

Number 1st Mode 2nd Mode
of cells p Á̄ (%) Ámax Á̄ (%) Ámax

257 1 7.03 1.7e≠1 6.40 2.5e≠1

4112 1 0.55 5.5e≠2 0.56 1.4e≠2

65 792 1 0.04 8.4e≠4 0.05 4.7e≠2

257 2 1.72 3.7e≠2 1.69 5.5e≠2

4112 2 0.16 3.6e≠3 0.14 4.0e≠3

16 448 2 0.02 3.7e≠4 0.01 3.7e≠4

257 3 1.29 3.0e≠2 1.18 5.6e≠2

4112 3 0.01 1.8e≠4 0.01 1.9e≠4

Table 3.6: Eigenvalue results with h-refined meshes in BIBLIS Reactor.

Number Number CPU time 1st Mode 2nd Mode
of cells p of DoFs (s) ⁄1 �⁄ ⁄2 �⁄

644 1 732 6.0e≠2 1.022 18 292 1.01440 358

4280 1 4736 5.1e≠1 1.024 43 67 1.01729 70

28 613 1 30 982 8.7 1.024 99 11 1.01786 13

72 866 1 68 646 3.4e+1 1.025 01 9 1.01786 13

647 2 2861 3.0e≠1 1.025 13 3 1.01812 13

4064 2 18 139 4.8 1.025 10 0 1.01800 1

10 187 2 57 881 1.8e+1 1.025 10 0 1.01798 1

Reference 1.025 10 1.01799
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Table 3.7: Power distribution errors with h-refined meshes in BIBLIS Reactor.

Number 1st Mode 2nd Mode
of cells p Á̄ (%) Ámax Á̄ (%) Ámax

644 1 4.56 9.2e≠2 4.58 1.3e≠1

4280 1 1.87 9.1e≠2 1.65 4.8e≠2

28 613 1 0.21 2.2e≠3 0.19 1.9e≠1

72 866 1 0.05 2.8e≠3 0.05 1.5e≠3

647 2 1.09 2.7e≠2 1.05 4.1e≠2

4064 2 0.23 8.2e≠3 0.19 7.9e≠3

10 187 2 0.04 1.4e≠3 0.03 3.2e≠2

1

2

MeanError(%)

0

2.79

Figure 3.7: Relative error distribution using a mesh with 257 elements p = 3 in 1st mode of
BIBLIS Reactor.
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Figure 3.8: Example of 6 iterations in the refination process, refining for the 1st Mode.
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Figure 3.9: Mean error against CPU time for 1st eigenvalue of the BIBLIS Reactor.
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Figure 3.10: Mean error against CPU time for 2nd eigenvalue of the BIBLIS Reactor.
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Figure 3.11: Relative power peaking error against CPU time for 1st eigenvalue of the BIBLIS
Reactor.
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3.6.3 IAEA 3D Reactor

The IAEA PWR 3D benchmark has been solved as an example of a three dimen-
sional reactor. The core is composed of 241 assemblies including 64 assemblies
modelling the reflector. The definition of this benchmark is exposed inAppendix B.8.
The reference values for the first mode are extracted from American Nuclear Soci-
ety, (1977) and for the second mode they are extracted from the most converged
solution computed, using 36 632 elements with p = 3.

Figure 3.12 shows the averaged power distribution for the three dominant modes
of this reactor. Tables 3.8 and 3.10 display the eigenvalue results for uniform
refined meshes and h-refined meshes. Also, Tables 3.8 and 3.10 show the power
distribution errors for different computation parameters. Figures 3.13 and 3.14
display the convergence graphs (mean cell error against time of execution) for
the two dominant eigenvalues. To make hardware independent comparisons of
the algorithms, the mean error against the number of the degrees of freedom
(DoF) is represented in Figure 3.15. Figure 3.16 shows the computation times
against the number of degrees of freedom in order to confirm the relationship.
These Figures and Tables show that also for this three dimensional problem the
local h-refinement is not a better strategy than increasing the polynomial de-
gree uniformly because of the smoothness in the solutions for the fluxes and the
computational cost of evaluating the error estimator. For example, a coarse mesh
with 4579 cells with p = 3 gives better results, Á̄ = 0.79% and�⁄ = 8.1 pcm, than
a h-refined mesh with 20609 cells and p = 2, Á̄ = 1.54% and�⁄ = 87 pcm; even
though the first one is faster, 97.5 s against 108.2 s. Also, it is observed that the
errors behaviour for the first eigenvalue and its corresponding eigenvector are
similar to the errors for the second eigenvector. It can be concluded then, that
the best strategy in this case, with a moderate computational cost, is to use finite
elements with cubic polynomials with a coarse mesh.
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Figure 3.12: Power distribution for the three dominant modes of the IAEA 3D reactor.

Table 3.8: Eigenvalue results with uniform refined meshes in IAEA 3D reactor.

Number Number CPU time 1st Mode 2nd Mode
of cells p of DoF (s) ⁄1 �⁄ ⁄2 �⁄

4579 1 5520 1.1 1.05039 2069 1.04627 2915

36 632 1 40287 8.7 1.03060 150 1.02061 349

293 056 1 307461 1.1e+2 1.02925 15 1.01773 61

4579 2 40287 1.5e+1 1.03017 107 1.01934 222

36 632 2 307461 1.7e+2 1.02908 2 1.01723 11

4579 3 131776 9.7e+1 1.02914 4 1.01717 5

Reference 1.02910 1.01712
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Table 3.9: Power distribution errors with uniform refined meshes in IAEA 3D reactor.

Number 1st Mode 2nd Mode
of cells p Á̄ (%) Ámax Á̄ (%) Ámax

4579 1 71.19 2.1 56.41 3.4

36 632 1 11.43 3.4e≠1 10.68 4.6e≠1

293 056 1 1.76 5.9e≠2 2.01 7.7e≠2

4579 2 5.78 1.8e≠1 5.80 2.1e≠1

36 632 2 0.70 9.2e≠3 0.92 3.7e≠2

4579 3 0.79 2.5e≠1 0.79 7.7e≠2

Table 3.10: Eigenvalue results with h-refined meshes in IAEA 3D reactor.

Number Number CPU time 1st Mode 2nd Mode
of cells p of DoFs (s) ⁄1 �⁄ ⁄2 �⁄

20 609 1 24 698 5.1 1.02961 51 1.02019 302

103 818 1 125 214 3.6e+1 1.02882 28 1.01752 35

20 609 2 193 466 1.1e+2 1.02992 87 1.01878 161

Reference 1.02910 1.01717

Table 3.11: Power distribution errors with h-refined refined meshes in IAEA 3D reactor.

Number 1st Mode 2nd Mode
of cells p Á̄ (%) Ámax Á̄ (%) Ámax

20 609 1 25.20 5.6e≠1 23.70 6.7e≠1

103 818 1 8.22 1.4e≠1 9.26 3.2e≠1

20 609 2 1.54 2.9e≠2 1.64 1.7e≠2
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Figure 3.13: Mean error against CPU time for 1st mode of the IAEA 3D reactor.
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Figure 3.14: Mean error against CPU time for the 2nd mode of the IAEA 3D reactor.
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Figure 3.15:Mean relative error against number of degrees of freedom for the 1st mode of the
IAEA 3D reactor.
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Figure 3.16: CPU time against degrees of freedom for the IAEA 3D reactor.
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3.7 Matrix Free Methods

It has been shown above that the Lambda modes problem is solved by evaluat-
ing discrete differential operators. This makes the operator evaluation and, in
particular, matrix-vector products, the central and usually most time-consuming
component in a finite element method (FEM) code, as can be seen in the nu-
merical results presented in the previous Section. It must be noted that solving
iteratively a linear system, can be seen as computing a certain number of matrix-
vector products. Thus, we focus on restructuring this basic operation.

Also, one of the main drawbacks of the presented h-p-finite element method is
the quantity of memory used to store the matrix elements, despite of they are
saved in a sparse way. Instead of assembling a sparse matrix and using it for
matrix–vector products, this operation can be applied by cell-wise quadrature
(Kronbichler and Kormann, 2012). The evaluation of shape functions can be im-
plemented with a sum-factorization approach. In this Section, it is presented
a framework that exploits the special structure of the finite element operation
as the differential operator is applied. Instead of assembling a global sparse ma-
trix, we only store the unit cell shape function information, the enumeration of
degrees of freedom, and the transformation from unit to the real cell. Recently,
cell-based strategies without explicit matrix storage have been considered for
GPU programming (Komatitsch et al., 2010).

The number of nonzero elements per row in the matrix for a (p ≠ 1)th order fi-
nite element in d dimensions is proportional to p

d, rendering high order methods
increasingly expensive. If we split the application of the FEM operator into a func-
tion evaluation and integration step described by unit cell shape functions and
derivatives, the shape information can be applied for one dimension at a time
for basis functions that are derived from a tensor product. This restructuring re-
duces the computational complexity to d

2
p operations per degree of freedom and

is usually referred to as sum-factorization (Melenk, Gerdes, and Schwab, 2001).

The cell-based without explicit matrix storage implementation of amatrix-vector
product can be summarized as,

v = Au =

Kÿ

k=1
R

T
k Ak (Rku) =

Kÿ

k=1
Akuk , (3.30)

where Rk denotes the restriction operation from the global ordering and the cell
ordering and Ak is the local matrix related to cell k. In order to see the imple-
mentation details to efficiently compute the local matrix-vector product,Akuk,
the reader is refereed to Kronbichler and Kormann, (2012).
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3.7 Matrix Free Methods

The main problem derived from the matrix-free implementation is that linear
systems cannot be solvedwith traditional preconditioners as thematrix elements
are not stored explicitly. As preconditioning is essential to solve the linear system
related to the eigenvalue problem solver iterations in reasonable computational
times, only mass-matrices are used in a matrix-free way. Thus, Lgg diagonal
blocks are stored explicitly and all the other blocks are computed in a matrix-free
fashion. This implementation reduces significantly the memory used to store the
matrices without affecting negatively the computational times.

As explained in Kronbichler and Kormann, (2012) matrix-free implementation
of matrix-vector product can be faster than usual sparse matrix-vector multipli-
cation (SpMVs) due to the reduction of memory requirements and cache mem-
ory optimization. A reduced memory requirement of the matrix-vector product
promises improved wall times through higher Gflop rates (billion arithmetic op-
erations per second) because spares matrix-vector multiplication are usually lim-
ited by memory bandwidth rather than arithmetic throughput. Even though at-
tempts have been made to tune kernels (Williams et al., 2007), Gflops rates rarely
exceed 2–20% of peak arithmetic throughput.

Table 3.12 shows a comparison between the proposed matrix-free implementa-
tion and the SpMVs implementation. The Table presents the CPU time and mem-
ory used by the program for the IAEA 3D reactor using different finite element
polynomial degrees. The results show that the totalmemory used is reducedmore
than 50% when the matrix storage is the most demanding process. Particularly,
47% for p = 2, 52% for p = 3 and 55% for p = 4. Also, the computational time has
been slightly reduced about a 10% due to the optimization of the values stored
in the cache memory.

Table 3.12: SpMVs and matrix-Free comparison in the IAEA 3D reactor.

SpMVs Matrix-Free
Number CPU Time Memory CPU Time Memory

p of DoFs (s) (MB) (s) (MB)

1 5520 1.1 6.4e+1 9.2e≠1 5.4e+1

2 40 287 1.5e+1 4.3e+2 1.3e+1 2.3e+2

3 131 776 9.7e+1 2.3e+3 8.9e+1 1.1e+3

4 307 461 5.2e+2 8.9e+3 4.7e+2 4.0e+3
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3.8 Preconditioning

Because of the discretization with the FEM, the blockmatrices of the diagonal are
large, sparse, symmetric and positive definite. Thus, the related linear systems
are well suited to be solved with an iterative Krylov subspace method, as the
conjugate gradient method. As we have to solve several linear systems with the
diagonal block-matrices, Lgg, it pays off to spend a bit more time once to create
a good preconditioner for these matrices.

In general terms, a preconditioner is any form ofmodification of an original linear
system which makes it “easier” to solve by a given iterative method (Saad, 2003).
In other words, the original linear system

Ax = f , (3.31)

is transformed into
(P A) x = Pf = c , (3.32)

such that the new systemmatrix (P A) has a smaller condition number thanA or
it increases the convergence rate of the iterative method. The classical precondi-
tioning of matrices derived from FEM discretization are based on an incomplete
matrix factorization. Nevertheless, the computation of such factorizations re-
quires to store the sparse matrices in the computer memory, in addition to the
computed preconditioners, which results in large requirements of memory re-
sources. Thesememory requirements can be lowered by different fill-in or thresh-
old criteria for the preconditioner, although the minimum memory requirement
remains large if a fast preconditioner is used. To solve this problem, alternative
preconditioning techniques are studied, which are based on the domain decom-
position methodology, aiming at lowering the memory requirements when high
order Finite Element Methods are used.

Domain decomposition methods were first proposed by Schwarz (Schwarz, 1870)
as an analytical tool. A renewed interest in this kind of methods was noticed with
the appearance of parallel computers (Smith, Bjorstad, and Gropp, 2004). These
methods were first proposed to solve partial differential equations on complex
domains and later these techniques were extended to solve linear equations (see
(Gander, 2008) and references therein). The algebraic Schwarzmethods are based
on partitioning the vector of unknowns into subsets, which correspond to a parti-
tion of the coefficients matrix, typically associated with different subdomains in
the continuous problem. The solution of the whole system is achieved by solving
the systems associated with the different blocks of the partitioned matrix, which
are simpler problems than the original one. Schwarz methods to solve linear
systems are not as competitive as other alternative methods such as multi-grid
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solvers, but they can be used as efficient preconditioners of Krylov methods, at
the cost of a few more iterations.

Domain decomposition methods in nuclear engineering have been receiving in-
creasing attention for the last years due to their potential to solve large problems
by using a divide-and-conquer strategy. For example, a Schur complement is used
to accelerate the core solver in Barrault et al., (2011). In Jamelot, Baudron, and
Lautard, (2012); Jamelot and Ciarlet, (2013) a method based on the Schwarz itera-
tive algorithm is studied to solve the mixed neutron diffusion and the simplified
spherical harmonics neutron equation. Finally, the response matrix method that
implements a two-level model, a global and a local level, was analysed in Cossa,
Giusti, andMontagnini, (2010) and in Rathkopf andMartin, (1986). The local level
is defined on amesh fine enough to provide accurate results while the global level
is defined on a coarse mesh which accelerates the convergence of the method.
The methodology for linking the local and global solutions is the key aspect of
the response matrix method.

In this Section, some of the classical preconditioning methods are reviewed start-
ing by direct solvers, the ultimate preconditioner, and incomplete factorizations
of the coefficient matrices (Saad, 2003). Then, the Schur complement method to
separate the interior unknowns from the rest of the unknowns is studied in Sec-
tion 3.8.3. To solve the Schur complement system substructuring preconditioners
are defined in Section 3.8.4. Advanced versions of substructuring precondition-
ers, the Restricted Additive Schwarz preconditioner is described in Section 3.8.5.
The chapter is concluded with a comparison among these preconditioners in a
two dimensional and a tree dimensional benchmark.

3.8.1 Direct Solvers

Direct methods to solve sparse linear systems perform an LU factorization of the
originalmatrix and try to reduce cost byminimizing fill-ins, i.e., nonzero elements
introduced during the elimination process in positions which were initially zeros.
(Saad, 2003). In order to compute fast LU factorizations, for example, UMFPACK
library (Davis, 2004) or SuperLu library (Demmel et al., 1999) can be used.

A typical sparse direct solver for positive definite matrices consists of four phases.
First, preordering is applied to reduce fill-in. Two popular methods are used:
minimum degree ordering and nested-dissection ordering. Second, a symbolic
factorization is performed. This means that the factorization is processed only
symbolically, i.e., without numerical values. Third, the numerical factorization,
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in which the actual factors L and U are formed, is processed. Finally, the forward
and backward triangular sweeps are executed for each different right-hand side.

It must be noted that a direct method is the fastest solver for one dimensional
and two dimensional problems, even though they use more memory thanmost of
the other preconditioners. In two dimensional geometries, we can use complete
LU factorizations because even reasonably large problems rarely have more than
a few 100 000 unknowns with relatively few nonzero entries per row. Furthermore,
the bandwidth of matrices is O(

Ô
N) and therefore moderate. For such matrices,

sparse factors can be computed in a matter of a few seconds. As a point of refer-
ence, computing the sparse factors of a matrix of size N and bandwidth B takes
O(NB

2
) operations. In two dimensional geometries, this is O(N

2
); though this

is a higher complexity than, for example, assembling the linear system which
takes O(N), the constant for computing the decomposition is so small that it
doesn’t become the dominating factor in the entire program until we get to very
large numbers of unknowns in the high 100 000 or more (Bangerth, Hartmann,
and Kanschat, 2007).

The situation changeswhenwe compute three dimensional problems because the
number of unknowns and the bandwidth of the matrix, quickly increase. In this
case the matrix bandwidth, which determines the number of fill-ins, is O(N

2/3
).

This makes using a sparse direct solver inefficient because the memory require-
ments become impractical. Usually, what we do in that case is to use an incom-
plete LU decomposition (ILU) as a preconditioner combined with an iterative
method, rather than actually computing the complete LU factorization.

3.8.2 Incomplete Factorization Methods

One of the simplest ways of defining a preconditioner is to perform an incom-
plete factorization of the original matrix A. An incomplete factorization seeks
triangular matrices L, U such that A ¥ LU rather than A = LU in a complete
factorization. Solving for LUx = b can be done quickly but does not yield the
exact solution to Ax = b so it can be used only as preconditioner of an iterative
method . If L and U have the same nonzero structure as the lower and upper
parts of A, this factorization is known as ILU(0) and it is the less expensive to
compute. If the underlyingmatrix structure can be referenced by pointers instead
of copied, the only extra memory required is for the entries of L and U . On the
other hand, it leads to a crude approximation which may result in the iterative
solver requiring several iterations to converge.
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To remedy this, several alternative incomplete factorizations have been devel-
oped by allowing more fill-in in L and U . A common choice is to use the sparsity
pattern of A

2 instead of A; this matrix is appreciably more dense than A, but
still sparse over all. This preconditioner is called ILU(1). One can then general-
ize this procedure; the ILU(k) preconditioner of a matrix A is the incomplete LU
factorization with the sparsity pattern of the matrix A

k+1. More accurate ILU
preconditioners require more memory, to such an extent that eventually the run-
ning time of the algorithm increases even though the total number of iterations
decreases. Consequently, there is a cost/accuracy trade-off that users must eval-
uate, typically on a case-by-case basis depending on the family of linear systems
to be solved.

Computing the ILU takes a time that only depends on the number of non-zero
entries in the sparse matrix, or that we are willing to fill in the LU factors, if these
should be more than the ones in the matrix, but is independent of the bandwidth
of the matrix. It is therefore an operation that can efficiently also be computed
for three dimensional problems. To see more details about the incomplete LU
factorization and more sophisticated versions as the ILUT the reader is referred
to Saad, 2003, Chapter 10.

3.8.3 Schur Complement Method

Lagrange polynomials used in the high order finite element method, as stated in
Section 3.2.3, provide a natural partition of the set of degrees of freedom (DoFs)
into vertices, edges, faces and interior shape functions as can be seen in Figure
3.17. Figure 3.17 shows a representation of the substructuring decomposition for
a two-dimensional domain using polynomials of degree 3. Thus, after the spatial
discretization, the linear system Ax = f can be expressed as

Q

cca

AII AIV AIE AIF

A
T
IV AV V AV E AV F

A
T
IE A

T
V E AEE AEF

A
T
IF A

T
V F A

T
EF AF F

R

ddb

Q

cca

xI

xV

xE

xF

R

ddb =

Q

cca

fI

fV

fE

fF

R

ddb (3.33)

where the subscript I refers to the degrees of freedom related to the interior of
the cells, and the subscripts V , E and F refer to the degrees of freedom related
with the vertices, edges and faces, respectively.

We notice here that the interior DoFs of each cell are decoupled from the interior
DoFs of the other cells. Thus, it allows us to apply the Schur complement method
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Figure 3.17: A model of a reactor and the representation of the different degrees of freedom
using cubic polynomials in a two-dimensional problem.

as 3
AII AIB

A
T
IB ABB

4 3
xI

xb

4
=

3
fI

fB

4
, (3.34)

where the blockAII is a block diagonal matrix, every block being the blockmatrix
of the cell local interior nodes, i.e,

AII = diag{A1, II , . . . , Ak, II , . . . , AK, II} , (3.35)

and thematrixABB is composed of thematrices for the interfaces. In otherwords,
the matrix contains the terms related with the vertices, edges and faces. Then
we solve the system for the interior DoFs, which is block diagonal and thus easy
to invert using a complete Cholesky factorization, and obtain a system for the
boundary degrees of freedom, which is written as

SxB = fS , (3.36)

where

S = ABB ≠ A
T
IBA

≠1
II AIB , fS = fB ≠ AIBA

≠1
II fI .

Once the Schur complement system (3.36) is solved, the interior unknowns can
be obtained by simple matrix multiplication,

xI = A
≠1
II (fI ≠ A

T
IBxB) .

Inside a finite element partitioning the Schur complement matrix can be built
locally as a sum of the contribution in each cell, Sk, as follows (Saad, 2003),

S =

Kÿ

k=1
Sk =

Kÿ

k=1

1
Ak, BB ≠ A

T
k, IBA

≠1
k, IIAk, IB

2
, (3.37)
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where Ak, _ is the corresponding local block matrix associated with the cell k.
Then, the system matrix A does not need to be built explicitly to construct its
Schur complement matrix.

It is worth to notice here that since the Schur complement is the stiffness matrix
associated with a subspace of the space generated by the original basis, its condi-
tion number is bounded by the condition number of the complete matrix A and
is typically far better (Sherwin and Casarin, 2001).

A disadvantage of this approach is the additional expense of constructing the
Schur complement matrix. For a single system this expense can outweigh the
advantage of solving a better conditioned system for low order in the polynomial
expansions (Pardo et al., 2015). However, for the resolution of the Lambda modes
problem eachmatrix has to be solved several times with different right hand sides.
Thus, the computational cost of constructing the Schur complement matrix is
overcome by the number of linear systems to be solved.

3.8.4 Substructuring preconditioners

In the same way as the original matrix, the Schur complement matrix has a struc-
ture that can be algebraically separated into vertices, edges and faces degrees
of freedom. The methods based on this kind of partition of the high order finite
element shape functions are called substructuringmethods. We use this partition
of the DoFs to provide the Schur complement system (3.36) with the following
structure Q

a
SV V SV E SV F

S
T
V E SEE SEF

S
T
V F S

T
EF SF F

R

b

Q

a
xB, V

xB, E

xB, F

R

b =

Q

a
fS, V

fS, E

fS, F

R

b , (3.38)

Thus, a substructuring preconditioner for this system can be defined as,

P =

Q

a
BV V 0 0

0 BEE 0

0 0 BF F

R

b
≠1

. (3.39)

where different substructuring preconditioners for the Schur complement matrix
are defined in the next subsections by different choices for BV V , BEE , BF F .
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Preconditioner PD

The simplest preconditioner for the Schur complement matrix is to use only use
the diagonal of the local matrices for preconditioning, i.e.,

BV V = diag (SV V ) ,

BEE = diag (SEE) ,

BF F = diag (SF F ) ,

implementing a Diagonal Jacobi preconditioner.

Preconditioner PV

As with the original matrix, A, the preconditioner can be improved if the sub-
matrix of vertices is solved in the preconditioner. This matrix is also explicitly
assembled and Cholesky factorized. In this case, the preconditioner sub-matrices
are defined as,

BV V = SV V ,

BEE = diag (SEE) ,

BF F = diag (SF F ) .

