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Abstract  
In modern audio processing technology, the audio signal is converted to various data domains for 

processing by using, e.g. FFT, MDCT, or Complex QMF transforms. Each domain has different properties 

resulting in different requirements in headroom and precision to manage distortion and noise in such 

systems. The aim of the work is to investigate such requirements for immersive and multichannel real-

world content and to develop guidelines for headroom and data precision requirements for processing 

such content. Processing blocks to study are the ones currently used in Dolby systems that can include 

smart implementations of data domain transforms, reduction of audio channels like rendering to a 

speaker configuration and down-mixing and signal loudness processing. 

 

 

Resumen 
En las técnicas de procesado de audio actuales, la señal temporal de audio se transforma en otros 

dominios de datos para su procesado, usando, por ejemplo, la FFT, MDCT o la QMF compleja. Cada uno 

de estos dominios tiene sus propiedades diferentes, lo que implica tener que satisfacer diferentes 

requisitos para gestionar correctamente la distorsión y el ruido en cada sistema.  El objetivo del trabajo 

propuesto es profundizar sobre estos requisitos cuando codificamos señales reales usando técnicas de 

sonido inmersivo o sonido multicanal, y poder proponer pautas para conseguir el adecuado margen 

dinámico de protección frente a la distorsión (headroom) y la precisión necesaria en los sistemas de 

codificación de punto fijo. Los procesos que se aplican a las señales que van a estudiarse serán los mismo 

que se utilizan actualmente en los sistemas Dolby, y que incluyen implementaciones que mejoran la 

eficiencia tales como el uso de transformaciones de los datos en otros dominios, la reducción del número 

de canales de audio (como en la transformación y mezcla de las señales para la reproducción en una 

configuración de un altavoz), y el procesado de la sonoridad de la señal.  
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1. Introduction 
Audio codecs have evolved dramatically in the last decades, making the coding and decoding fairly 

complex processes. The codecs and formats created and used at Dolby are no exception, as the processing 

chain of encoding and decoding of the new formats involve processing a signal in several data domains. 

To ensure the maximum quality, and the minimum distortion and loss of information, headroom and 

precision requirements must be predicted before designing the whole processing chain.  

Because of the complexity of the processes involved, the headroom and precision requirements cannot 

be predicted using worst-case scenarios, as the requirements would be too expensive and inefficient. 

Therefore, a deep understanding of the processes involved and a better knowledge of the nature of the 

real-world signals to process are needed. 

 

1.1. Objective 

The aim of this work is to provide insides over the theoretical functioning of some processes and 

transforms, together with the effects of quantization in different data domains, involved in the processing 

chain used in some Dolby products, combined with their relation with the loudness standards. Also, it is 

intended to provide information about the functioning and the distortion introduced by the real fixed-

point implementations of those processes for their better understanding. 

Besides the processes, this work also aims to provide information about the nature of real world signals 

and its behavior in the different data domains for a better understanding of the real precision and 

headroom requirements needed to process those signals. 
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2. Methodology 
This work has been developed during a stay at Dolby Germany GmbH in the city of Nuremberg (Bayern), 

Germany. The work was thought by Holger Hörig, a Dolby engineer, who felt the necessity to better know 

and understand the behavior of certain processes involved in many Dolby products, to better determine 

the headroom and the precision required in every stage of the processing chain.  

The interest was focused in three main topics: the effects of quantization in several data domains, the 

precision loss and behavior of the error introduced by the real implementations of some processing 

blocks, and the analysis of statistical data of the characteristics of real world signals. 

The first topic mentioned above was the first to be approached, as it consisted in theoretical tests that 

were helpful to familiarize with the concepts, transforms and processing blocks that