Preconditioner PV EF

Similarly to the original matrix, the sub-matrices SEE and SF F represent the
whole set of edges and faces degrees of freedom, respectively. For the Schur com-
plement preconditioner PV EF each edge and each face is considered indepen-
dently. Thus, BEE and BF F also have a block diagonal structure. The precondi-
tioner blocks are defined by,

BV V = SV V ,

BEE = block-diag (SEE) ,

BF F = block-diag (SF F ) .

3.8.5 Restricted Additive Schwarz Preconditioner

Another possibility of preconditioning the system (3.38) consists of introducing
overlapping between the subdomains by including the degrees of freedom related
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to the vertices and edges in the different blocks, referred as Additive Schwarz
preconditioner. This preconditioner is an extension of the classical alternating
Schwarz method at the continuous level (Schwarz, 1870), formulated by Schwarz
in 1870. This method sequentially solves the Laplace equation in two continuous
subdomains. The projection interpretation of the alternating Schwarz method
led to the Additive Schwarz preconditioner defined at the matrix level. It should
be noted that the additive Schwarz method will not converge in general, but
nevertheless can be efficiently used to accelerate a Krylov subspacemethod (Saad,
2003).

In this work, a Restricted Additive Schwarz (RAS), as the one defined as in Cai and
Sarkis, (1999), is used to accelerate the Schur complement system of equation
(3.36). In (Efstathiou and Gander, 2003) it is studied from a theoretical point of
view why this preconditioner usually has better convergence properties than the
unrestricted Additive Schwarz. The RAS is defined as,

PRAS =

Kÿ

k=1
R

T
k Xk

1
RkSR

T
k

2≠1
Rk, (3.40)

where k is the index running the finite element cells. Rk denotes the restriction
operator from the global domain to the cell k. RT

k is the corresponding interpo-
lation operator, from the local to the global domain. Finally, Xk is a partition
of unity matrix that scales the contribution of each degree of freedom depend-
ing on the number of subdomains where it is present. The partition of the unity
matrix is the key aspect which distinguishes the restricted version from the un-
restricted version of the additive Schwarz preconditioner (Cai and Sarkis, 1999).
It is important to note that the RAS preconditioner yields to non-symmetric it-
erations even for symmetric matrices. Thus, iterative solvers capable of dealing
with non-symmetric system must be used, as the GMRES method.

The main difference between substructuring preconditioner and the RAS precon-
ditioner is the presence of overlapping between subdomains in the RAS, building
a preconditioner more complicated than a simple block Jacobi preconditioner.
Figure 3.18 shows the subdomain decomposition of the block Jacobi precondi-
tioner and the Additive Schwarz preconditioner for the Schur complementmatrix.
This type of partitioning is similar to the one used in (Carvalho, Giraud, and Le
Tallec, 2001).
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Figure 3.18: Subdomains decomposition of (a) substructuring preconditioner and (b) the Ad-
ditive Schwarz preconditioner.

3.8.6 Numerical Results

A two-dimensional and a three-dimensional problems in the approximation of
two energy groups have been considered to study the performance of the pro-
posed preconditioners to accelerate the solution of the linear systems associated
with every iteration of the eigenvalue problem solver. To compare the perfor-
mance of the different preconditioners the average number of iterations needed
to solve the systems related to L11 and L22 in the eigenvalue calculation is used.
Also the memory used by the matrix objects and the preconditioners is shown.

2D BIBLIS Reactor

First, the BIBLIS 2D benchmark defined in Appendix B.6 is considered. In Ta-
ble 3.4, it is shown the accuracy obtained with the finite element method using
different FEM polynomial degrees (p). It is observed that it is necessary to use
high degree polynomials in the finite element method to obtain solutions of the
problem with high accuracy. The eigenvalue calculation is performed with the
Krylov-Schurmethod for the first 4 eigenvalues. Itmust be noted that every linear
system related to L11 and L22 will be solved 48 times since the eigenvalues prob-
lem solver needs 48 iterations to converge the problem with the desired relative
tolerance.

Tables 3.13 and 3.14 display the performance of the different preconditioners
for the Schur complement matrix in terms of the average number of iterations,
memory used by the matrix related elements, and CPU time used to compute the
solution for p = 3 and p = 5 degrees in the finite element method. These numer-
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ical results show a decrease of the number of iterations as the preconditioners
become more complete. However, this improvement in the number of iterations
does not represent an improvement in the computational time. The reason is
that this benchmark is not big enough to show a time reduction in the Schwarz
methodology, compensating the extra overhead needed to assemble and decom-
pose the different sub-matrices. The ILU(0) preconditioner is not the best neither,
due to the fact that the diagonal preconditioner Pd is very fast to compute, so
that the small reduction of the iteration counts is enough when considering the
reduced cost of applying and computing the preconditioner. Moreover, it can be
observed that the reduction in the number of iterations for the matrix L11 is dif-
ferent from the reduction obtained forL22, i.e., the preconditioners used here are
sensitive to the coefficients of the equation. As it has been mentioned above, the
best performance is obtained if a direct method based on the LU decomposition
is used.

Figures 3.19a and 3.19b show the average number of iterations for solving the
system related to the matrixL11 andL22, respectively using finite elements from
degree 1 to degree 9. In these Figures, it can be seen that the number of iterations
grows as the finite element degree increases in an almost linear way. This can be
explained because when p is increased the number of non-zeros inside the matrix
is enlarged and thus its condition number. However, the number of iterations
show a particular behaviour for low degree finite elements because of the relative
importance of the degrees of freedom related to the vertices in these matrices.

Table 3.13: Preconditioners performance for BIBLIS reactor with p = 3.

Preconditioner Avg. its. Avg. its Memory Time
L11 L22 (MB) (s)

None 18.9 22.0 0.86 0.27

PD 16.1 13.0 0.86 0.20

PV 16.1 11.9 0.98 0.29

PV EF 15.1 11.0 1.1 0.51

PRAS 13.0 9.5 1.1 0.44

PILU(0) 7.0 5.0 1.6 0.22

LU - - 2.7 0.16
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Table 3.14: Preconditioners performance for BIBLIS reactor with p = 5.

Preconditioner Avg. its. Avg. its Memory Time
L11 L22 (MB) (s)

None 25.0 23.3 3.9 0.80

PD 23.0 13.0 3.9 0.69

PV 23.2 13.0 4.1 0.74

PV EF 20.9 12.5 4.3 1.10

PRAS 17.8 10.0 4.4 0.92

PILU(0) 9.0 6.0 6.0 0.75

LU - - 10.2 0.62
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(b) Iterations for L22 system.

Figure 3.19: Averaged number of iterations depending on the finite element degree used for
BIBLIS reactor.
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3D IAEA Reactor

As a second problem, the IAEA PWR 3D benchmark (American Nuclear Society,
1977) is considered. Table 3.8 shows a summary of the size of the problem and
the accuracy of the solutions for different degrees of the polynomials, p, used in
the finite element method. As in the case of the previous benchmark, to obtain
accurate solutions it is necessary to use high degree polynomials in the finite
element method.

Tables 3.15 and 3.16 display the performance of the different preconditioners in
terms of the average number of iterations, memory used by the matrix related
elements and the CPU time needed to solve the eigenvalue problem when the
degrees p = 3 and p = 5 are used in the finite elementmethod. These Tables show
a decrease of the number of iterations as the preconditioners become more com-
plete. However, this improvement in the number of iterations does not always
represent a decrease in the computational time because of the extra overhead
needed to build and apply the preconditioner. Also, it can be seen that the partial
preconditioner including the vertices, PV , does not present significant improve-
ment with respect to the previous preconditioners PD, which is much faster to
build and apply. However, when the preconditioner includes the terms related
with the vertices edges and face, PV EF , a significant improvement is achieved. It
must be also noted, that the use of the direct method based of a LU decomposi-
tion is a bad choice for this three dimensional problem. Due the high memory
requirements, about 45 GB, the complete LU decomposition is not computed for
p = 5.

Nevertheless, for this benchmark, the fastest preconditioner is the proposed PRAS,
where the gain in CPU time is larger for the highest polynomial degree used. Here,
although the number of iterations needed by the preconditioner based on the
ILU(0) decomposition is smaller, the time used to construct this preconditioner
and to apply it, is larger than for the preconditioner based on the Schwarzmethod.
It means that the saving in the memory usage is also improving the calculation
time, because a smaller preconditioner is not only much faster to build, but also
faster to apply.

Figures 3.20a and 3.20b show the average number of iterations for solving the
system related to thematrixL11 andL22, respectively using finite elements from
degree 1 to degree 6. In these Figures, it can be seen that the number of iterations
grows as the finite element degree increases in an almost constant way. This can
be explained because increasing p enlarges the number of non-zeros inside the
matrix and thus its condition number. However, the number of iterations show
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a particular behaviour for low degree finite elements, p = 1 and p = 2, because
these matrices are almost composed of degrees of freedom related to the vertices.

Table 3.15: Preconditioners performance for IAEA 3D reactor using p = 3.

Preconditioner Avg. its. Avg. its Memory Time
L11 L22 (MB) (s)

None 36.6 42.6 220 130

PD 23.0 17.3 220 60

PV 22.4 16.6 230 63

PV EF 21.9 15.0 240 63

PRAS 16.0 11.2 290 53

PILU(0) 8.0 6.0 500 72

LU - - 4800 699

Table 3.16: Preconditioners performance for IAEA 3D reactor with p = 5.

Preconditioner Avg. its. Avg. its Memory Time
L11 L22 (MB) (s)

None 48.7 47.6 2500 1500

PD 35.1 25.1 2500 1200

PV 34.8 24.8 2500 1200

PV EF 29.0 22.1 2500 890

PRAS 23.9 17.9 2800 800

PILU(0) 11.0 8.9 4600 1280
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Figure 3.20: Averaged number of iterations depending on the finite element degree used for
the IAEA 3D reactor.
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4
Time Dependent Neutron

Diffusion Equation

4.1 Introduction

For a given transient, the balance of neutrons inside a nuclear reactor core can be
modelled using the time dependent neutron transport equation. This equation is
usually approximated with the diffusion equation with two energy groups assum-
ing that fission neutrons are born in the fast group and there is no up-scattering
(Stacey, 2007). This approximation is of the form of

[v
≠1

]
ˆ�

ˆt
+ L� = (1 ≠ —)M� +

Npÿ

p=1
⁄p‰Cp , (4.1)

ˆCp

ˆt
= —p (‹�f1 ‹�f2) � ≠ ⁄pCp , p = 1, . . . , Np, (4.2)

where,Np is the number of delayed neutron precursor groups considered and the
matrix operators are defined as

L =

A
≠Ǫ̀ · (D1Ǫ̀) + �a1 + �12 0

≠�12 ≠Ǫ̀ · (D2Ǫ̀) + �a2

B

, [v
≠1

] =

A
1

v1
0

0
1

v2

B

,

M =

3
‹�f1 ‹�f2

0 0

4
, � =

3
„1
„2

4
, ‰ =

3
1

0

4
,

where „1 and „2 are the fast and thermal neutron fluxes, respectively. The diffu-
sion constants and cross-sections,Dg, �12, �ag, ‹�fg, g = 1, 2, appearing in the
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equations depend on the reactor materials, that is, they are position and time de-
pendent functions. Cp is the concentration of neutron precursors, —p is the yield
of delayed neutrons in the p-th precursors group and ⁄p is the corresponding
decay constant. These coefficients are related to the delayed neutron precursor
decay.

The spatial discretization of the neutron diffusion equation has been studied in
Chapter 3. There, an h-p-finite element method has been studied to solve the
Lambda modes problem and to study the steady state of a nuclear reactor core.

Different methods have been proposed for the time discretization of the time-
dependent neutron diffusion equation (Verdú et al., 1995). Standard methods
use backward difference formulas (Ginestar et al., 1998). These methods, for each
time step, need to solve a system of linear equations, which is large and sparse.
Preconditioned iterative methods are used to solve these systems (Bru et al.,
2002), (González-Pintor, Ginestar, and Verdú, 2014). Other kind of methods such
as modal methods (Miró et al., 2002) or the quasi-static method (Dulla, Mund,
and Ravetto, 2008) have been also used in the nuclear engineering field.

Some transient calculations in reactor cores are based on dynamic changes in
the reactor configuration due to the movement of control rods, which are usual
manoeuvres in the reactor operation. The simulation of these transients presents
what is known as the rod-cusping problem. This problem is a non-physical be-
haviour of different magnitudes as the neutron power and the multiplicative
constant of the reactor along the transient. This problem is caused by the use
of fixed mesh schemes and averaged material properties for the partially rodded
node, as Figure 4.1 represents. When a control rod is partially inserted in a node,
this node is divided into two parts: the upper part of the node, where the cross
sections aremodified due to the effect of the control rod, and the lower part of the
node, which has the cross sections without modifications and the cross sections
of the whole node are calculated by means of an interpolation procedure taking
into account the position of the control rod tip.

In this Chapter, a moving mesh strategy is developed to reduce the rod-cusping
problem. Thismethod is based on the use of different spatialmeshes for the differ-
ent time steps following the movement of the control rod avoiding the necessity
of the use of averagedmaterial properties, as it is observed in Figure 4.2. To avoid
problems with hanging nodes (S̆olín, C̆erven˝, and Dolez̆el, 2008), the spatial
mesh is refined in the same way for all the axial plane. The solutions obtained in
each time step for the physical quantities are interpolated to a new spatial mesh
in each time step. This Chapter rewrites some methods and results presented in
Vidal-Ferràndiz et al., (2016a).
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Figure 4.1: Rod-cusping problem in a fixed mesh scheme.
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Figure 4.2: 1D representation of fixed and moving mesh schemes.

The rest of the Chapter is organized as follows, in Section 4.2, the spatial dis-
cretization used for the neutron diffusion equation is briefly presented. Then
the time discretization of the problem is explained in Section 4.3. Different ap-
proaches to solve the rod-cusping effect and the interpolation used for the mov-
ing mesh scheme are presented in Section 4.4. To test the performance of the
method, several benchmarks are analysed in Section 4.5.

4.2 Spatial Discretization

For a given transient analysis in a core reactor, usually, a static configuration of
the reactor is considered as initial condition. Associated with the time dependent
neutron diffusion equation, (4.1) and (4.2), there is the generalized eigenvalue
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problem
L� =

1

⁄
M� . (4.3)

The fundamental eigenvalue, the largest one, keff, is the multiplicative constant
of the reactor core and its corresponding eigenfunction describes the steady state
spatial neutron distribution in the core. In this way, the calculation of the sta-
tionary neutron flux distribution is the first step for any transient analysis. To
solve both problems (4.1), (4.2) and (4.3), a spatial discretization of the equations
has to be selected as it has been exposed in Chapter 3. A high order continuous
Galerkin finite element method (Zienkiewicz, Taylor, and Zhu, 2005) is used here
leading to an algebraic eigenvalue problem associated with the discretization of
equation (4.3) with the following block structure,

3
L11 0

L21 L22

4
�̃ =

1

⁄

3
M11 M12

0 0

4
�̃ , (4.4)

where �̃ =

1
„̃1, „̃2

2T
are the algebraic vectors of weights associated with the

fast and thermal neutron fluxes.

4.3 Time discretization

Once the spatial discretization has been selected, a discrete version of the time
dependent neutron diffusion equation is solved. Since the system of ordinary
differential equations resulting from the discretization of the neutron diffusion
equations is stiff, implicit methods are usually used. Particularly, a first order
backwardmethod is used as the one introduced in Ginestar et al., (1998), needing
this method to solve a large system of linear equations for each time step.

Once the spatial discretization is performed, the semi-discrete two energy groups
time dependent neutron diffusion equation together with the neutron precursors
concentration equations are of the form

[ṽ
≠1

]
d�̃

dt
+ L�̃ = (1 ≠ —)M �̃ +

Npÿ

p=1
⁄pXCp , (4.5)

P
dCp

dt
= —p (M11M21) �̃ ≠ ⁄pPCp, k = 1, . . . , Np , (4.6)

where L andM are the matrices obtained from the static spatial discretization of
operators L andM, whose elements are given by equations (3.9). MatrixX and
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[ṽ
≠1

] are defined as

X =

3
P

0

4
, [ṽ

≠1
] =

3
P v

≠1
1 0

0 P v
≠1
2

4
,

where matrix P is the mass matrix of the spatial discretization, which appears
due to the fact that the polynomial basis used in the finite element method is not
orthogonal. The matrix elements of P are given by

Pij =

Kÿ

k=1

⁄

�k

NiNjdV . (4.7)

where K is the number of finite elements, Ni is the shape function for the i

support point and �k is the volume of the k finite element.

The time discretization of the precursors equations (4.6), is done by using a
one-step implicit finite differences scheme. To obtain this scheme, we make the
change of function

PCp = e
≠⁄pt

Bp , (4.8)
obtaining

dBp

dt
= e

⁄pt
—p (M11M12) �̃(t) . (4.9)

Integrating between tn and t,

Bp(t) = B
n
p +

⁄ t

tn

e
⁄p·

—p (M11M12) �̃(·) d· . (4.10)

Making use of the change (4.8), Cn+1
p can be expressed as

PC
n+1
p = e

≠⁄p�tnPC
n
p + e

≠⁄ptn+1

⁄ tn+1

tn

e
⁄p·

—p (M11M12) �̃(·) d· . (4.11)

where �tn = tn+1 ≠ tn. The term (M11M12) �̃(t) inside the integral is approxi-
mated by its value at the instant tn+1 obtaining

PC
n+1
p = PC

n
p e

≠⁄p�tn +
—p

⁄p

1
1 ≠ e

≠⁄�tn

2 !
M

n+1
11 M

n+1
12

"
�̃

n+1
. (4.12)

In the same way, Euler’s backward method is used in equation (4.5) obtaining,

[ṽ
≠1

]
1

�tn

1
�̃

n+1
≠ �̃

n
2

+L
n+1

�̃
n+1

= (1≠—)M
n+1

�̃
n+1

+

Npÿ

p=1
⁄pXC

n+1
p . (4.13)
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Taking into account equation (4.12), equation (4.13) is rewritten as the system of
linear equations

T
n+1

�̃
n+1

= R
n
�̃

n
+

Npÿ

p=1
⁄pe

≠⁄p�tnXC
n
p = E

n
, (4.14)

where the matrices are defined as,

T
n+1
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1

�tn
[v
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] + L
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≠ âM

n+1
,
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n
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�tn
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,

and the coefficient â is

â = 1 ≠ — +

Npÿ

p=1
—p

1
1 ≠ e

≠⁄p�tn

2
.

This system of equations is large, sparse and has to be solved for each time step.
The preconditioned GMRES method (Saad, 2003) has been chosen to solve these
systems and the preconditioner used has been a incomplete LU preconditioner,
ILU(0), together with a reversed Cuthill-McKee reordering (Cuthill and McKee,
1969) to reduce the bandwidth of the matrices.

4.4 Rod cusping effect

To avoid the rod-cusping effect, different strategies have been developed. In this
Section, we summarize the most relevant ones. In addition to these, some ap-
proaches have been discussed to estimate the flux distribution inside the partially
rodded node as in Yamamoto, (2004). Other strategy presented in Gilbert et al.,
(2008) is based on interpolating the solution on refined meshes near the moving
control rod.

4.4.1 Volume Flux Weighting Method

The simplest method to deal with partially inserted nodes is based on weighting
the cross sections of the rodded (R) and unrodded (NR) part with the volume
fraction inserted,

�̄ = (1 ≠ fins)�NR + fins�R , (4.15)
where fins is the volume fraction of insertion of the rod in the cell.
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4.4.2 Approximate Flux Weighting Method

Gehin, (1992) introduced a simple correction model of the rod-cusping effect
using the surrounding averaged cell values. A similar method was developed in
González-Pintor, Verdú, and Ginestar, (2011). In absence of the average flux in
the unrodded and rodded fractions of the node, they are approximated by the
following relations,

„NR =
�zk≠1„k≠1 + (1 ≠ fins)�zk„k

�zk≠1 + (1 ≠ fins)�zk
, (4.16)

„R =
�zk+1„k+1 + fins�zk„k

�zk+1 + fins�zk
, (4.17)

where „k is the average neutron flux in the axial cell k and�zk is the size of the
node in the vertical direction z. With this definitions, the cross sections of the
partially inserted node, �̄, are given by

�̄ =
(1 ≠ fins)�NR„NR + fins�R„R

(1 ≠ fins)„NR + fins„R
. (4.18)

4.4.3 Analytical Flux Weighting Method

In Smith et al., (1992), the flux inside the partially rodded cell is computed by solv-
ing a one dimensional two regions problem using the neutron current resulting
from the previous solution as boundary conditions. The intranodal flux shapes
are integrated analytically to obtain flux-volume-weighted cross sections. Addi-
tionally, axial discontinuity factors for the top and bottom of the partially rodded
node are used. They are computed by taking the ratios of the heterogeneous to
homogeneous boundary fluxes.

4.4.4 Bilinear Weighting Method

According to Kim and Cho, (1990) and Cho, Kim, and Lee, (2001) for a partially
rodded cell, the equivalent homogenized cross sections can be calculated as

�̄ =

s �zk

0 „ � „
†
dz

s �zk

0 „ „†dz

, (4.19)

where „ and „
† are the heterogeneous forward and adjoint fluxes inside the par-

tially rodded node.
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4.4.5 Equivalence Method

In Dall’Osso, (2002) and in Bennewitz, Finnemann, andWagner., (1975) an equiv-
alence method is studied. The main idea that lies behind these methods is to try
to reproduce the reaction rates in the partially inserted cell as if the node was
divided into two nodes. The rod cross section weighting factors are computed by
forcing the reaction rates of the classical nodal expansion to match the reaction
rates of the reference nodal expansion. This condition is not sufficient because it
guarantees only the equivalence of the average cell equations. To complete the
equivalence a correction to the weighted residual equations is also computed.

4.4.6 Moving Mesh strategy

Traditionally the time dependent neutron diffusion equation is solved using a
spatialmesh that is fixed along all the transient. As it has been alreadymentioned,
the simulation of transients where the control rod banks move suffer from the
rod-cusping problem because averaged cross sections are used for the partially
rodded nodes. We propose the use of a spatial mesh that changes each time step
following the control rod, in such a way, that we do not have partially rodded
nodes. This scheme requires the interpolation of the physical solutions of the
equations, which are continuous functions, from the old mesh in step n to the
next mesh corresponding to step n + 1. The mesh interpolation process consists
of finding the solution in the new support point values corresponding to the
new mesh by polynomial interpolation of the values of the solution in the old
mesh. To maintain the accuracy of the solution this interpolation is done using a
polynomial interpolation of the same degree as the degree used in the high order
finite element method used for the spatial discretization.

To formalise the method we use the superscript notation to refer to the time step
number and the subscript notation to the mesh number step. Then, �

n
m refers

to the neutronic flux at time step n defined in the mesh m. The interpolation
process is implemented by means of a function f , and can be written as

�
n
m+1 = f(�

n
m) , (4.20)

C
n
p,m+1 = f(C

n
p,m) . (4.21)

Figure 4.3 shows an example of the neutron flux interpolation�
n
(z) between two

consecutivemeshesm andm+1. This interpolation is similar to the one used in h-
refinedfinite elements codes to interpolate from the coarsemesh to the finemesh
and accelerate the convergence of solution in the finemesh (Bangerth,Hartmann,
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4.4 Rod cusping effect

and Kanschat, 2007). However in the moving mesh method, the support points
of the mesh are moved and not only coarse cells are subdivided into finer cells.
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z z

Figure 4.3: 1D Mesh interpolation example.

In the moving mesh interpolation, only physical quantities, which are continu-
ous, can be interpolated adequately. However, from equation (4.12) the obtained
quantity is PC

n
p and the physical magnitude needed for the interpolation is C

n
p .

To avoid the computationally expensive task of inverting matrix P , a mass lump-
ing technique is considered (Zienkiewicz, Taylor, and Zhu, 2005). This procedure
mainly consists in approximating matrix P by the lumped matrix P̂ , a diagonal
matrix whose elements are the result of adding all the elements of each row of
the mass matrix (row-sum method).

Given a mass matrix, P , and its lumped matrix, P̂ , the essential requirement of
preservation of mass is satisfied i.e.

ÿ

j

ÿ

i

Mij =

ÿ

i

P̂ii . (4.22)

The row-sum method is equivalent to calculate the integrals involving polyno-
mials up to order s approximately with a quadrature rule up to order s ≠ 1 for
Lagrange finite elements (Karniadakis and Sherwin, 2005). In other words, the
procedure is equivalent to use an inexact quadrature rule where its evaluation
points coincide with the support points of the finite element. In general, the use
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Chapter 4. Time Dependent Neutron Diffusion Equation

of lumped mass matrices is only a convenient numerical device if the consider-
able efficiency improvement trades off for any loss in accuracy. However, we note
that occasionally mass lumping can improve accuracy of some problems by error
cancellation. It can be shown that in the transient approximation the lumping
process introduces additional viscous dissipation and this can help in cancelling
out numerical oscillations (Hinton, Rock, and Zienkiewicz, 1976).

As the lumped mass matrix is diagonal, its inverse is trivially calculated as

P̂
≠1
ii =

1
qNDoFs

j=1
qK

k=1
s

�k
NiNjdV

. (4.23)

In the usual fixed mesh scheme, it is not necessary to know the value of C
n
p be-

cause it is enough to obtain PC
n
p for each time step.

The steps necessary for the implementation of the moving mesh procedure are
summarized in the scheme shown in Figure 4.4. The computation starts with an
eigenvalue computation to obtain the stationary configuration of the reactor core,
which is used as initial condition. Then, the dynamic calculation starts. First, the
neutron precursors concentration is solved in the initial mesh. Afterwards, the
control rods and the mesh are moved and the neutronic flux and the precursors
distribution are interpolated to the new mesh. Next, the system associated with
the numerical scheme is solved obtaining the next flux distribution. This is clearly
the most time consuming part of the computation. Finally, the stopping criterion
is checked and if it is not fulfilled the dynamic computation is repeated for the
next time step.
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Figure 4.4: Scheme of the moving mesh time integration scheme.

4.5 Numerical Results

To study the performance of the moving mesh method proposed above, several
benchmarks are studied. The first benchmark consists of a one dimensional prob-
lem where a control rod is ejected to a given velocity and then inserted back.
The second benchmark is a small three dimensional hexagonal reactor where a
rod ejection accident is also studied. Finally, realistic rectangular and hexagonal
three dimensional benchmarks are solved.

To compare the performance of the method, different errors are used. They have
been previously defined in Table 3.1.

4.5.1 One-dimensional problem

To validate the code a simple one-dimensional reactor is considered, which rep-
resents a simplified model for a rod-ejection accident. This reactor consists of 12
cells composed of different materials and it is defined in Appendix B.3.
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Chapter 4. Time Dependent Neutron Diffusion Equation

The initial static results obtained for the dominant eigenvalue keff using different
polynomial degrees for the finite element method, p, are shown in Table 4.1. In
this Table, the number of degrees of freedom (DoFs) is also shown for the reduced
eigenvalue problem in order to have an idea of the size of the problem solved.
Also the mean relative error andmaximum absolute error per cell for the neutron
power is shown for the initial configuration of the problem. It can be seen that
with p = 2 and p = 3, we obtain enough accurate results to simulate this reactor
because we get less than 1% of relative error in the power.

Table 4.1: Dominant eigenvalue and power distribution results for the 1D reactor.

Number keff �keff Power
p of DoFs (pcm) Á̄ (%) Ámax

1 13 0.97843 38 2.48 0.04
2 25 0.97876 5 0.41 0.01
3 37 0.97880 1 0.09 0.00

PARCS 0.978811

Figure 4.5 shows a detail of the evolution of the normalized mean power, P̄ (t),

P̄ (t) =

s
� (�f1„1(t) + �f2„2(t)) dVs

� (�f1„1(0) + �f2„2(0) ) dV
, (4.24)

during the transient computed using a classical fixed mesh scheme (volume aver-
aged) with 12 axial nodes, the moving mesh scheme presented in this work and
the reference values. All the transient calculations are made using cubic polyno-
mials in the finite element method and a simulation stop time of 10 s. Reference
results for the neutronic flux and the keff of the problem are computed with the
neutronic code PARCS (Downar et al., 2009), using a fixed mesh with 120 cells
where the rod-cusping problem is insignificant. As can be seen in Figure 4.5, the
fixed mesh computations present some non-physical jumps in the normalized
mean power, mainly when the control rod is in the middle of a cell. However
the rod-cusping problem is mitigated with the moving mesh scheme reducing
the mean error in the normalized mean power about three times, from 0.3% to
0.13%. Moreover, the relative errors for the reactor mean power for each one of
the time steps obtainedwith the fixedmesh scheme and themovingmesh scheme
are shown in Figure 4.6. Figure 4.7 shows the errors in the computation of the
dominant eigenvalue (�keff) solving an static problem for every time step of the
transient. As it can be seen in these Figures, the errors for the keff and the mean
reactor power have very similar behaviours.
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Figure 4.5: Normalized power evolution for the 1D reactor from 3s to 7s.
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Figure 4.6: Comparative of errors over time in 1D reactor.
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Figure 4.7: Errors in keff during the transient.
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4.5.2 Small Hexagonal Rector

To test the performance of the method in three dimensional reactors, a small
hexagonal reactor that presents a large rod-cusping problem is studied (González-
Pintor, Verdú, and Ginestar, 2011). This reactor is defined in Appendix B.10. As
the Deal.II library cannot handle hexagonal finite elements, each hexagon is sub-
divided into 3 quadrilaterals with the help of the mesh generation code Gmsh
(Geuzaine and Remacle, 2009), as it is shown in Figure 4.8. Thus, the used mesh
for this reactor has a total of 684 cells.

Gmsh

Figure 4.8: Hexagonal cells transformed into quadrilaterals with Gmsh.

The results obtained for the dominant eigenvalue using different polynomial
degrees for the finite element method, p, are shown in Table 4.2. In this Table,
the mean relative errors and maximum absolute errors per cell in the power for
the initial configuration of the reactor are also shown. It can be seen that with
p = 2 we obtain enough accurate results to simulate this reactor because we get
less than 0.5% of relative error in the power.

Table 4.2: Dominant eigenvalue and power distribution results for the small 3D reactor.

Number keff �keff Power
p of DoFs (pcm) Á̄ (%) Ámax

1 949 0.80190 1563 2.08 0.17

2 6475 0.81664 89 0.29 0.03

3 20 683 0.81737 16 0.06 0.01

PARCS 0.81753

Figure 4.9 shows the time evolution of the normalized mean power of the reactor
in the first 0.15 seconds. In this Figure, the results obtained with the moving
mesh scheme proposed in this work, are compared with the results obtained with
the classical fixed mesh scheme. While the fixed mesh scheme considers 12 axial
planes, the moving mesh computation has 13 axial planes (12 fixed and 1 mov-
ing). In addition, the reactor is also solved with a fixed mesh scheme using 120
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axial planes where the rod-cusping problem is very small and the results of this
computation are taken as a reference. All transient calculations are made using
cubic polynomials in the finite element method.

The relative errors for the reactor mean power for each one of the time steps
obtained with the fixed mesh scheme and the moving mesh scheme are shown in
Figure 4.10. Thus, the moving mesh scheme reduces the mean error from 5.7%
to 0.50%. As it can be seen in these Figures, the moving mesh scheme produces
better results than the fixed mesh scheme when a small number of axial planes
are considered for the spatial discretization.
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Figure 4.9: Normalized mean power evolution for the small 3D reactor.
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Figure 4.10: Normalized mean power error for the small 3D reactor.
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4.5.3 Langenbuch Reactor

To the validate the performance of the method in a rectangular reactor the Lan-
genbuch benchmark (Langenbuch, Maurer, and Werner, 1977) is used. The tran-
sient simulates the accidental ejection of a group of control rods at a slow velocity
of 3 cm/s. This benchmark is fully specified in Appendix B.9.

Table 4.3 shows a comparison of the static results for this reactor using different
polynomials degrees related to the finite element method. It can be seen that,
at least quadratic shape functions, p = 2, must be used to ensure reasonable
results and only with cubic polynomials the mean error is reduced to less than
1%. For this reason, all transient simulations are done with cubic finite element
polynomials.

Figure 4.11 shows the normalizedmeanpowerevolution along the first 60 seconds
of simulation. Reference results are extracted using 100 axial planes in order to
minimize the rod-cusping effect. In this way, the fixed mesh scheme considers
10 axial planes and the moving mesh computation has 11 axial planes (10 fixed
and 1 moving). Figure 4.12 shows the relative error results of the previous graph.
It can be seen that the moving mesh strategy reduces the error of the simulation
from 2.5% to 0.5% of mean error.

Table 4.3: Dominant eigenvalue and power distribution results for the Langenbuch Reactor.

Number keff �keff Power
p of DoFs (pcm) Á̄ (%) Ámax

1 949 1.00076 111 3.78 0.11

2 10 773 1.00039 74 1.24 0.05

3 34 720 0.99990 25 0.39 0.01

PARCS 0.99965
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Figure 4.11: Normalized mean power for Langenbuch reactor.
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Figure 4.12: Normalized mean power relative error for Langenbuch reactor.
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4.5.4 AER Benchmark

To test the performance of the proposed method in a realistic reactor, the tran-
sient benchmark AER-DYN-001 proposed in Keresztúri and Telbisz, (1992) has
been studied. This problem corresponds to an asymmetric control rod ejection
accident in a VVER-440 core. This benchmark is fully specified in Appendix B.11.

In Figure 4.13, the total power evolution is presented for several calculations.
First, the power evolution has been computed with the nodal code PARCS (Dow-
nar et al., 2009) using 12 axial planes. This computation presents a strong rod-
cusping effect. In the same way, the finite element method with a fixed mesh
presents a similar behaviour when 12 axial planes are used in the computations.
To avoid the rod-cusping we have computed the transient using themovingmesh
scheme with 13 axial planes (12 fixed and 1 moving). In this case, the power evo-
lution is comparable to the behaviour obtained with the PARCS code using axial
120 planes. To be self-consistent, a reference finite element solution, with fixed
mesh and 60 axial planes, is also shown. All the calculation have been performed
with a maximum time step of 0.01s because this is the maximum time step that
achieves sufficiently converged results.
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Figure 4.13: Power evolution for the VVER-440 reactor.
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5
Simplified Spherical Harmonics

Equations

5.1 Introduction

The accuracy of the diffusion theory for describing the neutron population in a
nuclear reactor is limited for a variety of situations: when strong material and/or
flux gradients are present,when neutron streaming is significant orwhen neutron
scattering contains a strongly anisotropic component. These situations usually
take place when complex fuel assemblies exist or calculation at assembly level
are carried out. Also, new nuclear fuels designed for Generation IV reactors are
producing these situations more often. To improve the results of diffusion the-
ory for situations such as those mentioned, higher-order approximations for the
angular dependence of the neutron transport equation must be employed.

In this chapter we investigate the simplified spherical harmonics approximation
(SPN). Spherical harmonics approximation or PN is developed by the expansion of
the angular flux in terms of Legendre polynomials. As the multidimensional PN
approximation is a complicated set of equations, Gelbard showed that one dimen-
sional PN equations could be extended to multidimensional geometries substitut-
ing the one-dimensional derivatives by amultidimensional gradient. This ad-hoc
approximation, called Simplified PN (SPN), gives accurate results compared to its
computational cost to solve. Theoretical basis for the SPN equations were pro-
vided decades after by Brantley and Larsen, (2000), showing that these equations
are high-order asymptotic solutions of the transport equation when diffusion
theory is the leading-order approximation in the dominant direction.
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Chapter 5. Simplified Spherical Harmonics Equations

Unlike the standard spherical harmonics approximation, the simplified spherical
harmonics solution does not converge to the exact transport solution asN æ Œ.
However, it is more accurate than the diffusion approximation for usual reactor
configurations within acceptable computing times. The main advantage of the
SPN approximation is the number of equations to be solved, which is smaller than
the complete PN number of equations, and the resulting system of elliptic equa-
tions that is readily solvable with small modifications of the standard diffusion
solvers. The number of equations increases quadratically as (N + 1)

d for spher-
ical harmonics, while it increases linearly as (N + 1)/2 for SPN. In addition the
SPN approximation does not suffer from the ray effects that can adversely affect
the discrete ordinates method, SN, for certain configurations (Lewis and Miller,
1984).

In the simplified spherical harmonics method, odd order approximations have
found a broader acceptance than even order approximations because nuclear
cross sections are usually available for odd order approximations. Furthermore
nuclear cross sections have only as many linear independent fields as the next
lower approximation, which is and odd order approximation. We focus our study
in SP1, SP3 and SP5 approximations as higher N approximations do not produce
considerable better results than these approximations for full core reactor calcu-
lations.

In this Chapter, a h ≠ p≠Finite Element Method is used to obtain the stationary
neutron flux and the multiplicative factor associated with the configuration of
a reactor core using the SPN approximation. The accuracy of the simplified PN
approximation is compared to diffusion approximation and discrete ordinates
codes.

The rest of the Chapter is organized as follows. In Section 5.2, the one dimen-
sional PN approximation is developed for a general N . Section 5.3 describes the
SimplifiedPN approximation formultidimensional geometries. In Section 5.4, the
finite element discretization of these equations is summarized. Section 5.5 shows
some numerical results of the method employed including two one-dimensional
benchmarks and more realistic three dimensional reactors.
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5.2 One Dimensional PN equations

5.2 One Dimensional PN equations

Weconsider the eigenvalue problemassociatedwith the steady-state,multi-group,
linear neutron transport equation in slab geometry (Henry, 1975),

3
µ

d

dx
+ �

g
t (x)

4
Â

g
(x, µ) =

Gÿ

gÕ=1

1⁄

≠1

�
ggÕ

s (x, µ0)Â
gÕ

(x, µ
Õ
)dµ

Õ
+

1

⁄

Gÿ

gÕ=1

‰
g
(x)

2
‹�

gÕ

f (x)

1⁄

≠1

Â
gÕ

(x, µ
Õ
)dµ

Õ
,

g = 1, . . . , G, x œ [0, Lt] , (5.1)

with vacuum boundary conditions at the extremes of the domain, x = 0 and
x = Lt,

Â
g
(0, µin) = 0 , Â

g
(Lt, µin) = 0 . (5.2)

G is the total number of energy groups considered, ◊ is the angle between the
direction of the incident neutron velocity and the x axis, µ = cos(◊), ◊0 is the
angle between the incident neutrons and the scattered neutrons, µ0 = cos(◊0).
µin is the set of directions cosines that are incident at a given boundary, in other
words, at x = 0, 0 < µin Æ 1 and at x = Lt, ≠1 Æ µin < 0. In this Chapter, we
have marked the energy group index as superscript in order to distinguish it from
the moment index.

The solutions of this eigenvalue problem are known as the Lambda modes of the
transport equation. The dominant eigenvalue, ⁄= keff, is the multiplicative factor
of the system and measures its criticality and the corresponding eigenvector is
the stationary angular flux distribution inside the domain.

Different angular discretizations are commonly used to solve this problem, as the
discrete ordinates or the spherical harmonics expansion of the angular variable
(Lewis and Miller, 1984). Both discretizations provide equivalent solutions with
an appropriate choice of the quadrature set that defines the discrete ordinates
method, (Gast, 1958; Cullen,2001), andhave simplified secondorder forms,where
odd moments are formally solved and substituted back into the equations, pro-
viding a simplified formulation where the number of unknown fields is reduced.

The PN approximation to the neutron transport equation (5.1) assumes that the
angular dependence of both the angular neutron flux distribution and the scat-
tering cross-section can be expanded in terms of N + 1 Legendre polynomials,
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Pn(µ), where N is odd in this work, as

Â
g
(x, µ) =

Nÿ

n=0

2n + 1

2
„

g
n (x) Pn (µ) , (5.3)
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ggÕ
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ggÕ

sn (x) Pn (µ0) . (5.4)

where „
g
n is the n-th angular moment of the neutron flux of energy group g and

�
ggÕ

sn is the scattering cross sections moment. Using expansions (5.3) and (5.4)
into equation (5.1) and the orthogonality relations for these polynomials, the
following PN equations are obtained (Capilla et al., 2005),
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for n = 1, . . . , N , g = 1, . . . , G,

(5.6)

where we have considered the expansion order for the angular flux,N , to be larger
than the order of anisotropic scattering, L. In this formulation, we consider the
components of the scattering equal to zero for moments higher than L, but we
have kept them in the formulation for simplicity. The PN equations (5.5) and (5.6)
constitute a set ofN + 1 equations withN + 2 unknowns. This problem is usually
solved setting the derivative of the highest order moment to zero d

dx„N+1 = 0.
This closure is the most common and straightforward one but can be problematic
for some time dependent applications, so other closures have also been developed
in the literature (Hauck and McClarren, 2010).

Equations (5.5) and (5.6) are more easily expressed in matrix notations as,

d �1
dx

+ �0�0 =
1

⁄
F�0 , (5.7)
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4
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(5.8)
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It must be noted that in many nuclear applications, as in usual static full reac-
tor calculations, the scattering cross section, �s, is considered isotropic and a
transport correction is typically introduced (Hamilton and Evans, 2015). Thus,
considering isotropic scattering, i.e. L = 0 in equation (5.4), the matrix �n is
diagonal for n > 0. Substituting the equations related to the odd moments of the
flux, equation (5.8) yields to
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d

dx

A
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for n = 0, 2, . . . , N ≠ 1 .

(5.9)

Equation (5.9) defines an eigenvalue problem associated with a linear system
of (N + 1)/2 elliptic, second-order equations. This eigenvalue problem can be
converted into a problem composed of a set of diffusion-like equations if the
following linear change of variables is performed,

Un = (n + 1) �n + (n + 2) �n+2, n = 0, 2, . . . , N ≠ 1 , (5.10)

U = (U0, U2, . . . , UN≠1)
T

, (5.11)

and each element of U contains the group dependent diffusive pseudo-moments

Un = (u
1
n, u

2
n, . . . , u

G
n )

T
. (5.12)
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For example, the set of P5 equations are
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(5.13)

Using the change of variables,

U0 = �0 + 2�2 , U2 = 3�2 + 4�4 , U4 = 5�4 + 6�6 , (5.14)

the system (5.13) is rewritten as the eigenvalue problem,
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where the effective diffusion matrix,D, the absorption matrix,A, and the fission
matrix,M, are defined as,
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and the coefficients matrix, c(m),
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(5.19)

5.2.1 Boundary Conditions in one-dimensional PN

To approximate the vacuum boundary conditions for the one-dimensional PN
equations,we shall considerMarshak’s conditions (Stacey, 2007). These boundary
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conditions impose a restriction in the flux odd moments at each boundary, xB,
either xB = 0 or xB = LT , are given by

⁄

µin

Pn (µ) Â
g
(xB, µ)dµ = 0, g = 1, 2, . . . , G, n = 1, 3, . . . , N. (5.20)

Expanding Â(xB, µ) using equation (5.3),

⁄

µin

Pn (µ)

Nÿ

nÕ=0

2n
Õ
+ 1

2
„

g
nÕ(xB, µ)PnÕ(µ)dµ = 0 ,

g = 1, 2, . . . , G, n = 1, 3, . . . , N. (5.21)

Using the orthogonality relationship of Legendre polynomials and settingN = 5,
the Marshak’s boundary condition are,

1

2
�0 +
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8
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16
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�0 +

5

8
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16
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128
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81

128
�4 = ≠�5 .

Applying the change of variables proposed in equation (5.10), the vacuum condi-
tion in the P5 approximation can be applied as

≠ n̂ D d

dx
U(xB) = BU(xB) , (5.22)

where matrix B is given by the Kronecker product of matrix b by an (G ◊ G)

identity matrix,

B = b ¢ I(G◊G) , b =

Q
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1
16 ≠

41
384

407
1920

R

ddb , (5.23)

and n̂ is the normal direction of the boundary, either 1 or ≠1 in one dimensional
geometries.

On the other hand, reflective boundary conditions are imposed if all the flux odd
moments are set to zero.

„
g
n(xB) = 0, g = 1, 2, . . . , G, n = 1, 3, . . . , N . (5.24)
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Thus, reflective boundary conditions are set imposing,

d

dx
u

g
n(xB) = 0, g = 1, 2, . . . , G, n = 0, 2, . . . , N . (5.25)

These treatments yield to (N + 1)/2 equations in the boundary that effectively
closes the system. We note that both of these boundary conditions treatments
contain asymmetric components whenN is even. Thus, only odd sets of PN equa-
tions are considered. It must be noted that for each group the PN system of equa-
tions (5.15) is symmetric because the coefficients c(m) andB are symmetric.

5.3 Simplified PN

For multidimensional problems, the SPN approximation is obtained substitut-
ing the x derivative operator by the corresponding two- or three-dimensional
gradient operator in equations (5.7) and (5.8).

Ǫ̀�1 + �0�0 =
1

⁄
F�0 , (5.26)

Ǫ̀

3
n

2n + 1
�n≠1 +

n + 1

2n + 1
�n+1

4
+ �n�n = 0 ,

for n = 1, . . . , N .

(5.27)

This approximation may seen ad-hoc, but in Brantley and Larsen, (2000) a the-
oretical basis is provided. Brantley and Larsen show that these equations are
high-order asymptotic solutions of the transport equation when diffusion theory
is the leading-order approximation as it is the usual case in full reactor simula-
tions. However the SPN approximation does not converge to the true transport
solution when N æ Œ.

The main advantage of the Simplified PN approximation towards complete PN
equations is that the resulting system of equations is a set of elliptic, diffusion-
like second order differential equations. These equations can be easily imple-
mented using numerical methods suited for the diffusion equation withoutmajor
changes.
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As an example of the form of SPN equations, the set of SP5 equations yields to
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4
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Performing the same change of variables as stated in equation (5.10), the SP5
equation set of equations can be expressed as

≠ Ǫ̀

1
D Ǫ̀U

2
+ AU =

1

⁄
MU , (5.29)

where the matrix operatorsD,A andM are the same as the one defined in equa-
tions (5.16), (5.17) and (5.18).

5.3.1 Boundary Conditions in SPN

In the same way as it has been done in Section 5.2.1, boundary conditions for
SPN equations are given substituting the x derivative operator by the two- or
three dimensional gradient operator in equations (5.22) and (5.25). Making use
of equation (5.20), vacuum boundary conditions for the Simplified PN equations
are

≠ n̨ D Ǫ̀U(xB) = B U(xB) , (5.30)

where matrix B is given in equation (5.23) and n̨ is the normal direction to the
boundary.

Additionally, reflective boundary conditions are given by

Ǫ̀u
g
n(xB) = 0, g = 1, 2, . . . , G, n = 0, 2, . . . , N . (5.31)

5.4 Finite Element Discretization

As it was reviewed in the last section the SPN approximation consists of a set of
diffusion-like equations for which the solution for the unknown fluxes moments
is required. Thus, the finite element discretization (FEM), that was developed for
the diffusion equation in Chapter 3, can be applied without major changes.
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Hence, a continuous Galerkin finite element discretization has been applied
to equation (5.29) leading to an algebraic generalized eigenvalue problem. To
discretize the problem the reactor domain, �, has been partitioned into cells
�k, k = 1, 2, . . . , K, where the nuclear cross sections are assumed to be constant.
In the same way, �k is the set of the corresponding cell surfaces which are part
or the external reactor boundary, �.

To simplify the notation, in this Section only one group of energy is considered.
Thus, the discretization of SP5 equations can be written as the generalized alge-
braic eigenvalue problem,

Q
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R

b

Q
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ũ2
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R

b =
1
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Q

a
S00 S01 S02
S10 S11 S12
S20 S21 S22

R

b

Q

a
ũ0
ũ2
ũ4

R

b , (5.32)

where ũ0, ũ2 and ũ4 are the algebraic vectors representing u0, u2 and u4 and the
matrix blocks are constructed as,

(Lnn)ij =

Kÿ

k=1
Dn(Ǫ̀Ni, Ǫ̀Nj)�k ≠ Dn(Ǫ̀Ni, Nj)�k + Ann(Ni, Nj)�k ,

(LnnÕ)ij =

Kÿ

k=1
AnnÕ(Ni, Nj)�k , if n

Õ
”= n

(SnnÕ)ij =

Kÿ

k=1
MnnÕ(Ni, Nj)�k ,

where the common notation for the scalar product, (a, b)� =
s

� a b dV has been
used and the surface integrals

s
� a b dS̨ are denoted by (a, b)�.Dn,AnnÕ andMnnÕ

were previously defined in equations (5.16), (5.17) and (5.18), respectively. Ni

is the prescribed shape function associated with the i-th degree of freedom or
support point. The shape functions used are part of the Lagrange finite elements,
previously defined in Section 3.2.3.

To solve the algebraic eigenvalue problem (5.32) for the dominant eigenvalue keff
and its corresponding eigenvector, the power iteration method is used as defined
in Section 3.4.

Finally, the solution fluxes must be normalized. Usually, it is forced that

1 =
1

V

Gÿ

g=1

⁄

�
�fg„

g
0 dV. (5.33)
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5.5 Numerical Results

5.5.1 One dimensional homogeneous reactor

First, a one dimensional homogeneous slab of 2 cm thick with vacuum boundary
conditions is considered. The material properties of the reactor are defined in
Appendix B.1. This problem has been selected because has a simple analytic
solution for the PN approximation (Capilla et al., 2005) thus, it can be used to
validate the solution of the FEM implementation. This problem is also relevant
because it shows a bad behaviour when the diffusion approximation, P1, is used
due to the strong spatial variation of the neutronic flux.

Table 5.1 shows the fundamental eigenvalue and those corresponding to the
subcritical modes obtained for the P1, P3 and P5 approximations compared to the
exact analytical values of the same neutron transport approximations. It can be
seen that FEM results and analytic results are almost equal. Also, the results from
the discrete-ordinates code ONEDANT (O’Dell, Brinkley, and Marr, 1982) with
an angular quadrature order of S96 is included to be used as reference. This is a
very good approximation to the exact transport solution but the computational
cost of this method is very high to be used in more realistic problems. Hence, we
can see an important improvement of P3 eigenvalue results compared with P1
results.

Table 5.1: First four dominant eigenvalues for the one dimensional homogeneous reactor.

FEM Results
P1 P3 P5 S96

keff 0.5874890 0.6529562 0.6605229 0.662951
2nd 0.1491351 0.2077446 0.2233791
3rd 0.0583796 0.0960912 0.0113888
4th 0.0296016 0.0531219 0.0680403

Analytical Results

keff 0.587489 0.652956 0.660523
2nd 0.149135 0.207745 0.223379
3rd 0.058380 0.096091 0.113889
4th 0.029602 0.053122 0.068040

Figure 5.1 shows the scalar flux from the PN reference solution versus the PN
obtained with the FEM code. It can be noted that for the fundamental mode, the
P1 does not represent the transport solution accurately enough. In this way, P3
and P5 calculations follow the transport solutions very accurately. In Figures
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5.2, 5.3 and 5.4 the solutions of the scalar flux associated with the next three
subcritical modes are shown.
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Figure 5.1: Scalar flux for the 1D homogeneous slab.
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Figure 5.2: 2nd subcritical mode of the 1D homogeneous slab.
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Figure 5.3: 3rd subcritical mode of the 1D homogeneous slab.
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Figure 5.4: 4th subcritical mode of the 1D homogeneous slab.
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5.5.2 One dimensional heterogeneous reactor

Amore realistic example is a seven-region slabof 18 cm thick,withvacuumbound-
ary conditions for the leftmost and rightmost faces. As before, this benchmark is
defined in Appendix B.2.

Table 5.2 shows the first four eigenvalues computed with the finite element
method for the PN approximation with (N = 1, 3, 5). All FEM calculations have
been computed with cubic shape functions because a high accuracy is demon-
strated without an excessive number of degrees of freedom (DoFs) as stated in
Vidal-Ferràndiz et al., (2014). Also it is included a reference keff calculation using
the discrete ordinates code ONEDANT (O’Dell, Brinkley, and Marr, 1982) with an
angular quadrature order of S96, with 500 fine cells in each region and a conver-
gence tolerance of 1e-6. In Figure 5.5a, the normalized scalar flux for the fun-
damental mode is plotted for the P1, P3 and P5 approximations. Also, Figure 5.5
shows the second, third and fourth subcritical modes. It can be seen that P3 and
P5 approximations give very accurate results close to the transport solution. How-
ever diffusion solution, here P1, does not give enough accurate results for this
assembly calculation.

Table 5.2: First four eigenvalues for the one dimensional heterogeneous reactor.

FEM Results
P1 P3 P5 S96

keff 1.113872 1.148744 1.157360 1.16224
2nd 0.658651 0.735036 0.746618
3rd 0.423944 0.527645 0.541952
4th 0.109235 0.165305 0.188148
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Figure 5.5: Fluxes for the 1D heterogeneous slab.

5.5.3 BIBLIS 2D Reactor

In order to study the SPN performance in a more realistic reactor the classical
two dimensional BIBLIS benchmark is computed. This reactor is fully defined in
Appendix B.6.

Table 5.3 shows the eigenvalue error and power errors for this reactor. Reference
values are extracted from the SP5 calculation. SP1 calculation presents a small
but considerable error in comparison with calculation involving more spherical
harmonics. However, SP3 is almost equal to SP5 calculation so, SP5 does notworth
the extra computational effort. Figure 5.6 displays the relative power error per
cell between SP1 and SP5 calculation. It can be seen that the error is located in
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the cells near the boundary, where the power is underestimated, and in the center
of the reactor, where the power is over estimated by the SP1 calculation.

Table 5.3: Comparative results for BIBLIS reactor.

N DoFs keff �keff (pcm) Á̄ (%) Ámax

SP1 4832 1.02535 49 1.44 0.04
SP3 9664 1.02584 0 0.02 0.00
SP5 14 496 1.02584

Figure 5.6: Relative error per assembly between SP1 and SP5 in BIBLIS 2D.
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5.5.4 AER Benchmark

The performance of the SPN approximation is also studied for the three dimen-
sional hexagonal VVER-440 reactor. This reactor is defined in Appendix B.11.

Table 5.4 shows the results obtained for the fundamental eigenvalue, keff, using
SP1,SP3 andSP5 approximations. Also, the numberofDoFs is shown and themean
relative and maximum relative difference for the axial power between both SP1,
SP3 approximation and SP5 approximation are displayed for the reactor configura-
tion. The radial distribution of the error is shown in Figure 5.7. Also, the relative
error using the SP3 option of PARCS code (Downar et al., 2009) are included in this
Figure. Figure 5.8 shows the axial power distribution for the SPN approximation
in this reactor. The axial difference in neutronic power distribution between both
SP1 and SP3 approximations and SP5 are shown also in Figure 5.9. It can be seen
that SP1 approximation has a maximum axial error above 1.6% while SP3 and SP5
almost present identical results, their axial difference is less than 0.1%.

Table 5.4: Comparative results for VVER-440 reactor.

N DoFs keff �keff (pcm) Á̄ (%) Ámax

1 857 882 1.01138 127 1.56 0.05
2 1 715 764 1.01261 4 0.04 0.00
3 2 573 646 1.01265 0
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Figure 5.7: Radial distribution of errors for VVER-440 reactor.
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Figure 5.8: Axial power distribution for VVER-440 reactor.
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Figure 5.9: Axial errors distribution for VVER-440 reactor.
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5.5.5 IAEA 3D

The performance of the SPN approximation is also studied for the three dimen-
sional IAEA-3D reactor with rectangular geometry (American Nuclear Society,
1977). This reactor is defined in Appendix B.8.

Table 5.5 shows the results obtained for the fundamental eigenvalue, keff, using
SP1, SP3 and SP5 approximations. The radial distribution of the error is shown
in Figure 5.10 and Figure 5.11 shows the axial power distribution for the SPN
(N = 1, 3, 5) approximations. The axial difference in neutronic powerdistribution
between both SP1 and SP3 approximations and SP5 are shown in Figure 5.12. It
can be seen that SP1 approximation has a maximum axial error above 1.2% while
SP3 and SP5 almost present identical results, their axial difference is less than
0.1%. Again we can observe that SP3 approximation improves diffusion theory
result without an excessive increment of the computational cost. SP5 does not
give any relevant improvement compared to SP3 .

Table 5.5: Comparative results for IAEA 3D reactor.

N DoFs keff �keff (pcm) Á̄ (%) Ámax

1 263 552 1.02913 59 0.79 0.02
2 527 104 1.02971 1 0.03 0.00
3 790 656 1.02972 0 0.00 0.00
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Figure 5.10: Radial distribution of errors for IAEA 3D reactor.
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Figure 5.11: Axial power distribution for IAEA 3D reactor.
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Figure 5.12: Axial errors distribution for IAEA 3D reactor.
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6
Homogenization and
Discontinuity Factors

6.1 Introduction

A nuclear core typically consists of around 150 to 700 fuel assemblies measuring
from 10 cm to 30 cm in radial size and slightly less than 4 m axially. Also, each
one of the fuel assemblies is constituted by typically hundreds of solid fuel pins
containing fissile nuclei surrounded by cladding regions, coolant, structural ele-
ments, burnable poisons, water channels, control rods, and so on (Stacey, 2007).
In other words, hundreds of thousands of heterogeneous regions.

To solve a full heterogeneous reactor core is computationally challenging and
most of the times unaffordable because of the complexity of the spatial domain
and the fine angular and energy discretization required to accurately solve it. To
reduce the computational cost, this problem is usually solved with a scheme con-
sisting on two stages of calculation for different scales through a homogenization
process. The first stage is a very detailed energy and spatial calculation on a ref-
erence domain to obtain cross sections averaged over energy and space, which
can be later used in few group global core calculations in the second stage of the
method.

In this way, spatial homogenization consists in replacing heterogeneous sub-
domains by homogeneous ones, in such a way that the homogenized problem
provides fast and accurate average results. Nuclear engineering homogenization
makes use of the periodicity of the geometry of the core. Even though each assem-
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bly and pin contains different nuclear enrichments, they have the same geometry
and similar neutron flux behaviour. Because the homogenized function to be
calculated is smoother than the heterogeneous one, the original exact transport
operator can be replaced with a low-order transport operator that eliminates
some of the complexity of the original problem (Sanchez, 2009). For full core
calculations the neutron diffusion equation in the approximation of two energy
groups is usually employed. For more precision, SP3 neutron transport approxi-
mation with up to 8 energy groups can be used. Then, the global solution can be
reconstructed approximately using the previously computed isolated heteroge-
neous subdomain solutions multiplied by the average values of the solution on
the subdomain obtained from the homogenized problem over the whole domain.

A first step in a homogenizationmethodology is to choose heterogeneous reactor
properties that should be reproduced when the homogenized problem is solved.
Usually, these quantities are the subdomain averaged reaction rates, the surface-
averaged net currents and the multiplicative constant of the reactor, which is
implicitly conserved if the two aforementioned quantities are preserved.

In the generalized equivalence theory (Smith, 1986), which is an extension of
Koebke’s homogenization method (Wagner and Koebke, 1983), flux discontinu-
ity factors are introduced, forcing a jump for the neutron flux between different
homogenized regions. Different homogenization strategies and definitions of dis-
continuity factors exist, such as the flux discontinuity ratios (Sanchez,Dante, and
Zmijarevic, 2013), the current discontinuity factors (Sanchez, 2009) or the consis-
tent discontinuity factors (Trahan and Larsen, 2015), among others. In another
way, the superhomogenization procedure (SPH) introduces corrective factors to
normalize the homogenized cross sections to produce the correct reaction rates
in the homogenized problem (Kavenoky, 1978; Hébert, 1981; Hébert andMathon-
niere, 1993; Hébert, 1993). The SPH corrective factors are calculated through an
iterative procedure that maintains the continuity of the solution in the homoge-
nized problem. Also, differentmathematical justifications of the homogenization
process in periodic lattices have been developed (Allaire and Bal, 1999; Allaire
and Capdeboscq, 2000).

Discontinuity factor methodologies were developed for nodal methods because
a discontinuity in the neutron flux while maintaining continuous the neutron
current can be forced in a natural way in these methods. Most of finite element
methods look for the neutronic flux as a continuous function in the reactor core.
Thus, it is difficult to implement in such a methodology forced discontinuities
between adjacent subdomains. In this Chapter, an approach is proposed to use a
high order discontinuous Galerkin finite element method where the jump condi-
tion for the neutron flux is imposed in a weak sense using interior penalty terms.
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6.2 Generalized Equivalence Theory

For a long time, the preferred low order operator used for whole core calculations
has been the neutron diffusion equation and the homogenized regions have been
subdomains of the size of a fuel assembly. Because the computational resources
available have increased, the homogenized regions have decreased to the size of
a single pin and the low order operator relying on diffusion theory is being aban-
doned so that transport effects that occur at these smaller scales can be taken into
account. One could, for instance, use the Simplified PN (SPN) formulation (Larsen,
Morel, and McGhee, 1996). Homogenization errors for pin computations are the
main concern in these approximations, and they have been recently studied for
different problems (Kozlowski et al., 2011; Yu, Lu, and Chao, 2014). The main
issue has been the definition of the discontinuity factors for the SPN approxima-
tion in two- or three-dimensional problems (Yu and Chao, 2015; Chao, 2016b;
Chao, 2016a; Yamamoto, Sakamoto, and Endo, 2016). On the other hand, the SPN
approximation has been implemented using the finite element method (FEM) for
the spatial discretization (Turcksin, Ragusa, and Bangerth, 2010; Ragusa, 2010;
Zhang, Ragusa, and Morel, 2013). In this Chapter, we also investigate the use of
classical discontinuity factors for the correction of the homogenization error in
a FEM when using SPN as low order operator for pin-wise homogenization.

The rest of the Chapter is structured as follows. Section 6.2 summarizes the Gen-
eralized Equivalence theory for the diffusion theory. Then, Section 6.3 explains
the Discontinuous Galerkin method with interior penalties in order to force the
desired discontinuities between reactor regions. In Section 6.4, the method to
calculate the reference (exact) discontinuity factor is explained. In Section 6.5,
numerical results for the Discontinuous Galerkin method in one-dimensional
and two-dimensional problems for the diffusion equation are presented. In Sec-
tion 6.6, we extended the homogenization procedure to the SPN approximation.
In Section 6.7, we test the performance of the SPN neutron transport approxi-
mation using one-dimensional problems against the SPN solution with IP-FEM
without discontinuity factors, and against the classical diffusion theory with dis-
continuity factors in order show the importance of using discontinuity factors
for the homogenized equation. This Chapter rewrites the works published Vidal-
Ferràndiz et al., (2016b) and Vidal-Ferràndiz et al., (2018).

6.2 Generalized Equivalence Theory

A first step in a homogenization methodology is to choose the heterogeneous
reactor properties that would be reproduced when the homogenized problem
is solved. Usually, these quantities are the node averaged group reaction rates,
the surface-averaged group currents and the k-effective of the reactor, which
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is implicitly conserved if the two aforementioned quantities are preserved. In
this way, for every energy group g and every nuclear cross section �– g, the equa-
tions (Smith, 1986),

⁄

Vhr

�̂
hr
– g„̂g(r̨) dr̨ =

⁄

Vhr

�– g(r̨)„g(r̨) dr̨ , (6.1)

and ⁄

Shr

1
D̂

hr
g Ǫ̀„̂g(r̨)

2
dS̨ =

⁄

Shr

1
Dg(r̨)Ǫ̀„g(r̨)

2
dS̨ , (6.2)

must be satisfied, where Vhr and Shr are the volume of the homogenized region
hr and its limiting surface, respectively; „g is the solution of the heterogeneous
problem and „̂g is the solution obtained using the homogenized parameters �̂

hr
– g

and D̂
hr
g .

The determination of the homogenized parameters from equation (6.1) requires
the knowledge of the heterogeneous solution, „g and the homogenized solution
„̂g, which depends on the homogenized parameters. To overcome this difficulty,
an approximation must be done. The homogenized parameters are considered to
be constant for every region Vk, thus, expression (6.1) can be rewritten as

�̂
hr
– g =

s
Vhr

�– g(r̨)„g(r̨) dr̨
s

Vhr
„g(r̨) dr̨

, (6.3)

where the average value of the homogeneous flux has been approximated by the
average value of the heterogeneous flux, i.e.,

⁄

Vhr

„̂g(r̨) dr̨ ¥

⁄

Vhr

„g(r̨) dr̨ , (6.4)

and the diffusion coefficient can be expressed

D̂
hr
g =

s
Shr

1
Dg(r̨)Ǫ̀„g(r̨)

2
dS̨

s
Shr

Ǫ̀„̂g(r̨) dS̨
. (6.5)

When looking at the homogenized diffusion coefficients in equation (6.5), we see
that they are, in general, different for each surface, and this makes impossible to
define constant diffusion coefficients in each homogenized region. To solve this
problem, some conditions imposed to the solution of the homogenized region
have to be relaxed. Different approaches to relax these conditions lead to dif-
ferent homogenization methods. In the generalized equivalence theory (Smith,

102



6.2 Generalized Equivalence Theory

1986), which is an extension of Koebke’s homogenization method (Wagner and
Koebke, 1983), flux discontinuity factors are introduced, relaxing the condition
of continuity of the neutron flux in the interior faces of the homogenized regions.

Figure 6.1: Reference discontinuity factors.

Figure 6.2: Assembly or pin discontinuity factors.

In this theory, the homogenizeddiffusion coefficients are computedas flux-volume
weighted parameters, that is,

1

D̂g

=

s
Vhr

1
Dg(r̨)„g(r̨) dr̨

s
Vhr

„g(r̨) dr̨
, (6.6)

where we have used the equation (6.4) to avoid the homogeneous flux in the
formulation.

For a given interface Sj limiting two adjacent homogenized regions, the energy-
dependent discontinuity factors are defined as interface constants f

≠
g,j , f

+
g,j , such
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that
f

≠
g,j

⁄

Sj

„̂
≠
g (r̨)dS = f

+
g,j

⁄

Sj

„̂
+
g (r̨)dS , (6.7)

where „̂
≠
g (r̨) and „̂

+
g (r̨) are the lateral (directional) limits of the homogenized

flux in the surface Sj viewed from the two different regions sharing this surface
(see Figures 6.1 and 6.2). A possible definition of these discontinuity factors is

f
≠
g,j =

s
Sj

„
≠
g dS

s
Sj

„̂
≠
g dS

, f
+
g,j =

s
Sj

„
+
g dS

s
Sj

„̂
+
g dS

, (6.8)

so continuity for the heterogeneous reconstructedflux is enforced. Condition (6.7)
deals with averaged values in the surface Sj , so the generalized equivalence the-
ory can be easily implemented into nodal methods, which use nodal-average
fluxes and surface-average currents (Smith, 1986).

At this point we need the value of the heterogeneous and homogeneous fluxes,
„g(r̨) and „̂g(r̨) respectively, to generate the discontinuity factors and the ho-
mogenized cross sections. Different choices for these fluxes generate different
homogenization parameters. Two techniques are considered in this work. The
first one consists of using the heterogeneous flux calculated for the whole reactor
for generating the Reference Cross Sections (RXS), and appropriate fixed current
boundary conditions from the heterogeneous solution, together with the global
ke� and these RXS to generate the homogeneous flux in a particular region con-
sidered here as a fuel assembly. Thus, Reference Discontinuity Factors (RDF) are
generated using equation (6.8) (See Figure 6.1). This technique provides exact ho-
mogenized parameters, but it requires the solution of the whole heterogeneous
problem to generate the homogenized parameters, what makes it not practical.
However, because of its reduced homogenization error, it is used here to verify
that the discontinuity factors technique is successfully implemented within the
interior penalty finite element method.

To circumvent the need of the whole core heterogeneous solution, the second
technique studied here consists of considering that the heterogeneous flux is
calculated for a single assembly or pin with reflective boundary conditions. This
approach would be accurate if the different assemblies composing the core were
similar to the assembly being homogenized. Thus, with the assembly or pin het-
erogeneous flux, we generate the Assembly homogenized Cross Sections (AXSs)
or Pin homogenized Cross Section (PXSs), and the homogenized flux will be the
solution of the homogenized problem with reflective boundary conditions, so
we can define the Assembly Discontinuity Factors (ADFs) or Pin Discontinuity
Factors (PDFs) with these fluxes (See Figure 6.2). This approach avoids to need
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the heterogeneous solution for the whole core, but it introduces homogenization
errors, which can be very large in a situation where the assemblies composing the
core are very different to eachother. The accuracy of the homogenizedparameters
can be increased by iterating between the solution of the homogenized problem
and the homogenization process, using more accurate boundary conditions for
the single assembly calculations that take into account the neighbourhood of
the assembly. This kind of technique is not considered here, because the main
focus of this work is the introduction of the flux discontinuity factors in the finite
element formulation.

6.3 Discontinuous Galerkin method with interior penalty

Discontinuous Galerkin methods, were introduced in the early seventies to study
neutron transport equations in Reed and Hill, (1973) and Lesaint and Raviart,
(1974). They have become very popular to solve problems arising from hyperbolic
type partial differential equations. Because of the versatility of these methods,
they have been also applied to elliptic and parabolic problems (Arnold et al., 2000;
Arnold et al., 2002).

Discontinuous Galerkin (DG) methods define an approximation to the solution
by means of a variational formulation that tries to enforce the partial differential
equation of the model together with the boundary and continuity conditions for
the solution in a weak sense (Brezzi et al., 2006a). In this way, the DG method
establishes a linear relationship between the residual of the approximation inside
each element and its jumps across inter-element boundaries. This yields a formal-
ism, that in a natural way, allows imposing jumps across the element interfaces
without affecting the current as proposed in the generalized equivalence theory
for homogenized reactors. It makes possible to use the finite element method for
coarse-mesh reactor calculation after the homogenization procedure together
with discontinuity factors, providing a suitable theoretical framework for devel-
oping new methodologies and more advanced schemes for the approximation of
the homogenized neutron diffusion equation.

In the following, we present the Discontinuous Galerkin method proposed for the
neutron diffusion equation with discontinuity factors, both for one and multi-
dimensional problems.
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6.3.1 One-dimensional problems

To show the method, we start with a source problem associated with the mono-
energetic one-dimensional diffusion equation

≠
ˆ

ˆx

3
D

ˆ„

ˆx

4
+ �a„ = q , (6.9)

for a reactor �. We choose a partition of the one-dimensional domain into K

subdomains (�k) with edges x0, x1, . . ., xK . Multiplying equation (6.9) by a test
function, v, and integrating over � we obtain

≠

⁄

�
v

ˆ

ˆx

3
D

ˆ„

ˆx

4
dx +

⁄

�
v�a„ dx =

⁄

�
vq dx . (6.10)

Integrals defined over the whole domain in equation (6.10) can be written as the
sum of integrals over each sub-domain as follows

≠

Kÿ

e=1

⁄ xe

xe≠1

v
ˆ

ˆx

3
D

ˆ„

ˆx

4
dx +

Kÿ

e=1

⁄ xe

xe≠1

v�a„ dx =

Kÿ

e=1

⁄ xe

xe≠1

vq dx . (6.11)

After integrating by parts, equation (6.11) can be written as
Kÿ

e=1

⁄ xe

xe≠1

ˆv

ˆx
D

ˆ„

ˆx
dx ≠

Kÿ

e=1

⁄ xe

xe≠1

ˆ

ˆx

3
vD

ˆ„

ˆx

4
dx

+

Kÿ

e=1

⁄ xe

xe≠1

v�a„ dx =

Kÿ

e=1

⁄ xe

xe≠1

vq dx .

(6.12)

Assuming that the neutronic flux and the diffusion coefficients can be discontin-
uous and making use of lateral limits, expression (6.12) is expressed as

≠

Kÿ

e=1

3
v

≠
e+1D

≠
e+1

ˆ„
≠
e

ˆx
≠ v

+
e D

+
k

ˆ„
+
e

ˆx

4
+ De

Kÿ

e=1

⁄ xe

xe≠1

ˆv

ˆx

ˆ„

ˆx
dx

+

Kÿ

e=1

⁄ xe

xe≠1

v�a„ dx =

Kÿ

e=1

⁄ xe

xe≠1

vq dx.

(6.13)

where the piece-wise constant diffusion coefficientDe has moved outside of the
integral, and „

±
e is defined as the lateral limit of the flux at point xe (considering

the flux as belonging to the previous or posterior subdomain), i.e.,

„
±
e = lim

xæx±
e

„(x) . (6.14)
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The first term of this equation, may be written as

T („) =

Kÿ

e=1

3
v

+
e D

+
e

ˆ„
+
e

ˆx
≠ v

≠
e+1D

≠
e+1

ˆ„
≠
e

ˆx

4

= v
+
0 D

+
0

ˆ„
+
0

ˆx
+

Kÿ

e=1

3
v

+
e D

+
e

ˆ„
+
e

ˆx
≠ v

≠
e D

≠
e

ˆ„
≠
e

ˆx

4
≠ v

≠
KD

≠
K

ˆ„
≠
K

ˆx
.

(6.15)

Using the identity

v
+
e D

+
e

ˆ„
+
e

ˆx
≠ v

≠
e D

≠
e

ˆ„
≠
e

ˆx
= ≠

1

2

!
v

+
e + v

≠
e

" 3
D

≠
e

ˆ„
≠
e

ˆx
≠ D

+
e

ˆ„
+
e

ˆx

4

≠
1

2

!
v

≠
e ≠ v

+
e

" 3
D

+
e

ˆ„
+
e

ˆx
+ D

≠
e

ˆ„
≠
e

ˆx

4
,

and introducing the notation

{v}e =
1

2

!
v

+
e + v

≠
e

"
,

;
D

ˆ„

ˆx

<

e

=
1

2

3
D

+
e

ˆ„
+
e

ˆx
+ D

≠
e

ˆ„
≠
e

ˆx

4
,

JvKe = v
≠
e ≠ v

+
e ,

s
D

ˆ„

ˆx

{

e

= D
≠
e

ˆ„
≠
e

ˆx
≠ D

+
e

ˆ„
+
e

ˆx
,

the term (6.15), is rewritten as

T („) = v
+
0 D

+
0

ˆ„
+
0

ˆx
≠

Kÿ

e=1

A

{v}e

s
D

ˆ„

ˆx

{

e

B

≠

Kÿ

e=1

3
JvKe

;
D

ˆ„

ˆx

<

e

4

≠v
≠
KD

≠
K

ˆ„
≠
K

ˆx
.

We are looking for solutions of the neutron diffusion equation that satisfy the
continuity of the neutron current in the interior vertices of the mesh and that
satisfy also the discontinuity factors condition in these vertices. That is,

s
D

ˆ„

ˆx

{

e

= 0 , (6.16)

J„Kf, e = f
≠
e „

≠
e ≠ f

+
e „

+
e = 0 , e = 1, 2, . . . , K, (6.17)

where f
+
e and f

≠
e are the right and left discontinuity factors for vertex xe, respec-

tively.
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Using the continuity condition for the current in the interior vertices from equa-
tion (6.16), the term (6.15) can be expressed as

T („) = v
+
0 D

+
0

ˆ„
+
0

ˆx
≠

Kÿ

e=1

3
JvKe

;
D

ˆ„

ˆx

<

e

4
≠ v

≠
KD

≠
K

ˆ„
≠
K

ˆx
, (6.18)

while preserving the consistency of the formulation (the weak formulation is sat-
isfied by the solution of the original strong formulation defined by equation (6.9)).

To stabilize this method, a penalty term is introduced (Brezzi et al., 2006a),

P („) :=

Kÿ

e=1
se

1
J„Kf, e JvKe

2
, (6.19)

which does not affect the consistency of the formulation (P („) = 0 when „ sat-
isfies the discontinuity factors condition (6.17)), and the new term T

sp
(„) :=

T („) + P („) is written as

T
sp

(„) =v
+
0 D

+
0

ˆ„
+
0

ˆx
≠ v

≠
KD

≠
K

ˆ„
≠
K

ˆx

≠

Kÿ

e=1

3;
D

ˆ„

ˆx

<

e

JvKe

4
+

Kÿ

e=1
se

1
J„Kf, e JvKe

2
.

(6.20)

Then, equation (6.13) is rewritten as
Kÿ

e=1

⁄ xe

xe≠1

ˆv

ˆx
D

ˆ„

ˆx
dx +

Kÿ

e=1

⁄ xe

xe≠1

v�a„ dx ≠

Kÿ

e=1

3;
D

ˆ„

ˆx

<

e

JvKe

4

+

Kÿ

e=1
se

1
J„Kf, e JvKe

2
+ v

+
0 D

+
0

ˆ„
+
0

ˆx
≠ v

≠
KD

≠
K

ˆ„
≠
K

ˆx
=

Kÿ

e=1

⁄ xe

xe≠1

vq dx .

(6.21)

Boundary conditions remain to be introduced in the method to be completely
defined. The boundary conditions are imposed in a weak form (Rivière, 2008) and
this can be made modifying the terms,

v
+
0 D

+
0

ˆ„
+
0

ˆx
≠ v

≠
KD

≠
K

ˆ„
≠
K

ˆx
, (6.22)

in equation (6.21). Hence, if zero current conditions are imposed, these terms
are identically zero. If zero flux boundary conditions are imposed these terms
remain unaltered. And if albedo boundary conditions are considered,

≠D
+
0

ˆ„
+
0

ˆx
= –0„

+
0 , D

≠
K

ˆ„
≠
K

ˆx
= –K„

≠
K .
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Thus, the terms (6.22) are substituted by

≠ v
+
0 –0„

+
0 ≠ v

≠
K–K„

≠
K . (6.23)

This scheme requires the user to specify a parameter, se, which is known as a
penalty parameter. This parameter can be viewed as a Lagrange multipliers con-
dition to enforce the discontinuity factor condition in the finite element formu-
lation. If the value of this parameter is not sufficiently large, the approximate
solution is unstable. On the otherhand, for an arbitrarily large value of the penalty
parameter the condition number for the resulting matrices of the discretization
would degenerate (Shahbazi, 2005). The development of optimal lower bounds for
these parameters is out of the scope of this work, so here the penalty parameters
are chosen, based in the expressions provided by Epshteyn and Rivière, (2007)
and Shahbazi, (2005), as a large enough parameter ensuring convergence for the
method.

Using the discontinuity factor condition (6.17), also a symmetrizing term could
be introduced in the method, which is identically zero for the exact solution of
the problem,

◊

Kÿ

e=1

3
J„Kf, e

;
D

ˆv

ˆx

<

e

4
, (6.24)

thus equation (6.21) can be substituted by

Kÿ

e=1

⁄ xe

xe≠1

ˆv

ˆx
D

ˆ„

ˆx
dx +

Kÿ

e=1

⁄ xe

xe≠1

v�a„ dx

≠

Kÿ

e=1

3;
D

ˆ„

ˆx

<

e

JvKe

4
+ ◊

Kÿ

e=1

3
J„Kf, e

;
D

ˆv

ˆx

<

e

4
+

Kÿ

e=1
se

1
J„Kf, e JvKe

2

+ v
+
0 D

+
0

ˆ„
+
0

ˆx
≠ v

≠
KD

≠
K

ˆ„
≠
K

ˆx
=

Kÿ

e=1

⁄ xe

xe≠1

vq dx , (6.25)

where different values for the parameter ◊ = {≠1, 0, 1} can be selected, obtaining
different methods (Sun and Wheeler, 2005). Selecting ◊ = ≠1 a method similar
to the Symmetric Interior Penalty Galerkin (SIPG) method is obtained. For ◊ = 1

it gives the analogous to the Non-symmetric Interior Penalty Galerkin (NIPG)
method, and ◊ = 0 corresponds to the Incomplete Interior Penalty Galerkin (IIPG)
method. The symmetrizing term (6.24) is different from the one used in interior
penaltymethods, because it has the jumpwith respect to the discontinuity factors
instead of the classical jump respect to the continuity of the solution. Thus, it

109



Chapter 6. Homogenization and Discontinuity Factors

does not provide symmetry for the linear systems when using the SIPG method,
and has not known advantages for the NIPG method. because no known reason
justifies using one of the other methods, ◊ = 0 is considered in our formulation.

6.3.2 Multidimensional problems

The interior penalty finite element method can be generalized to problems with
multidimensional geometry. For this kind of problems, equation (6.9) is written
as

≠ Ǫ̀DǪ̀„ + �a„ = q . (6.26)

This equation is defined for a reactor �, which is divided into subdomains �1,

�2, . . . , �N , where the homogenized cross sections are considered as constant
values.

Multiplying equation (6.26) by a test function, v, and integrating over �, it is
obtained

≠

⁄

�
vǪ̀DǪ̀„ dr̨ +

⁄

�
v�a„ dr̨ =

⁄

�
vq dr̨ ,

which can be rewritten as

≠

Kÿ

k=1

⁄

�k

vǪ̀DǪ̀„ dr̨ +

⁄

�
v�a„ dr̨ =

⁄

�
vq dr̨ . (6.27)

Integrating by parts the first term and using Green’s theorem, we rewrite the first
term of equation (6.27) as

≠

⁄

�k

vǪ̀DǪ̀„ dr̨ = D

⁄

�k

Ǫ̀vǪ̀„ dr̨ ≠

⁄

ˆ�k

vDǪ̀„ n̨dS .

In this way, equation (6.27), can be written as

Kÿ

k=1
D

⁄

�k

Ǫ̀vǪ̀„ dr̨ ≠

Kÿ

k=1

⁄

ˆ�k

vDǪ̀„ n̨dS +

⁄

�
v�a„ dr̨ =

⁄

�
vq dr̨ . (6.28)

We decompose the surface integrals as a sum over the different faces limiting
each node, distinguishing the set of interior faces E

0
h from the set of faces placed

at the boundary of the reactor, E
ˆ
h . In this way, the set of all points that define

the partition into subintervals Eh := E
0
h fi E

ˆ
h . For two adjacent elements �i and
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�j , sharing the interior face e, the average and jump operators are defined by
Ó

DǪ̀„

Ô

e
=

1

2

1
DiǪ̀„

≠
i + DjǪ̀„

+
j

2
, {v}e =

1

2

1
v

≠
i + v

+
j

2
,

r
DǪ̀„

z

e
= DiǪ̀„

≠
i n̨i + DjǪ̀„

+
j n̨j , JvKe = v

≠
i n̨i + v

+
j n̨j ,

(6.29)

whereDi,„±
i , v

±
i are the lateral limits in the surface e ofD,„ and v in the node�i;

and n̨i is the normal vector to the face e pointing outwards of node�i
1. Collecting

together the integrals over the same face and operating in a similar way as it has
been done for the one-dimensional case, using the definitions (6.29), we set

≠

Kÿ

k=1

⁄

ˆ�k

vDǪ̀„ n̨ dS = ≠

ÿ

bœEˆ
h

⁄

b
vDǪ̀„ n̨ dS

≠

ÿ

eœE0
h

⁄

e

Ó
DǪ̀„

Ô

e
JvKe n̨ dS ≠

ÿ

eœE0
h

⁄

e

r
DǪ̀„

z

e
{v}e n̨ dS .

(6.30)

We are looking for a solution, „, of the neutron diffusion equation (6.26) on each
of the subdomains �k such that in each interior surface, e that is shared by sub-
domains �i and �j , the neutron current is continuous and the assembly discon-
tinuity factors condition is satisfied. These conditions can be expressed as

r
DǪ̀„

z

e
= 0 , (6.31)

J„Kf, e = f
≠
i „in̨i + f

+
j „jn̨j = 0 , (6.32)

which are imposed in a weak form in the interior penalty method.

Using the current continuity condition (6.31), equation (6.30) is rewritten as

≠

Kÿ

k=1

⁄

�e

vDǪ̀„ n̨ dS = ≠

ÿ

bœEˆ
h

⁄

b
vDǪ̀„ n̨ dS ≠

ÿ

eœE0
h

⁄

e

Ó
DǪ̀„

Ô

e
JvKe n̨dS.

(6.33)
1In the jump operator each addend have different sign as n̨i = ≠n̨j for the same edge.
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As in the one-dimensional case, using the assembly discontinuity factors condi-
tion (6.32), a penalty term is introduced, thus,

≠

Kÿ

k=1

⁄

�e

vDǪ̀„ dr̨ = ≠

ÿ

bœEˆ
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⁄

b
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≠
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Ó
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e
se J„Kf, e JvKe dS .

(6.34)

Inserting the expression (6.34) into equation (6.28) themultidimensional interior
penalty method for the neutron diffusion equation is obtained.

Kÿ

k=1
D

⁄

�e

Ǫ̀vǪ̀„ dr̨ +

⁄

�
v�a„ dr̨ ≠

ÿ

eœE0
h

⁄

e

Ó
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Ô

e
JvKe n̨ dS

+

ÿ

eœE0
h

⁄

e
se J„Kf, e JvKe n̨ dS ≠

ÿ

bœEˆ
h

⁄

b
vDǪ̀„n̨ dS =

⁄

�
vq dr̨ .

(6.35)

The boundary conditions in the method affect the surface integrals over the ex-
ternal faces, E

ˆ
h , and the changes are similar to the ones exposed in the one-

dimensional case.

The penalty parameters se are chosen as a large enough parameter ensuring con-
vergence for the method, based in the expressions provided by Epshteyn and
Rivière, (2007) and Shahbazi, (2005).

As in the one-dimensional case, using the discontinuity factors condition (6.32),
a symmetrizing term could be introduced, obtaining
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eœE0
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e
se J„Kf, e JvKe dS ≠

ÿ

bœEˆ
h

⁄

e
vDǪ̀„ n̨ dS =

⁄

�
vq dr̨ .

(6.36)

Nevertheless, for the same reason as in one-dimensional problems,no symmetriz-
ing term is considered in our formulation (◊ = 0).

112



6.4 Reference calculations

6.4 Reference calculations

In order to calculate the best possible homogenized parameters, the heteroge-
neous solution over the whole reactor is used to calculate the reference values
of the homogenized coefficients (cross sections and discontinuity factors). The
computed parameters are called reference homogenized cross sections (RXS) and
reference discontinuity factors (RDFs) to differentiate them from the isolated
assembly or pin parameters, which are computed using the heterogeneous flux
in an isolated assembly with reflective boundary conditions. Obviously, this ref-
erence homogenized calculation does not have any practical application because
the full heterogeneous reactor is must be solved first. However, the reference ho-
mogenized solution can be used to distinguish between the error when solving
the homogenized problem, and the error of the homogenization procedure.

To compute the reference cross sections, the neutron diffusion equation is solved
taking into account the heterogeneous composition of each one of the assemblies
composing the reactor, obtaining the heterogeneous neutron flux, „g (r̨). Refer-
ence cross sections have been calculatedwith the usual flux-weightingmethod by
means of equation (6.3) and (6.6) (Smith, 1986). A calculation method of the ref-
erence discontinuity factors has been proposed in one dimensional homogenized
regions and its extension to multidimensional homogenized regions.

6.4.1 One-dimensional homogenized regions

First, the solution for the heterogeneous whole core reactor is obtained, „g(x).
Using this flux, the reference homogenized cross sections, �̂–, g and D̂g are ob-
tained for the different homogenized regions. The reference discontinuity factors
at vertex xi are defined as

f
≠
g, i =

„
≠
g (xi)

„̂
≠
g (xi)

, f
+
g, i≠1 =

„
+
g (xi)

„̂
+
g (xi)

, (6.37)

depending also on the homogenized flux. This homogenized flux is the solution
of a boundary value problem, defined in one-group of energy (see Figure 6.3) as

≠ D̂i
d

2

dx2 „̂(x) + �̂a, i „̂(x) ≠
1

⁄
‹�̂f, i „̂(x) = 0 (6.38)
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xi xi+1

Jx(xi+1)Jx(xi)

Figure 6.3: One dimensional homogenized region.

with the boundary conditions

≠D̂i
d„̂

dx
(xi) = Ĵx(xi),

≠D̂i
d„̂

dx
(xi+1) = Ĵx(xi+1).

These boundary conditions and the ⁄ present in equation (6.38) are obtained
from the whole core heterogeneous reactor calculation, using

Ĵx(xi) ¥ Jx(xi) = Di
d„

dx
(xi) ,

Ĵx(xi+1) ¥ Jx(xi+1) = Di
d„

dx
(xi+1) .

Although, problem (6.38) has an analytical solution for one energy group approx-
imation, the solution of the same problem for the multigroup approximation
has to be computed numerically. The numerical method selected to solve this
problem has been a high-order continuous finite element method as the one pre-
sented by Vidal-Ferràndiz et al., (2014). The weak form of this problem for a test
function Ï can be written as

D̂i

⁄ xi

xi≠1

dÏ

dx

d„̂

dx
dx+

A

�̂a, i ≠
‹�̂f, i

⁄

B ⁄ xi

xi≠1

Ï „̂ dx = Ï Ĵx(xi)≠Ï Ĵx(xi+1) (6.39)

which after spatial discretization becomes the algebraic linear system

A� = b , (6.40)

where � is the vector of coefficients of the polynomial expansion of the homoge-
neous neutron flux. The elements of the matrix A and the right hand side vector
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b are given by

Alm = D̂i

⁄ xi

xi≠1

dNl

dx

dNm

dx
dx +

A

�̂a, i ≠
‹�̂f, i

⁄

B ⁄ xi

xi≠1

Nl Nm dx ,

bl =

Y
]

[

+NlĴx(xi) if l = 0,
0 if l ”= 0, p,

≠NlĴx(xi+1) if l = p.

where Nl are the shape function considered and p is the polynomial truncation
order chosen.

6.4.2 Multidimensional homogenized regions

The method exposed above used to obtain the homogeneous flux contributing
to the discontinuity factors definition, can be generalized to multidimensional
homogenized regions by alternatively solving coupled one-dimensional problems
following the lines presented by Smith, (1986). To present the method, a two-
dimensional homogenized region, like the one shown in Figure 6.4, is considered.

(xi, yj)

Jx(xi+1)Jx(xi)

(xi+1, yj)

(xi+1, yj+1)(xi, yj+1) Jy(yj+1)

Jy(yj+1)

Figure 6.4: Two dimensional homogenized region.
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The Reference Discontinuity Factors for the faces containing the vertices (xi, yj)

and (xi, yj+1) (parallel to the y axis) are defined by

f
≠
g, i =

s yj+1
yj

„
≠
g (xi, y) dy

s yj+1
yj

„̂
≠
g (xi, y) dy

; f
+
g, i≠1 =

s yj+1
yj

„
+
g (xi, y) dy

s yj+1
yj

„̂
+
g (xi, y) dy

. (6.41)

The definition of the discontinuity factors for the other faces of the homogenized
regions (parallel to the x axis) is similar. In order to calculate the discontinuity
factors, the homogenized flux has to be calculated. Let’s consider the neutron
diffusion equation for the two-dimensional homogenized regions i

≠ Ǫ̀D̂iǪ̀„̂(x, y) + �a, i„̂(x, y) = ‹�f, i„̂(x, y) . (6.42)

Integrating along the y direction, equation (6.42) can be written as the one-
dimensional problem

≠ D̂i
d

2

dx2 �̂(x) +

A

�̂a, i ≠
‹�̂f, i

⁄

B

�̂(x) = S(x) , (6.43)

where the unknown, �̂(x), is defined by

�̂(x) =

⁄ yi+1

yi

„̂(x, y)dy ,

and the leakage

S(x) = D̂i

⁄ yi+1

yi

d
2

dy2 „̂(x, y)dy ,

has been introduced, which is computed using the previously calculated hetero-
geneous neutron flux. The boundary conditions considered for this problem are
as follows

Ĵx(xi) = ≠D̂i
d

dx
�̂(xi) =

⁄ yj+1

yj

d

dx
„(xi, y) dy,

Ĵx(xi+1) = ≠D̂i
d

dx
�̂(xi+1) =

⁄ yj+1

yj

d

dx
„(xi+1, y) dy,

which are also obtained from the heterogeneous neutron flux.

The resulting problem is a one-dimensional source problem similar to the one
exposed in Section 6.4.1, which is solved using the finite element method. A
similar procedure is used to obtain the RDFs in the other faces of the region
(parallel to the y axis).
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6.5 Numerical Results

To assess the capabilities of the proposed interior penalty method with assembly
discontinuity factors, a code has been implemented in the standard finite ele-
ment library Deal.II (Bangerth, Hartmann, and Kanschat, 2007) using Lagrange
polynomials.

To check the performance of the discontinuous Galerkin method in introducing
the discontinuity factor conditions between the interior faces of adjacent nodes,
first we will use the reference cross sections (RXSs) and reference assembly dis-
continuity factors (RDFs) computed from the heterogeneous flux. These results
are complemented with the calculations using the homogenized cross sections
(AXSs) and the assembly discontinuity factors (ADFs), calculated considering an
isolated assembly with reflecting boundary conditions during the homogeniza-
tion process.

Several one and two-dimensional benchmark problems have been analysed and
the results obtained with the finite element method have been compared with
the results obtained with the code PARCS (Downar et al., 2009). The one dimen-
sional benchmarks are slabs of assemblies which are simplified representations of
Boiling Water Reactor (BWR) configurations, while the two dimensional bench-
mark problems are two small subsets of the CISE core and the complete CISE
core (Rahnema and Nichita, 1997).

6.5.1 One dimensional problems

Three different one dimensional problems representing BWR assemblies are stud-
ied. The benchmark is fully defined in Appendix B.5. Configurations are sorted
by heterogeneities between assemblies. Configuration 1 is composed of similar
assemblies, Configuration 2 puts together heterogeneous assemblies and configu-
ration 3 joins very heterogeneous assemblies in an artificial way, which is used to
test the method in an extreme heterogeneous situation. Zero-current boundary
conditions are imposed at the edges of the system. All the calculation are made
using cubic polynomials in the finite element method.

In addition to the explained finite element calculations, two more cases are
presented for comparative purposes. The first one is done with the nodal code
PARCS (Downar et al., 2009) using discontinuity factors. All PARCS calculations
are made with 16 cells per assembly in order to achieve a reasonable accuracy for
these small problems. The reference solution is obtained using an heterogeneous
fine mesh calculation made with the finite element code.
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Relative errors are condensed using the root mean square (RMS) as defined in
equation (6.44)

RMS =

ı̂ıÙ 1q
i Vi

ÿ

i

Vi

3
Ïhom,i ≠ Ïhet,i

Ïhet,i

42
, (6.44)

whereÏhom,i andÏhet,i represent the homogeneous and the heterogeneous (refer-
ence) variable of interest (either fluxes or power averaged in homogenized region
i). Vi represent the measure of the region i (longitude in 1D and area in 2D).

Figure 6.5 shows the fast and thermal fluxes for the homogenized reactor associ-
ated with Configuration 1, making use of the discontinuity factors and without
using them. It is shown that a discontinuous solution for the flux is obtained with
the interior penalty finite element method proposed here.
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Figure 6.5: Fast and thermal homogeneous fluxes for the Configuration 1.

System ke� and assembly averaged fluxes and power errors for configurations 1,
2 and 3 are given in Tables 6.1, 6.2, and 6.3, respectively. In Table 6.1 it is shown
a very good behaviour for all the methods, being the solution with the RXS and
RDFs the most accurate. It is worth to notice that this problem represents the
less heterogeneous configuration, so the solution without discontinuity factors,
even for the worst one, is obtained with very good accuracy.

Table 6.2 shows the results for amore heterogeneous configuration. For this prob-
lem, the use of discontinuity factors becomes necessary. We can observe a great
improvement of the keff approximation, even if the errors in the flux are mostly
the same as without discontinuity factors. Again, a good agreement is found be-
tween the finite element method with ADFs and PARCS with ADFs. RDFs present
a null error as expected for one dimensional problems as the homogenization
process is exact for these problems.
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Table 6.1: Results for Configuration 1 core.

Eigenvalue Assembly Errors (%)
Method ke� �ke� Fast Thermal Power

(pcm) Flux Flux

FEM (No DFs) 1.31997 5 0.19 0.53 0.41
FEM (ADFs) 1.31991 1 0.05 0.06 0.04
PARCS (ADFs) 1.31990 2 0.05 0.04 0.03
FEM (RDFs) 1.31992 0 0.00 0.00 0.00
Heterogeneous 1.31992

Table 6.2: Results for Configuration 2 core.

Eigenvalue Assembly Errors(%)
Method ke� �ke� Fast Thermal Power

(pcm) Flux Flux

FEM (No DFs) 1.10280 1736 3.46 3.70 4.31

FEM (ADFs) 1.11937 150 1.34 1.34 3.64

PARCS (ADFs) 1.11955 132 1.32 6.04 3.71

FEM (RDFs) 1.12087 0 0.00 0.00 0.16

Heterogeneous 1.12087

For Configuration 3, the most heterogeneous among the ones chosen for the
one-dimensional problems, we observed that more accurate calculations (higher
order polynomial expansions for the FEM) are necessary in order to converge the
method, so 5th order degree FEM has been added to the calculations. Using ADFs,
we see that the FEM converges, when increasing the polynomial degree, to the
same solution as PARCS with ADFs. Using the RDFs it is also necessary to go to
5th degree to achieve accurate results. This is due to the strong heterogeneity of
the reactor, what makes also more challenging for the FEM to converge spatially
(the homogenization error is larger for this configuration, but also the error due
to the FEM approximation).
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Table 6.3: Results for Configuration 3 core.

Eigenvalue Assembly Errors(%)
Method ke� �ke� Fast Thermal Power

(pcm) Flux Flux

No DFs; p = 3 1.01061 1125 4.56 15.34 10.87

No DFs; p = 5 1.01443 743 4.58 13.52 6.24

ADFs; p = 3 1.02498 312 1.86 15.29 3.29

ADFs; p = 5 1.02829 644 2.85 16.77 4.79

PARCS (ADFs) 1.02865 680 3.38 17.00 5.23

RDFs; p = 3 1.02187 2 0.01 0.02 0.02

RDFs; p = 5 1.02186 1 0.00 0.00 0.00

Heterogeneous 1.02185

6.5.2 Multidimensional problems

The two-dimensional test problems chosen are based in theCISE benchmark (Rah-
nema and Nichita, 1997). They are fully defined in Appendix B.7. The layout for
the CISE core, together with the assembly definition, are shown in Figure B.10,
while the cross sections for the blade, water, the fuel A (fresh nuclear fuel) and
the fuel B (depleted nuclear fuel) used in the tests are given in Table B.7.

First, a small subset composed by four assemblies surrounding an inserted control
blade is considered, together with reflective boundary conditions. The geometry
for the proposed problem, named Small CISE, is shown in Figure B.9a. Within
this problem, the heterogeneities considered inside the reactor are taken into
account. In order to analyse the method against a more heterogeneous problem,
a non-realistic problem, calledModified Small CISE, is defined in Figure B.9b. This
problem is similar to the small CISE, but the control blade inside the assemblies
defined withmaterial A is removed. This causes the flux to have a strong gradient
on the interfaces, thus beingmore challenging for the homogenization procedure
to preserve the properties of the original problem. The third problem to be con-
sidered is the original whole core CISE reactor (see Figure B.10), together with
zero-flux boundary conditions.

An heterogeneous fine-mesh whole core calculation (Heterogeneous), with the
fine mesh shown in Figure B.10b, is used as reference solution. Then, after the
homogenization process, the different problems are solved using a coarse-mesh
of one cell per assembly, together with the different homogenized parameters
and discontinuity factors, both the isolated assembly homogenized data (ADFs),
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and the reference homogenized data (RDFs). The calculations are complemented
with the results obtained by PARCS with the ADFs (PARCS (ADFs)), in order to
verify the introduction of the discontinuity factors into the FEM. The calculations
with the Finite Element code, as in the previous section, were made using cubic
polynomials.

The results for the small CISE benchmark are shown in Table 6.4. We can see that
all the methods show very accurate solution. It is worth to note the agreement
between the FEM and PARCS when using ADFs, being the error due mostly to the
homogenization process, and corrected only by means of an improvement of the
homogenized data.

Table 6.4: Results for small CISE benchmark.

Eigenvalue Assembly Errors(%)
Method ke� �ke� Fast Thermal Power

(pcm) Flux Flux

No DFs 0.83184 89 0.68 1.02 1.06

ADFs 0.83183 60 0.71 1.05 1.09

PARCS (ADFs) 0.83184 59 0.72 1.06 1.09

RDFs 0.83248 5 0.11 0.10 0.10

Heterogeneous 0.83243

Table 6.5 shows the results for the Modified Small CISE benchmark. We can ob-
serve that the errors without using discontinuity factors are very big, while the
introduction of the discontinuity factors mitigate the error due to the homog-
enization process. Comparing the solution of FEM with ADFs and PARCS with
ADFs we observe that the two codes agree very well, and these errors can be re-
duced bymeans of improving the homogenization procedure, as we can see when
we use the RXSs and RDFs.

Table 6.6 shows the results for the whole CISE reactor problem. The main differ-
ences between this problem and the previous ones is that here we use zero-flux
boundary conditions, and that we have some assemblies (defining one layer of
reflector) composed only bymoderator. The use of zero-flux boundary conditions
produce higher flux gradients close to the reflector, making the problem more
challenging and thus requiring to increase the polynomial degree of the FEM.
Moreover, reflector assemblies should be considered inside a macro-assembly
while homogenizing the surrounding assemblies during the isolated assembly
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homogenization process, otherwise the homogenization error close to the reflec-
tor will be also higher.

Table 6.5: Result for the modified small CISE.

Eigenvalue Assembly Errors(%)
Method ke� �ke� Fast Thermal Power

(pcm) Flux Flux

No DFs 0.94615 5341 6.37 11.33 7.90

ADFs 0.92720 3446 4.01 4.77 5.57

PARCS (ADFs) 0.92755 3481 4.06 4.45 5.30

RDFs 0.88863 411 1.78 2.31 2.20

Heterogeneous 0.89274

Table 6.6: Results for CISE benchmark.

Eigenvalue Assembly Errors(%)
Method ke� �ke� Fast Thermal Power

(pcm) Flux Flux

No DFs; p = 3 0.94959 191 5.87 4.51 5.32

No DFs; p = 5 0.94955 195 5.66 4.28 5.08

ADFs; p = 3 0.95096 54 0.84 1.92 1.09

ADFs; p = 5 0.95090 60 0.89 2.11 1.15

PARCS (ADFs) 0.95078 72 1.00 2.38 1.16

RDFs; p = 3 0.95181 31 0.36 0.52 0.41

RDFs; p = 5 0.95176 26 0.47 0.49 0.49

Heterogeneous 0.95150

It is observed that, even if the assembly errors are around 5%when the discontinu-
ity factors are not used, we can decrease the error with the inclusion of the ADFs
into the FEM. Again there is a good agreement between the FEM and PARCS
when both use the same ADFs. Then, when using RXSs and RDFs we observe
that, for degree p = 3, results show lower error in the power profile, while the
errors in the flux are still quite large. This is due to different signs for the fast
and for the thermal flux approximation errors, being cancelled when calculating
the power. Increasing the polynomial degree in the spatial approximation for
the RDFs solve the problem, giving a very good approximation (assembly errors
smaller than 0.5%) for both fluxes and power profile.
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In order to show the effects of the homogenization process, Figures 6.6 and 6.7
show the heterogeneous and homogenized solutions for the fast and the thermal
neutron flux for the CISE reactor. It can be seen, that the homogenized calculation
also obtains discontinuous neutron fluxes in the 2D CISE benchmark problem.

(a) Heterogeneous solution (b) Homogenized solution with ADFs

Figure 6.6: Fast flux for the CISE core.

(a) Heterogeneous solution (b) Homogenized solution with ADFs

Figure 6.7: Thermal flux for the CISE core.
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6.6 Homogenization strategy for Simplified Harmonic
Equations (SPN)

In this Section, we focus on the implementation of the flux discontinuity factors
in the FEM the context of the SPN approximation. We try to reduce the homoge-
nization error using pin-wise homogenization. We use one dimensional geome-
tries because the ambiguity in the definition of the flux discontinuity factors
does not exist (Yu, Lu, and Chao, 2014; Yamamoto, Sakamoto, and Endo, 2016).
As mentioned before, the one dimensional SPN approximation is equivalent to
the complete PN approximation. We quantify the error of the proposed pin dis-
continuity factors and compare it to the usual assembly-wise homogenization.

6.6.1 Homogenization of cross sections

In order to simplify the notation here, the transport equation to be homogenized
is considered in its mono-energetic formulation, and thus equation (5.1) can be
written as

3
µ

d

dx
+ �t(x)

4
Â(x, µ) =

Lÿ

l=0

2l + 1

2
Pl(µ)�sl(x)„l(x) +

1

⁄
‰(x)‹�f (x)„0(x) ,

(6.45)
and the SPN approximation (5.6) is rewritten as

d

dx

3
n

2n + 1
„n≠1 +

n + 1

2n + 1
„n+1

4
+ (�t(x) ≠ ”nÆL�sn(x)) „n

=
”n,0
⁄

‰(x)‹�f (x)„0, n = 0, . . . , N ,

(6.46)

where the lower and upper limits for the recurrence are „≠1 = „N+1 = 0. We
consider the equations for the even and odd moments separately.

Our target is to find a homogenized equation for even indices moments as follows

d

dx

3
n

2n + 1
„̂n≠1 +

n + 1

2n + 1
„̂n+1

4
+

1
�̂t ≠ ”nÆL�̂sn

2
„̂n =

”n,0

⁄̂
‰̂‹̂�̂f „̂0,

n = 0, 2, . . . , N ≠ 1, (6.47)

which preserves local quantities over the smaller subdomains �k, such as the
average of the flux moments satisfies

„̄k,n :=

⁄

�k

„n dx =

⁄

�k

„̂n dx, n = 0, 2, . . . , N ≠ 1, (6.48)
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which implies that the diffusive pseudo-moments of equation (5.12) after the
change of variables defined in equation (5.10) maintain

⁄

�k

un dx =

⁄

�k

ûn dx , n = 0, 2, . . . , N ≠ 1, (6.49)

and preserves the eigenvalue ⁄̂ = ⁄ of the original problem, using piecewise con-
stant cross sections in the subdomains. Moreover, we introduce the concepts of
HighOrder (HO) and LowOrder (LO) operators,meaning that different approxima-
tions can be used to solve the equations at different scales, where an HO operator
is more accurate using more functions to represent space, angle and energy, but
more expensive in computational terms. A LO operator has lower accuracy in
space, angle and energy, but is computationally less expensive. Thus, when we
talk about a solution of the original problem, this should be obtained with a HO
solver, while the solution of the homogenized problem is obtained by a LO solver.

A common strategy to obtain the homogenized parameters consists of integrating
the original and the homogenized equations over each spatial subdomain, to
obtain
⁄

�k

d

dx

3
n

2n + 1
„n≠1 +

n + 1

2n + 1
„n+1

4
dx +

⁄

�k

(�t(x) ≠ ”nÆL�sn(x)) „n(x) dxdµ dx

=
”0,n

⁄

⁄

�k

‰(x)‹�f (x)„0(x) dx ,

(6.50)
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�̂t ≠ ”nÆL�̂sn
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=
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‰̂‹̂�̂f

⁄

�k

„̂0(x) dx . (6.51)

Now we force equations (6.50) and (6.51) to be equal term by term, as follows
⁄

�k

d

dx
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(6.52)
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(6.53)
”0,n

⁄

⁄

�k

‰(x)

2
‹�f (x)„0(x) dx =

”0,n

⁄̂
‰̂‹̂�̂f

⁄

�k

„̂0(x) dx , (6.54)

to ensure that the solution of the homogenized equation reproduces the averages
quantities of the heterogeneous solution in terms of reaction rates. We can see
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that using equation (6.48) to preserve average fluxmoments, and imposing ⁄ = ⁄̂,
we obtain from equation (6.54) that the homogenized fission cross section is
defined by

‰̂‹̂�̂f =

s
�k

‰(x)‹�f (x)„0(x) dx
s

�k
„̂0(x) dx

=

s
�k

‰(x)‹�f (x)„0(x) dx

„̄k,0(x)
, (6.55)

and because the homogenized solution does not appear in this expression, we
say that the homogenized fission cross section is independent of the LO solver.
We apply the same procedure to the scattering term in equation (6.53) to obtain

1
�̂t ≠ ”nÆL�̂sn

2
=

s
�k

(�t(x) ≠ ”nÆL�sn(x)) „n(x) dx
s

�k
„̂n(x) dx

(6.56)

=

s
�k

(�t(x) ≠ ”nÆL�sn(x)) „n(x) dx

„̄k,n(x)
. (6.57)

But this definition of the homogenized cross section could produce non physical
values, due to the fact that the denominator in the equation is not necessarily pos-
itive for all moments, „̄n(x). This problem is exposed in Sanchez, (2009), where
the proposed solution consists in using the zero moment homogenized flux for
the denominator, obtaining

1
�̂t ≠ ”nÆL�̂sm

2
=

s
�k

(�t(x) ≠ ”nÆL�sn(x)) „n(x) dx

„̄k,0(x)
. (6.58)

Moreover, this approximation is exact for isotropic scattering problems because
only zero order is considered for the homogenized cross section, and the error
due to the change in the formula is preferred to the non-physical values obtained
with negative or almost zero flux moments. We notice that the homogenized
scattering cross section is also independent of the LO solver.

Last, we must deal with equation (6.52) involving the streaming terms in order to
obtain a completely equivalent homogenized formulation. We integrate by parts
equation (6.52) to obtain

s
n

2n + 1
„n≠1 +

n + 1

2n + 1
„n+1

{

�k

=

s
n

2n + 1
„̂n≠1 +

n + 1

2n + 1
„̂n+1

{

�k

,

n = 0, 2, . . . , N ≠ 1,

(6.59)

where the jump operator J·K�k
is defined in Section 6.3. Because it must happen

for all odd indices, and we use the closures „≠1 = „N+1 = 0, this is equivalent to
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ask for

J„nK�k
=

r
„̂n

z

�k

, n = 1, 3, . . . , N. (6.60)

To continue, we want to express the odd moments in terms of the even ones. In
order to do this, we go back to equation (6.46) and consider the odd fluxes. For
odd indices the source term is zero because of the isotropic representation of
the fission term (only exists for the zero moment), so the odd fluxes satisfy the
following equations

„n = ≠
1

(�t(x) ≠ ”nÆL�sn)

d

dx

3
n

2n + 1
„n≠1 +

n + 1

2n + 1
„n+1

4
,

n = 1, 3, . . . , N,

(6.61)

that can be rewritten, using the definition of the diffusion-like coefficient and
the change of variables (5.10), as follows

„n+1 = ≠Dn
d

dx
un, Dn =

1

(2n + 3) (�t ≠ ”nÆL�sn)
,

n = 0, 2, . . . , N ≠ 1.

(6.62)

Equation (6.60) will be satisfied if the heterogeneous and the homogeneous odd
fluxes are equal pointwise at the interfaces,or average-wise for dimensions higher
that 1. In terms of the even fluxes it reads as

≠ Dn
d

dx
un = ≠D̂n

d

dx
ûn, n = 0, 2, . . . , N ≠ 1.

For clarification, we notice that in the special case ofN = 1, the original equation
is the neutron diffusion equation, and the previous expression takes the form of
preserving the neutron current, J , at the interfaces by

J := ≠D0
d

dx
„0 = ≠D̂0

d

dx
„̂0 := Ĵ .

The main problem is that this condition must be satisfied on the two boundaries
of each one of the K subdomains for one-dimension, for each of the N/2 even
fluxes for each energy group, i.e. K ◊ N ◊ G restrictions, but there is only one
degree of freedom per subdomain, per even moment and per energy group, i.e.
K ◊ N/2 ◊ G degrees of freedom, that can be tuned to force this situation, i.e.,
the coefficients D̂n≠1. Thus, we have more restrictions than degrees of freedoms
and this can not be satisfied. Instead, we are going to use some extra parameters,
called discontinuity factors, that add some extra degrees of freedom in order to re-
cover some physical properties of the solution andminimize the homogenization
error.
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6.6.2 Interior Penalty-FEM for SPN

For the spatial discretization of the diffusive eigenvalue problem corresponding
to equation (5.15), a Discontinuous Galerkin finite element method is used ex-
tending the method presented in Section 6.3 for the SPN equations. If discontinu-
ity factors are not taken into account, the interior penalty finite element method
can be formulated as follows. First, we choose a partition of the one-dimensional
domain,Wh, resulting in a splitting of the original domain defining the reactor
�, into subdomains�k = [ek≠1, ek], k = 1, . . . , K, defining the mesh. Second, we
use the set of partition nodes Eh = E

0
h fi E

ˆ
h . Now, problem (5.15) together with

the continuity conditions for the moments and its derivatives, considering zero
Dirichlet boundary conditions for clarity (for different boundary conditions, as
the ones shown in Section 5.3.1, see Section 6.3), can be rewritten in a generic
form as,

≠
d

dx
· Dn

d

dx
un + � un = qn in each �k œ Wh , (6.63)

JunKe = 0 on each e œ Eh , (6.64)
s

Dn
d

dx
un

{

e

= 0 on each e œ E
0
h . (6.65)

where the jumps J·K are defined by

JunKe = n≠
u

≠
n (e) + n+

u
+
n (e) = u

≠
n ≠ u

+
n , on e œ E

0
h,

JunKe =

I
n+

u
+
n (e0) = ≠u

+
n (e0)

n≠
u

≠
n (eK) = +u

≠
n (eK)

, on e œ E
ˆ
h ,

(6.66)

where u
±
n are the lateral limits of un in a particular node, and n± are the normal

vectors outward to the adjacent cells ≠ and + at the shared node e, so n≠
= +1

and n+
= ≠1 in one-dimension. The indices for energy group g are avoided for

simplicity of the notation, considering all the contributions coming fromdifferent
energy and moments inside the source term qn, together with the neutrons pro-
duced due to the fission terms. Standard Interior Penalty Finite ElementMethods
(IP-FEM) exist for the previous problem as follows (Brezzi et al., 2006b):

Find un œ H
1
(Wh) such that

3
Dn

d

dx
un,

d

dx
v

4

Wh

+ (�un, v)Wh ≠

3;
Dn

d

dx
un

<
, JvK

4

Eh

+ (s1 JunK , JvK)Eh
= (qn, v)Wh , ’v œ H

1
(Wh) ,

(6.67)
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where H
1
(Wh) :=

)
v œ L

2
(�) : v|�k

œ H
1
(�k) ’�k œ Wh

*
, s1 is a penalty pa-

rameter large enough to stabilize the problem, the averages {·} are defined by

{u} =
1

2
(u

≠
+ u

+
), on e œ E

0
h, {u} = u, on e œ E

ˆ
h . (6.68)

Alternatively, using the edge operators over interior points, the problem can be
rewritten as:
Find un œ H

1
(Wh) such that

3
Dn

d

dx
un,

d

dx
v

4

Wh

+ (�un, v)Wh ≠

3;
Dn

d

dx
un

<
, JvK

4

E0
h

+ (s1 JunK , JvK)E0
h

+ Dn(e0)
d

dx
un(e0)v(e0) ≠ Dn(eK)

d

dx
un(eK)v(eK) = (qn, v)Wh , ’v œ H

1
(Wh) ,

where we have used the boundary conditions u(e0) = 0 and u(eK) = 0. We notice
that this formulation of the problem is the same as the one obtained in Section 6.3
for the neutron diffusion equation with zero flux boundary conditions. The nota-
tion for the d- and (d≠1)-measures of the functions, that for our one-dimensional
problem corresponds to integrals over the elements inWh and the evaluation at
the elements in Eh, stands as follows

(f, g)Wh
=

ÿ

�kœWh

(f, g)�k
=

ÿ

�kœWh

⁄

�k

f(x)g(x) dx ,

(f, g)Eh
= (f, g)E0

h
+ (f, g)Eˆ

h
,

(f, g)E0
h

=

ÿ

eœE0
h

(f, g)e =

ÿ

eœE0
h

f(e)g(e) ,

(f, g)Eˆ
h

=

ÿ

eœEˆ
h

(f, g)e = f(e0)g(e0) + f(eK)g(eK) .

(6.69)

This formulation is also called Incomplete Interior Penalty Galerkin method
(IIPG). A more detailed description of the different operators for higher dimen-
sions can be found in Brezzi et al., (2006b). Different formulations have also been
proposed in Wang and Ragusa, (2010) and Turcksin and Ragusa, (2014), where
the scheme is consistent with a transport formulation within the strategy of syn-
thetic diffusion acceleration. The homogenization process and the inclusion of
the discontinuity factors in the finite element method formulation is discussed
in the next section.
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6.6.3 Discontinuity factors for the Simplified PN

In the generalized equivalence theory (Smith, 1986), which is an extension of
Koebke’s homogenization method (Wagner and Koebke, 1983), flux discontinuity
factors (DFs) are introduced in the neutron diffusion theory and they improve
the homogenization strategy stated before. In this theory, for a given interface
node e limiting two adjacent homogenized subdomains, the energy-dependent
discontinuity factors are defined as interface constants f

≠
e , f

+
e , such that the

scalar flux, „0, satisfies the following condition

f
≠
e „̂

≠
0 (e) = f

+
e „̂

+
0 (e) , (6.70)

where „̂
≠
0 and „̂

+
0 are the lateral limits of the homogenized scalar flux viewed

from the two different subdomains sharing this node. A possible definition of
these discontinuity factors is

f
≠
e =

„
≠
0 (e)

„̂
≠
0 (e)

, f
+
e =

„
+
0 (e)

„̂
+
0 (e)

, (6.71)

so continuity for the heterogeneous reconstructedzero-thorderflux is enforced (Smith,
1986).

The angular flux in one-dimensional geometries, Â(x, µ), can be projected onto
the different diffusive moments of the SPN equations, un. Then, a homogeneous
problem must be solved in the homogenized subdomain using odd reference
flux moments as boundary conditions to calculate the homogeneous even flux
moments.

To calculate the discontinuity factors for the SPN equations in the subdomain
edge e, equation (6.71) can be extended to

f
+
n, e =

u
+
n (e)

û
+
n (e)

, f
≠
n, e =

u
≠
n (e)

û
≠
n (e)

, for n = 0, 2, . . . , N ≠ 1 , (6.72)

where u
≠
n and u

+
n are the left and right extremes of the reference heterogeneous

diffusive moments defined in equation (5.10), extracted from the transport solu-
tion and û

≠
n and û

+
n are the left and right extremes of the homogeneous diffusive

moments calculatedwith the PN approximation in the homogenized region. Thus,
for a given node e shared by two adjacent homogenized regions, for the different
moments we have the relationship

f
≠
n, e û

≠
n (e) = f

+
n, e û

+
n (e) , for n = 0, 2, . . . , N ≠ 1 , (6.73)

It is worth to notice that the values of the homogenized solution appear explicitly
in equation (6.73), and thus, the values of the discontinuity factors will depend
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on the homogenized solution, which depends on the LO solver. Thus, the discon-
tinuity factors depend on the LO solver that is going to be used when solving the
homogenized equation.

At this point we need the value of the heterogeneous and homogeneous flux mo-
ments, un(x) and ûn(x) respectively, to generate the homogenized cross sections
and the discontinuity factors. Since the full heterogeneous solution is not known,
these values must be determined by calculating each heterogeneous subdomain
separately with a high order transport operator. These calculations are performed
for a reference problem (Sanchez, 2009) whose solution is close enough to the so-
lution that would be obtained if the entire heterogeneous system was calculated.

Usually, as it has been already mentioned in the case of the neutron diffusion
equation, the reference problem is an isolated assembly with reflective boundary
conditions. Then, the assembly homogenized cross sections are generated with
assembly heterogeneous flux from the reference problem. The homogeneous flux
is the solution of the reference homogeneous assembly with reflective boundary
conditions and using the assembly homogenized cross sections. We can calculate
Assembly Discontinuity Factors (ADFs) dividing the heterogeneous flux by the
homogeneous flux. A scheme of the problems solved to calculate the ADFs is
shown in Figure 6.8a. Itmust be noted that for a homogeneous reflective assembly,
as the homogeneous reference problem, the fluxes are spatially constant and
all the spherical harmonics expansion terms are zero except the first one. In
this work, for homogenization at assembly level, the discontinuity factors for the
moments greater than 0 are arbitrarily set to 1.0 .

Another possibility is to use the assembly heterogeneous results to compute pin
homogenized parameters. In this way, we solve a homogeneous pin problem
using the cross sections and current boundary conditions for the isolated het-
erogeneous assembly problem. Then, the Pin Discontinuity Factors (PDFs) are
calculated by the ratio of the reference pin boundary flux values and the homo-
geneous reference problem boundary flux values. This procedure is schematised
in Figure 6.8.

Finally, the heterogeneousflux calculated for thewhole reactor can beused to gen-
erate reference cross sections and appropriate current boundary conditions. With
the global ke� and these cross sections the homogeneous flux can be generated
in a particular region considered here as an assembly or a pin. Then, Reference
Discontinuity Factors (RDFs) are generated using equation (6.72). This strategy
corresponds to Figure 6.8c. This technique provides exact homogenized parame-
ters, but it requires the solution of the whole heterogeneous problem to generate
the homogenized parameters, what makes it of no practical use. However, it is
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used here to verify that the discontinuity factors technique is successfully im-
plemented within the interior penalty finite element method (IP-FEM), as it has
been done for the neutron diffusion equation in Section 6.3

Heterogeneous
Ref. Problems 
(HO Solvers)

Homogenized
Problem
(LO Solvers)

Homogeneous
Ref. Problems
(LO Solvers)

(a) ADFs (b) PDFs (c) RDFs

Figure 6.8: Scheme of homogenization strategies. The LO solvers for the Homogeneous Ref.
Problems and for the Homogenized problem must be the same, due to the dependence of the
discontinuity factors on the LO solver, at least for PDFs and RDFs (for ADFs the fluxes are
constant and the method does not matter).

6.6.4 IP-FEM with discontinuity factors for SPN

In this case, the reference situation is one assembly or a pin with suitable bound-
ary conditions. Thus, the continuity condition for the flux will be forced to be
discontinuous as in equation (6.73). This type of interface conditions leads to a
slightly differentproblem from the one statedby equations (6.63), (6.64) and (6.65),
i.e., the problem with discontinuity factors is of the form

≠
d

dx
Dn

d

dx
un + �nun = qn in each �k œ Wh, (6.74)

JunKf, e = 0 on each e œ Eh, (6.75)
s

Dn
d

dx
un

{

e

= 0 on each e œ E
0
h. (6.76)

where the new jumps J·Kf are defined as follows

JunKf = f
≠
n, e n≠

u
≠
n + f

+
n, e n+

u
+
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≠
n, e u

≠
n ≠ f

+
n, e u

+
n , on e œ E

0
h,

JunKf =

I
f

≠
n, e0 n+

u
+
n (e0) = ≠f

≠
n, e0 u

+
n (e0)

f
+
n, eK

n≠
u

≠
n (eK) = +f

+
n, eK

u
≠
n (eK)

, on e œ E
ˆ
h , (6.77)

where f
+
n, e is generally different from f

≠
n, e for a particular edge e andevenmoment

n, defining the jumps imposed to the solution, un. A scheme to approximate the
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problem defined by equations (6.74), (6.75) and (6.76), has been implemented in
an IP-FEM using a formulation based on equation (6.67) as follows

3
Dn

d

dx
un,

d

dx
vn

4

Wh

+ (�nun, vn)Wh ≠

3;
D

d

dx
un

<
, JvnK

4

Eh

+

1
s1 JuKf , JvnK

2

Eh

= (qn, vn)Wh ,

(6.78)

following analogous steps to the ones presented in Section 6.3 for the neutron
diffusion equation.

6.7 Numerical Results for Pin-wise homogenization

To study the performance of the pin-wise homogenization method using the sim-
plified spherical harmonics as the low order operator exposed above, two different
one-dimensional reactor configurations based on the C5G7 benchmark (Lewis et
al., 2001) are defined. The benchmark problems are fully defined in Appendix B.4.
The first configuration is comprised of two assemblies and the second configura-
tion has five assemblies with reflective boundary conditions as Figure B.4 shows.
Each assembly consists of 17 pins, each pin is made of a layer of nuclear fuel
surrounded by a thin layer of water.

Different strategies for the homogenization of the two reactor configurations are
compared in this Section. These strategies are presented in Table 6.7. The reason
for including RXS (reference cross sections without discontinuity factors) is to
show that using better homogenized cross section does not correct the homog-
enization error alone, thus being advantageous the use of discontinuity factors
even if the cross sections are just an approximation.

Table 6.7: Homogenization strategies.

No DFs Problem without DFs and assembly homogenized cross sections.
RXSs Problem without DFs and reference homogenized cross sections.
ADFs Problem with assembly DFs and assembly homogenized cross sections.
PDFs Problem with pin DFs and pin homogenized cross sections,

they are calculated from an isolated assembly problem.
RDFs Problem with reference DFs and reference homogenized cross sections.

To compare the solutions of the different homogenization strategies the maxi-
mum relative error in the scalar neutron flux, Á, the root mean square error of the
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neutron power, RMS, defined in equation (6.44); and the absolute error for the
multiplicative constant,�keff (pcm), defined in Table 3.1; are used. The transport
reference solution is calculated with a discrete ordinates code using a S96 approx-
imation where the solution is fully converged. The transport reference results
are also used to compute reference homogenized cross sections and reference
discontinuity factors. The same code using a discrete ordinates approximations
of order 96 is used to calculate isolated assembly heterogeneous fluxes to be able
to calculate assembly and pin homogenization parameters.

6.7.1 Configuration 1

The reactor named Configuration 1 is composed of two different assemblies. Each
assembly is formed by 17 equal pins. Figures 6.9a and 6.9b show the heteroge-
neous fluxes for the same transport approximations for g = 1 and g = 7 energy
groups. Figures 6.9c and 6.9d show the relative errors for these energy groups.
Looking at Figure 6.9a for the flux for g = 1, and its relative error in Figure 6.9c,
we see that the error is mostly due to the the fact that the lower order approxima-
tions P1, P3 and P5 do not capture the local behaviour of the solution in regions
with water, where the flux is lower than in fuel regions for fast groups (low values
of g). The same problem occurs when looking at the behaviour for g = 7 in Fig-
ures 6.9b and 6.9d, but this time because the flux is underestimated in the region
with water, where the flux is larger than in regions with fuel for slow groups (high
values of g). This behaviour is typical. Moreover, we also observe that the relative
error is much bigger for g = 7 than for g = 1 (around one order of magnitude),
but this is mainly due to the fact that the value of the flux is smaller (around one
order of magnitude), and this means that the absolute value of the error is similar
(of the same order). This effect is enhanced by the fact that strong heterogeneity
in the cross sections in the thermal groups (g > 5) result in more heterogeneous
thermal fluxes.

Table 6.8 shows a comparison of the heterogeneous results for this reactor, with-
out any homogenization, for different order of PN approximations to the neutron
transport equation. In this comparison, the different keff for the different approx-
imations are provided together with the difference with respect to the reference
results, as well as the Root Mean Square error for the neutron power, and the
maximum relative error (pointwise) for the fluxes for groups g = 1 and g = 7.
It must be noted that the relative errors are much larger for the thermal groups
(g > 3), i.e., the relative error for the g = 7 flux is locally above 35% for P1, 25%

for P3, and 15% for P5, as it has been explained before. Instead the pin averages
power RMS errors are less than 0.4% for any of the approximations. The reason
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Figure 6.9: Comparison of results for heterogeneous fluxes and relative errors for Configura-
tion 1.

for this is that the regions with water do not produce power (because there is not
fission there), so the error in these regions does not directly affect the RMS error
in the power (neither assembly-wise nor pin-wise). Nevertheless, we can observe
that the error in the keff is very big for these approximations (above 900 pcm for
N Æ 5) because this global parameter is affected by errors in the water regions
through the balance equations. Increasing the order of the angular approxima-
tion for PN affects mainly the value of the keff through better capturing of the
behaviour in these regions.

Table 6.9 shows the assembly-wise homogenization results for different PN ap-
proximations using different homogenization strategies defined in Table 6.7. At
assembly level, the diffusion theory, P1, results are accurate enough and increas-
ing the number of spherical harmonics does not provide better results. This be-
haviour is explained by the fact that the assemblies are large enough to provide
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Table 6.8: Comparison of heterogeneous results for Configuration 1.

Eigenvalue Power RMS Max. Rel. Error
keff �keff (pcm) Assembly (%) Pin (%) g = 1 (%) g = 7 (%)

P1 0.91154 1360 0.05 0.32 3.56 36.18
P3 0.91411 1103 0.34 0.37 3.18 25.84
P5 0.91610 904 0.30 0.32 2.80 17.49

S96 0.92514

precise average results with a LO solver such as the diffusion approximation, and
the angular dependence does not have a strong effect average-wise for this size
of the homogenized regions. However, reconstructed pin power results have RMS
errors around 11%. This is explained by the assembly shape function (which is the
heterogeneous power computed for an isolated assembly with reflexive boundary
conditions) being inaccurate as it does not take into account influences of neigh-
bouring assemblies. To improve these results amore sophisticated reconstruction
method or pin homogenization strategy is necessary. We can also mention that
using RXSs provide good results, even if no discontinuity factors are used. This is
because the reconstruction has been done with the right shape for the local flux,
which in practical reactor calculations is not available. Nevertheless, we observe
that we must also use discontinuity factors together with the reference cross sec-
tions, RDFs, in order to completely reproduce the average values of the power and
the keff of the original problem with a HO solver with the homogenized problem
and a LO solver.

Last, pin-wise homogenization results are shown in Table 6.10. In this Table, we
can observe a similar behaviour as for average-wise homogenization except that
now the RMS error is reduced for pin-power averages. This is the main reason for
using pin discontinuity factors. This comes from the choice of smaller domains for
the homogenization, which requires that we correct the homogenization error
at these scales. The RXSs and RDFs results behave analogously to the case of
assembly-wise homogenization presented above.
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Table 6.9: Comparison for assembly-wise homogenization results for Configuration 1.

Transport Hom. Eigenvalue Power RMS
Approx. Method keff �keff (pcm) Assembly (%) Pin (%)

P1

No DFs 0.92475 39 0.49 10.95
ADFs 0.92547 33 0.10 10.90
RXSs 0.92468 46 0.39 0.39
RDFs 0.92514 0 0.00 0.00

P3

No DFs 0.92514 0 0.06 10.91
ADFs 0.92583 69 0.52 10.88
RXSs 0.92507 7 0.04 0.04
RDFs 0.92514 0 0.00 0.00

P5

No DFs 0.92516 2 0.06 10.91
ADFs 0.92585 71 0.53 10.88
RXSs 0.92509 5 0.05 0.05
RDFs 0.92514 0 0.00 0.00

Transport Reference 0.92514

Table 6.10: Comparison for pin-wise homogenization results for Configuration 1.

Transport Hom. Eigenvalue Power RMS
Approx. Method keff �keff (pcm) Assembly (%) Pin (%)

P1

No DFs 0.92476 38 0.49 0.56
PDFs 0.92547 33 0.10 0.44
RXSs 0.92469 45 0.42 0.53
RDFs 0.92514 0 0.00 0.00

P3

No DFs 0.92515 1 0.05 0.15
PDFs 0.92531 17 0.11 0.15
RXSs 0.92508 6 0.02 0.17
RDFs 0.92514 0 0.00 0.00

P5

No DFs 0.92517 3 0.04 0.11
PDFs 0.92533 19 0.12 0.17
RXSs 0.92511 3 0.02 0.13
RDFs 0.92514 0 0.00 0.00

Transport Reference 0.92514
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6.7.2 Configuration 2

The reactor named as Configuration 2 is composed of five assemblies with reflex-
ive boundary conditions. Each assembly is composed of 17 pins describing an
usual nuclear arrangement. This test is built to be more heterogeneous than the
previous one, to be able to test the different homogenizationmethods in more re-
alistic conditions, since the composition of each assembly will not be completely
homogeneous.

First, we analyse the behaviour of the fluxes and the errors for different energy
groups and different LO solvers (P1, P3, and P5) without spatial homogenization.
Figures 6.10a and 6.10b present the heterogeneous scalar fluxes,„g

0, of the groups
g = 1 and g = 7 for different transport approximations. Figures 6.10c and 6.10d
show the relative errors for these low order angular approximations. We see a
similar behaviour as the one observed in the previous problem. In this way, the
relative errors are larger for thermal groups g > 5. than for fast groups g < 5.
Again we observe that this effect is higher in the regions with water and now also
in regions with materials 5 and 6, which represent strong absorbers or fission
chambers where almost no fission occurs. Again, the LO solvers are unable to
fully capture the behaviour of the HO solution (S96) in these regions.

Table 6.11 shows a comparison of the heterogeneous results, without any homog-
enization, for P1, P3, and P5, approximations. This Table shows the same type of
errors as Table 6.8. We can see the same behaviour, with larger point-wise flux
maximum relative error for g = 7 than for g = 1, and large errors in the eigen-
value of the problem. We can also see that the average-wise error is larger for
the power (pin-wise and assembly-wise), and that this error decreases when in-
creasing the order of the LO solver. This suggests that formore realistic problems,
there is actually a need of using LO solvers of slightly higher order for reducing
both pin-wise and assembly-wise, RMS errors for average power.

Table 6.11: Comparison of heterogeneous results for Configuration 2.

Eigenvalue Power RMS Max. Rel. Error
keff �keff (pcm) Assembly (%) Pin (%) g = 1 (%) g = 7 (%)

P1 1.11869 1443 2.05 2.03 13.25 36.77
P3 1.12290 1022 1.30 1.17 8.18 23.33
P5 1.12649 663 0.75 0.68 5.04 13.83

S96 1.13312
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Figure 6.10: Comparison of results for heterogeneous fluxes and relative errors for Configura-
tion 2.

Table 6.12 shows the assembly-wise homogenization results P1, P3 and P5 approx-
imations using the different strategies of homogenization defined in Table 6.7.
As it occurs for reactor Configuration 1, for reactor Configuration 2 the compu-
tations at assembly level using ADFs, by means of the diffusion theory, P1, are
accurate enough and increasing the number of spherical harmonics in the trans-
port approximation does not provide better results. In this case, the introduction
of assembly discontinuity factors improves the obtained solution in terms of
eigenvalue error and assembly averaged neutron error, while the pin-wise RMS
error remains high, even if the order of the LO solver is increased up to P5.

Results for pin-wise homogenization are shown in Table 6.13. We see that the
use of pin-wise homogenization providesmore accurate results, both in assembly
and pin averaged power, specially if the proposed pin discontinuity factors are
used. Increasing the number of spherical harmonics, N , reduces the eigenvalue
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Table 6.12: Comparison for assembly-wise homogenization results for Configuration 2.

Transport Hom. Eigenvalue Power RMS
Approx. Method keff �keff (pcm) Assembly (%) Pin (%)

P1

No DFs 1.13462 150 1.20 14.82
ADFs 1.13334 22 1.52 14.95
RXSs 1.13368 56 3.16 2.55
RDFs 1.13312 0 0.00 0.00

P3

No DFs 1.13613 301 3.54 15.00
ADFs 1.13392 80 0.95 14.89
RXSs 1.13421 109 3.70 2.97
RDFs 1.13312 0 0.00 0.00

P5

No DFs 1.13618 306 3.55 15.00
ADFs 1.13398 86 0.94 14.89
RXSs 1.13426 114 3.71 2.98
RDFs 1.13312 0 0.00 0.00

Transport Reference 1.13312

error and pin averaged power errors because at pin scale the angular dependence
is relevant. In this way, if the proposed pin discontinuity factors are used, the
eigenvalue error can be reduced to 38 pcm and less than 1% in pin averaged power
error results if one uses P5 approximation.

140



6.7 Numerical Results for Pin-wise homogenization

Table 6.13: Comparison for pin-wise homogenization results for Configuration 2.

Transport Hom. Eigenvalue Power RMS
Approx. Method keff �keff (pcm) Assembly (%) Pin (%)

P1

No DFs 1.12458 854 1.66 1.66
PDFs 1.13331 19 0.46 1.43
RXSs 1.12436 876 1.64 1.67
RDFs 1.13312 0 0.00 0.00

P3

No DFs 1.12795 517 1.32 1.20
PDFs 1.1335 55 0.89 0.92
RXSs 1.12775 537 1.31 1.18
RDFs 1.13312 0 0.00 0.00

P5

No DFs 1.13053 259 1.03 0.94
PDFs 1.1335 38 0.76 0.78
RXSs 1.13033 279 1.02 0.93
RDFs 1.13312 0 0.00 0.00

Transport Reference 1.13312
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7
Conclusions

The distribution of the neutron population in a nuclear reactor is described by
the neutron transport equation. As the physics of a reactor is determined by the
neutrons interactions with matter, this equation also predicts the quantity of
fission reactions and thus, the power distribution, in the form of heat, produced
inside the reactor core. The solution of this equation is the fundamental tool to
predict the behaviour of a nuclear core. To solve the neutron transport equation
we have to discretize it in terms of directions, energy, time and space. In this
work,we have studied different approximations of this equationwith a reasonable
computational cost in order to simulate and evaluate the reactor performance.

In Chapter 3, we have presented an adaptive finite element algorithm for the
static neutron diffusion equation, the Lambda modes problem. This method al-
lows using high order finite elements with heterogeneous meshes. In this way, to
increase the accuracy of the solution it is possible both to refine the spatial mesh
and to increase the degree of the polynomials in the finite element method. Sev-
eral numerical methods were established to solve the multiplicative constant of
the reactor or the fundamental eigenvalue of the problem and its corresponding
eigenvector, the stationary neutron flux. To study the performance of themethod
different benchmark problems have been analysed using different meshes and
configurations of the computations. From all the analyses performed is concluded
that the method converges if the mesh is refined or the degree of the polynomial
expansions is increased, being the last strategy themost convenient one to obtain
accurate results with a moderate computational cost.

Then, different preconditioning strategies for the system matrices arising in a
high order finite element discretization of the neutron diffusion equation are
studied. These preconditioners are based on domain decomposition techniques,
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making use of a partition of the degrees of freedom on vertices, edges, faces and
interiors ones, obtained through the identifications of the different shape func-
tions with collocation points over each element. No improvement is observed
in two-dimensional problems over traditional Jacobi preconditioners, due to the
fact that the overhead cost of building and applying the preconditioner is not com-
pensated by a significant improvement of the convergence ratio. Nevertheless,
for large enough linear systems, as is the case for three dimensional problems,
the preconditioners show an improvement of the convergence time for the stud-
ied linear systems, as well as for the memory usage, outperforming classical and
widely used preconditioners as the Incomplete LU decomposition.

An additional feature studied in Section 3.8 is that the linear systems have been
preprocessed with the Schur complementmethod, in order to reduce thememory
usage and the CPU time for convergence, and these Schur matrices have then
been preconditioned. We recall that this preprocessing technique, also known
as static condensation, already represents an improvement in convergence rates
over the classical methodology used for this problem. It is due to the fact that
many linear systems have to be solved with the same coefficient matrices and
different right hand sides during the application of the eigenvalue solver, thus,
easily compensating initial cost of setting the Schur complement system.

As possible extensions, the application of these preconditioners for matrix-free
algorithms are studied. A matrix-free application should consider the extra cost
of applying the Schur complement system at each iteration and the problem of
building the preconditioner without explicitly building the matrix. This method
is used to efficiently accelerate the procedures of the neutron transport equation.
Moreover, the construction of a preconditioner that performs equally well for
different configurations of the same problem is of interest. The improvement for
the convergence could be estimated a priory for the particular system in function
of its size, thus choosing the optimal preconditioner for the particular situation.

Chapter 4 is devoted to the time dependent neutron diffusion equation. Many
transients in nuclear power reactors involve the movement of the control rod
banks. For the simulation of this kind of transients with the classical methods, it
is necessary to define equivalent material properties corresponding to partially
inserted cells during themovement of the control rods. Volume averaged and flux
weighting techniques are used to define this equivalent cross-sections, but this
procedure leads to non-physical behaviour of some magnitudes during the simu-
lation when a small number of axial planes are used in the spatial discretization
and this problem is known as the rod-cusping effect. To avoid it, a new method
based on a high-order finite element method is proposed in this Chapter. In this
new method, the spatial mesh is moved together with the control rods in such a
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way that there is no partially inserted cells. The solutions of the physical magni-
tudes are transferred between different spatial meshes using a polynomial inter-
polation.

Also, numerical results show that the moving mesh method has a better perfor-
mance than the traditional fixedmesh scheme when a small number of axial cells
is used. Thus, the moving mesh scheme permits to use a coarser discretization
and reduces the computational effort.

In Chapter 5, we have presented a simplified spherical harmonics approximation
(SPN) solver using a high order finite element discretization. The work has been
centred in the comparisons between the diffusion equation, SP1, and the more
sophisticated SP3 and SP5 equations. To study the performance of the method
to compute the multiplicative constant of the reactor and its corresponding sta-
tionary neutron flux, different benchmark problems have been analysed. From
these analyses, it is concluded that when diffusion approximation does not give
enough accurate results SP3 is a convenient, computational cheap alternative
to improve performance. However, SP5 approximation does not worth the extra
computational effort to solve this approximation for full reactor core problems.

A detailed description of a nuclear power reactor core taking into account the
detailed composition of the different materials composing the fuel assemblies
is a very expensive task from the computational point of view, even when a low
order approximation of the neutron transport equation such as the neutron dif-
fusion equation is used. Thus, a homogenized version of the core is generally
used for whole core reactor calculations. In this way, the implementation of the
Generalized Equivalence Theory in the Finite Element methods is discussed in
Chapter 6. This homogenization theory makes use of flux discontinuity factors
that introduces discontinuous solutions for the neutron flux. Flux discontinuity
factors conditions were introduced for nodal methods because they do not force
explicitly the continuity between subdomains. Here, we propose a discontinu-
ous Galerkin method that introduces the flux discontinuity factors condition in
a weak form, by means of an interior penalty method, obtaining discontinuous
solutions for the neutronic flux. The performance of the method has been tested
with 1D and 2D benchmark problems, using both reference homogenized cross
sections together with reference discontinuity factors, and assembly cross sec-
tions together with assembly discontinuity factors obtained with the standard
homogenization method. It is shown that the finite element method proposed
has a very good performance, being the most part of the errors found due to the
homogenization process. It has also been observed that the IP-FEM could need to
increase the polynomial degree of the high order finite element method to more
than p = 3 for some problems in order to achieve enough accuracy.
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Moreover, Chapter 6 extends the generalized equivalence theory for the simpli-
fied spherical harmonics equations. This thesis proposes pin discontinuity factors
for every even flux moment of the spherical harmonics approximation calculated
from an isolated assembly transport calculation and the use of SP3 or SP5 ap-
proximations to the neutron transport equation for accurate reactor calculations.
Numerical results show that low order spherical harmonics approximations can-
not reproduce accurately sub-pin heterogeneities when solving for the whole
domain. This strongly affects the approximation of the largest eigenvalue of the
problem. In order to improve the approximation for the largest eigenvalue while
keeping the computations efficient, the problem can be solved using a homog-
enization process with two different solvers at two different scales. In this way,
assembly discontinuity factors correct some of the errors introduced during the
homogenization process, and it produces acceptable eigenvalue and assembly
averaged results using diffusion theory, even if they do not reconstruct precise
pin averaged results. The proposed pin discontinuity factors produce accurate re-
sults for both pin and assembly averaged values without the use of reconstruction
methods. Also, the homogenization methodology has been verified with the cal-
culation of reference discontinuity factors, which fully reproduce average values
with the homogenized problem.
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A
Analytic Solution of an
Homogeneous Reactor

A two dimensional rectangular homogeneous reactor with two energy groups
cross sections is considered. The Lambda modes problem related to the neutron
diffusion equation in a two-dimensional domain, (x, y), is defined as

≠Ǫ̀D1Ǫ̀„1(x, y) + (�a1 + �12) „1(x, y) =
1

⁄
(‹�f1„1(x, y) + ‹�f2„2(x, y)) ,

≠�12„1(x, y) ≠ Ǫ̀D2Ǫ̀„2(x, y) + �a2„2(x, y) = 0 , (A.1)
(x, y) œ [0, L1] ◊ [0, L2] ,

with zero flux boundary conditions

„g(0, y) = „g(L1, y) = 0 , „g(x, 0) = „g(x, L2) = 0 , g = 1, 2 . (A.2)

Using the variables separation method,

„g(x, y) = Xg(x)Yg(y), (A.3)

whereXg and Yg are solutions of

d
2
Xg

dx2 (x) = µxXg(x),
d

2
Yg

dy2 (y) = µyYg(y), (A.4)

satisfying,
Xg(0) = Xg(L1) = Yg(0) = Yg(L2) = 0 . (A.5)
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Appendix A. Analytic Solution of an Homogeneous Reactor

Thus, these functions have the general form,

Xg = Ag,x cos (µxx) + Bg,x sin (µxx) ,

Yg = Ag,y cos(µyy) + Bg,y sin(µyy) . (A.6)

Applying the boundary conditions defined in equation (A.2), it is found that

X(x) = Bg,x sin

3
nfi

L1

4
, µx =

nfi

L1
, (A.7)

Y (y) = Bg,y sin

3
mfi

L2

4
, µx =

mfi

L2
, (A.8)

and
µ

2
= µ

2
x + µ

2
y , (A.9)

with n, m œ N. Different values of n,m correspond to the different eigenvalues
and eigenfunctions of the reactor. Using equation (A.3),

„g(x, y) = kg sin (µx) sin(µy) . (A.10)

The equation (A.1) implies

„1(x, y) =
D2µ

2
+ �a2

�12
„2(x, y) . (A.11)

Solving the eigenvalue from equation (A.1), it is obtained

⁄ =
‹�f1

!
D2µ

2
+ �a2

"
+ ‹�f2�12

(D2µ2 + �a2) (�a1 + �12 + D1µ2)
(A.12)

with the eigenfunctions

„1(x, y) = k

3
D2µ

2
+ �a2

�12

4
sin (µxx) sin(µyy) , (A.13)

„2(x, y) = k sin (µxx) sin(µyy) . (A.14)

As the fluxes are defined up to a multiplicative constant k, these should be nor-
malized with the criterion exposed in equation (3.28),

1 =
1

Vt

⁄

V
(�f1|„1| + �f2|„2|) dV =

=
1

L1L2

3
�f1

D2µ
2

+ �a2
�12

+ �f2

4 ⁄ L1

0
dx

⁄ L2

0
dy |„2| . (A.15)

164



Hence, the normalized magnitudes obtained are

„1(x, y) =

3
D2µ

2
+ �a2

�f1D2µ2 + �f1�a2 + �f2�12

4 3
fi

2

4

4
sin

3
nfi

L1
x

4
sin

3
mfi

L2
y

4
,

(A.16)

„2(x, y) =

3
�12

�f1D2µ2 + �f1�a2 + �f2�12

4 3
fi

2

4

4
sin

3
nfi

L1
x

4
sin

3
mfi

L2
y

4
,

(A.17)

P (x, y) = (�f1„1 + �f2„2) =
fi

2

4
sin

3
nfi

L1
x

4
sin

3
mfi

L2
y

4
. (A.18)

This proves that the normalized neutron distribution in a homogeneous reactor
does not depend on the nuclear properties of the material.
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B
Benchmarks Definitions

Mathematical benchmarks, based onwell defined problemswith a complete set of
input data and a unique solution, are widely used and acceptedmeans of verifying
the reliability of numerical simulations, i.e. to validate the accuracy, stability and
efficiency of numerical nuclear codes. Problems are often very testing, but tend
to be somewhat simplified, in order to make the analysis manageable to compare
differentmodels. Several realistic benchmarks have been defined in the literature.
For completion purposes the definitions of the benchmarks used in this thesis
are reproduced in here.

B.1 One Dimensional Homogeneous Reactor

Aone dimensional homogeneous slab of 2 cm thickwith vacuumboundary condi-
tions is considered as Figure B.1. Its one-group nuclear cross sections are defined
in Table B.1. This benchmark has the analytic solution for the full transport solu-
tion and the PN approximations discussed in Capilla et al., (2005). This problem
is also relevant because it shows a bad behaviour in the diffusions approximation
because of the strong spatial variation of the neutronic flux.

Fuel

2 cm

Figure B.1: Definition for the 1D homogeneous slab.
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Table B.1: Cross Sections for the 1D reactor.

Material �t (1/cm) �s (1/cm) ‹�f (1/cm)

Fuel 1.000 0.334 0.178

B.2 One Dimensional Heterogeneous Reactor

A more realistic example of a one dimensional problem is composed of a seven-
region slab 18 cm thick, with vacuum boundary conditions for the leftmost and
rightmost faces. The slab is comprised of a combination of fuel and reflector
materials, as shown in Figure B.2. The reactor is solved with one energy group
cross-sections shown in Table B.2.

Reflector Fuel Reflector Fuel Reflector Fuel Reflector

2.4 cm2.7 cm 2.4 cm2.7 cm 2.4 cm2.7 cm 2.7 cm

Figure B.2: One dimensional slab material disposition.

Table B.2: Cross Sections for the 1D reactor.

Material �t (1/cm) �s (1/cm) ‹�f (1/cm)

Fuel 0.416667 0.334 0.178
Reflector 0.370370 0.334 0.000
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B.3 One Dimensional Rod Ejection Problem

B.3 One Dimensional Rod Ejection Problem

To validate the transient codes a simple and small one-dimensional reactor is
defined. The reactor geometry is defined in Figure B.3 and the cross sections
for the materials of each region are given in Table B.3. Precursor parameters
and neutron velocities are given in Table B.4. Zero flux boundary conditions are
imposed at the boundaries of the system.

The defined transient simulates a simplified model for a rod-ejection accident.
The transient starts removing the control rod from time 0.0 s to 4.0 s with a con-
stant velocity of 25 cm/s. Then the control rod is inserted again from 4.0 s to 10 s

also with a constant velocity of 25 cm/s.

Reflector

Rodded 

Unrodded 

200 cm

100 cm

t=0.0s  

25 cm

150 cm

25 cm

25 cm

25 cm

t=4.0s

50 cm

t=10.0s
25 cm

25 cm

200 cm

50 cm

Figure B.3: Geometry of the 1D reactor problem.
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Table B.3: Cross sections of the materials of the 1D reactor.

Material g Dg �ag ‹�fg �fg �12
(cm) (1/cm) (1/cm) (1/cm) (1/cm)

Unrodded 1 1.40343 1.17659e–2 5.62285e–3 2.20503e–3 1.60795e–2
2 0.32886 1.07186e–1 1.45865e–1 5.90546e–2

Rodded 1 1.40343 1.17659e–2 5.60285e–3 2.19720e–3 1.60795e–2
2 0.32886 1.07186e–1 1.45403e–1 5.88676e–2

Reflector 1 0.93344 2.81676e–3 0.00000e+0 0.00000e+0 1.08805e–2
2 0.95793 8.87200e–2 0.00000e+0 0.00000e+0

Table B.4: Neutron precursors parameters for the reactor.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

—p 0.000247 0.0013845 0.001222 0.026455 0.000832 0.000169
⁄p (1/s) 0.0127 0.0317 0.115 0.311 1.4 3.87

v1 = 1.27 ◊ 107 cm/s v2 = 2.5 ◊ 105 cm/s — = 0.0065
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B.4 One Dimensional C5G7 Reactor

B.4 One Dimensional C5G7 Reactor

To study the performance of the homogenization methods, two different one-
dimensional reactor configurations based on the C5G7 benchmark (Lewis et al.,
2001) are defined. The first configuration is comprised of two assemblies and
the second configuration has five assemblies of 21.42 cm wide with reflective
boundary conditions as Figure B.4 shows. Each assembly consists of 17 pins of
1.26 cm wide, each pin is made of a layer of nuclear fuel of 1.08 cm, surrounded
by a thin layer of water of 0.09 cm. The particular composition of each one of the
assemblies can be found in Figure B.5 and the pins composition is presented in
Figure B.6. Seven energy group cross sections for every material can be found in
reference Lewis et al., (2001).

Homogeneous 2Homogeneous 1

(a) Configuration 1
UO2MOX UO2MOX MOX

(b) Configuration 2

Figure B.4: Reactor configurations.

1111 1 1 11 11 1 1 1 1 1 1 1

Homogeneous 1

2222 2 2 22 2222 2 2 2 2 2

Homogeneous 2

(a) Assemblies for Configuration 1

11 16 11 11 61 651 16 66

UO2

644 36 65 24 46 44 4 432

MOX

(b) Assemblies for Configuration 2

Figure B.5: Assemblies composition.

Water

I II III

IV V VI

Pin 1 Pin 2 Pin 3

Pin 6Pin 5Pin 4

Figure B.6: Pins composition.
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B.5 One Dimensional BWR Problems

One dimensional BWR problems composed of seven assemblies with heteroge-
neous pins extracted from Rahnema and Nichita, (1997). The reactor has three
different configurations constructed by combining three different assemblies to
represent a BWR assembly. The geometry of the assemblies and their configura-
tions are shown in Figure B.7. Cross sections for each region of these assemblies
are given in Table B.5. Configurations are sort by heterogeneities between assem-
blies. Configuration 1 is composed of similar assemblies, Configuration 2 puts
togetherheterogeneous assemblies andConfiguration 3 joins very heterogeneous
assemblies in an artificial way, which is used to test the method in an extreme
heterogeneous situation. Zero-current boundary conditions are imposed at the
edges of the system.

Configuration 3

31 1 3 1 3 1

Configuration 2

21 1 2 1 2 1

41 1 4 1 4 1

Configuration 1

Type 3 Type 4

Type 1 Type 2

Water

I II II I I I I I

I IIg IIIg IIg IIg IIg IIg

Figure B.7: Core and assemblies configurations for the 1D benchmark problems.

Table B.5: Material properties for the 1D BWR benchmark.

Material Thickness g Dg �ag ‹�fg �12
(cm) (cm) (1/cm) (1/cm) (1/cm)

Water 1.158 1 1.7639 0.0003 0.0000 0.0380
2 0.2278 0.0097 0.0000

Fuel I 3.231 1 1.4730 0.0096 0.0067 0.0161
2 0.3294 0.0764 0.1241

Fuel II 3.231 1 1.4804 0.0101 0.0078 0.0156
2 0.3362 0.0901 0.1542

Fuel IIg 3.231 1 1.5342 0.0135 0.0056 0.0136
2 0.3143 0.4873 0.0187
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B.6 Two Dimensional BIBLIS Reactor

B.6 Two Dimensional BIBLIS Reactor

The two dimensional BIBLIS problem is a realistic and highly non-separable 2-
group problem representative of an actual operating pressurised water reactor
(PWR). This problem is characterized by a chequerboard effect caused by fuel
reloading. The realistic nature of this problem makes it an attractive test for
coarse-mesh methods and it has already been used by several authors as Hébert,
(1985); Smith, (1979); Müller andWeiss, (1991) and Vidal-Ferràndiz et al., (2014).

257 homogenized assemblies with widths of 23.1226 cm are present in the core
including 64 cells modelling the reflector. Vacuum boundary conditions are ap-
plied at the external boundary. The definition of the 8 different materials and
their cross sections are given in Figure B.8 and Table B.6. Reference solution for
the fundamental mode are extracted from Müller and Weiss, (1991).
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Figure B.8: BIBLIS reactor materials definition.
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Table B.6: Macroscopic cross sections of the BIBLIS 2D reactor.

Material g Dg �ag ‹�fg �fg �12
(cm) (1/cm) (1/cm) (1/cm) (1/cm)

1 1 1.4360 0.0095042 0.0058708 0.0023768 0.017754
2 0.3635 0.0750580 0.0960670 0.0388940

2 1 1.4366 0.0096785 0.0061908 0.0025064 0.017621
2 0.3636 0.0784360 0.1035800 0.0419350

3 1 1.3200 0.0026562 0.0000000 0.0000000 0.023106
2 0.2772 0.0715960 0.0000000 0.0000000

4 1 1.4389 0.0103630 0.0074527 0.0030173 0.017101
2 0.3638 0.0914080 0.1323600 0.0535870

5 1 1.4381 0.0100030 0.0061908 0.0025064 0.017290
2 0.3665 0.0848280 0.1035800 0.0419350

6 1 1.4385 0.0101320 0.0064285 0.0026026 0.017192
2 0.3665 0.0873140 0.1091100 0.0441740

7 1 1.4389 0.0101650 0.0061908 0.0025064 0.017125
2 0.3679 0.0880240 0.1035800 0.0419350

8 1 1.4393 0.0102940 0.0064285 0.0026026 0.017027
2 0.3680 0.0905100 0.1091100 0.0441740
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B.7 2D CISE Benchmark

To evaluate the homogenization performance of the presented homogeniza-
tion strategies a set two-dimensional test problems based in the CISE bench-
mark (Rahnema and Nichita, 1997) is chosen. The layout for the CISE core to-
gether with the assembly definition are shown in Figure B.10, while the cross
sections for the blade, water, fresh nuclear fuel (fuel A) and depleted nuclear fuel
(fuel B) used in the tests are given in Table B.7. ‹ is considered constant for all
materials and energy groups.

Table B.7: Cross section values for CISE benchmarks.

Material D1 D2 �a1 �a2 �12 ‹�f1 ‹�f2
(cm) (cm) (1/cm) (1/cm) (1/cm) (1/cm) (1/cm)

Water 2.0000 0.3000 0.0000 0.0100 0.0400 0.0000 0.0000
Fuel A 1.8000 0.5500 0.0080 0.0850 0.0120 0.0060 0.1100
Fuel B 1.8000 0.5500 0.0080 0.0850 0.0120 0.0050 0.1000
Blade 3.0000 0.1500 0.0800 1.0000 0.0000 0.0000 0.0000

Three problems are defined based on the CISE benchmark. First, a small subset
composed by four assemblies surrounding an inserted control blade is considered,
together with reflective boundary conditions. The geometry for the proposed
problem, named Small CISE, is shown in Figure B.9a. Within this problem, the
heterogeneities considered inside the reactor are taken into account. In order
to analyse the method against a more heterogeneous problem, a non-realistic
problem, called Modified Small CISE, is defined (see Figure B.9b). This problem
is similar to the small CISE, but the control blade inside the assemblies defined
with material A is removed. This causes the flux to have an strong gradient on
the interfaces, thus being more challenging for the homogenization procedure
to preserve the properties of the original problem. The third problem to be con-
sidered is the original whole core CISE reactor (see Figure B.10), together with
zero-flux boundary conditions.
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B
A B

A

(a) Small CISE

B
A B

A

(b) Modified small CISE

Figure B.9: Definition of subsets of the CISE reactor
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(b)Detailed view of themesh used for the fine
mesh heterogeneous calculation.

Figure B.10: CISE core and assembly definition.
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B.8 3D IAEA PWR Reactor

B.8 3D IAEA PWR Reactor

The IAEA 3-D PWR problem has been a standard benchmark problem to measure
the performance of neutron transport calculation methods. Its definition along
with its reference results are found in (American Nuclear Society, 1977). This
benchmark has been solved in numerous articles e.g. Cossa, Giusti, and Mon-
tagnini, (2010), Barrault et al., (2011) and González-Pintor, Ginestar, and Verdú,
(2012). The core is composed by 177 fuel assemblies including nine fully rodded
fuel assemblies and four partially rodded fuel assemblies. 64 reflector assemblies
surround the core. The fuel assembly pitch is 20 cm and the active height of a
fuel assembly is 340 cm. The thickness of axial reflector is 20cm. The definition
of this reactor is given in Figure B.11 and the cross sections of the different ma-
terials are shown in Table B.8. The average number of neutrons born per fission,
‹, is considered constant for all materials and energy groups. Albedo boundary
conditions are used with a extrapolation distance of 2.13 ◊ Dg.
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Figure B.11: Geometry and material definition of the IAEA 3D Reactor.

Table B.8: Macroscopic cross sections of the IAEA 3D reactor.

Material D1 D2 �a1 �a2 �s12 ‹�f1 ‹�f2
(cm) (cm) (1/cm) (1/cm) (1/cm) (1/cm) (1/cm)

1 Fuel 1.50 0.40 0.010 0.085 0.020 0.00 0.135
2 Rodded Fuel 1.50 0.40 0.010 0.130 0.020 0.00 0.135
3 Exterior Fuel 1.50 0.40 0.010 0.080 0.020 0.00 0.135
4 Reflector 2.00 0.30 0.000 0.010 0.040 0.00 0.000
5 Rodded Reflector 2.00 0.30 0.000 0.055 0.040 0.00 0.000
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Appendix B. Benchmarks Definitions

B.9 3D Langenbuch Reactor

The Langenbuch reactor is a three dimensional small reactor composed of 77
fuel assemblies and 40 modelling the reflector as it is shown in Figure B.12. The
assemblies have a size of 20 ◊ 20 cm. Zero flux boundary values are applied at
the frontier of the reactor. This problem is characterized by its small size for a
three dimensional reactor and its symmetrical configuration. The fast resolution
of the reactor makes it an attractive test. The reactor was defined in Langenbuch,
Maurer, and Werner, (1977) and it has already been used by several authors as
Verdú et al., (1995), Miró et al., (2002) and Bernal et al., (2014). The materials
cross sections are exposed in Table B.9. ‹ is considered constant for all materials
and energy groups. The transient was initiated by the withdrawal of a bank of four
partially inserted control rods at a rate of 3 cm/s over 0 Ø t Ø 26.7 s. A second
bank of control rods is inserted at the same rate over 7.5 Ø t Ø 47.5 s.
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Figure B.12: Geometry and material definition of the Langenbuch 3D Reactor.

Table B.9: Cross sections definition of the Langenbuch reactor.

Material Group Dg �ag ‹�fg �s12
(cm) (1/cm) (1/cm) (1/cm)

1 – Fuel 1 1.423913 0.010402060 0.006477691 0.01755550
2 0.356306 0.087662170 0.112732800

2 – Fuel 1 1.425611 0.010992630 0.007503284 0.13780040
2 0.350574 0.099256340 0.017177680

3 – Absorbent 1 1.423913 0.010952060 0.006477691 0.11273228
2 0.356306 0.091462170 0.017555500

4 –Reflector 1 1.634227 0.002660573 0.000000000 0.02759693
2 0.264002 0.049363510 0.000000000

178



B.10 3D Small Hexagonal Rector

B.10 3D Small Hexagonal Rector

In order to test the codes in hexagonal reactors for static and time dependent ap-
plications a three dimension small reactor is defined. Figure B.13 shows the layout
map of the core composed of 19 hexagonal assemblies, for which the hexagonal
lattice pitch is 23.6 cm. The height of the reactor is 300 cm and 12 axial planes
are considered, each one of 25 cm. The cross sections of the different materials
composing the reactor are given in Table B.10. No data of�fg is given because ‹ is
considered constant for all materials and energy groups. The neutron precursors
data used in this problem are given in Table B.11. Albedo boundary conditions
are applied on the outer edge of the reflector cells. Extrapolation length is set to
2 ◊ Dg.

The defined transient simulates a rod ejection accident as follows. Starting from
the initial configuration, see Figure B.13, the rod 23 begins to be removed until
it is completely removed at time t = 0.15 s remaining only the unrodded fuel.
From t = 0.15 s until t = 1.0 s nothing happens. Then, the security system acts
inserting the rods 22 at constant velocity of 25 cm/s until the bottomof the reactor
is reached at t = 9.0 s.

(a) Core definition.

Reflector

UnRodded 

Rodded 

150 cm

100 cm

25 cm

25 cm

2322

25 cm

200 cm

50 cm

25 cm 25 cm

24

25 cm

200 cm

50 cm

(b) Rods definition.

Figure B.13: Small 3D reactor geometry.

179



Appendix B. Benchmarks Definitions

Table B.10: Cross section definition for the small 3D reactor.

Material g Dg �ag ‹�fg �fg �12
(cm) (1/cm) (1/cm) (1/cm) (1/cm)

Unrodded 1 1.40343 1.17659e-2 5.62285e-3 2.20504e-3 1.60795e-2
2 0.32886 1.07186e-1 1.45865e-1 6.00267e-2

Rodded 1 1.36764 1.39118e-2 5.37719e-3 2.10870e-3 1.35108e-2
2 0.25108 9.96214e-2 1.15403e-1 4.74909e-2

Reflector 1 0.93344 2.81676e-3 0.00000e+0 0.00000e+0 1.08805e-2
2 0.95793 8.87200e-2 0.00000e+0 0.00000e+0

Table B.11: Neutron precursors parameters for the reactor.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

—p 0.000247 0.0013845 0.001222 0.026455 0.000832 0.000169
⁄p (1/s) 0.0127 0.0317 0.115 0.311 1.4 3.87

v1 = 1.27 ◊ 10
7 cm/s v2 = 2.5 ◊ 10

5 cm/s — = 0.0065

B.11 3D AER Benchmark

This benchmark corresponds to an asymmetric control rod ejection accident in a
VVER-440 core. A plane of this reactor showing the geometry of the reactor and
the disposition of materials together with the initial position of control rods are
shown in Figure B.14. The hexagonal lattice pitch is 14.7 cm. Vacuum boundary
conditions are applied at the frontier of the reactor. Cross section data are given in
Table B.12. ‹ is considered constant for all materials and energy groups. Neutron
precursors data are given in Table B.11.

The transient is defined as follows. The control rod denoted by number 26 is
ejected in the first 0.08 seconds. Then, scram is initiated inserting the safety rods
23 and 25 at 1.0 s with constant velocity, the bottom position is reached at 11.0 s.
The drop of control rod group 21 is also started at 1.0 s with the same velocity.
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B.11 3D AER Benchmark
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Figure B.14: Geometry of VVER 440 reactor core.

Table B.12: Cross section definition for the VVER 440.

Material g Dg �ag ‹�fg �12
(cm) (1/cm) (1/cm) (1/cm)

1 – Fuel 1 1.3466 8.3620e≠3 4.4339e≠3 1.6893e≠2

2 3.7169e≠1 6.4277e≠2 7.3503e≠2

2 – Fuel 1 1.3377 8.7970e≠3 5.5150e≠3 1.5912e≠2

2 3.6918e≠1 7.9361e≠2 1.0545e≠1

3 – Fuel 1 1.3322 9.4700e≠3 7.0120e≠3 1.4888e≠2

2 3.6502e≠1 1.0010e≠1 1.4908e≠1

4 – Absorber 1 1.1953 1.3372e≠2 0.0000 2.2264e≠2

2 1.9313e≠1 1.3498e≠1 0.0000

5 – Radial Refl. 1 1.4485 9.2200e≠2 0.0000 3.2262e≠2

2 2.5176e≠1 3.2839e≠2 0.0000

6 – Axial Refl. 1 1.3413 2.1530e≠3 0.0000 2.7148e≠2

2 2.4871e≠1 6.4655e≠2 0.0000
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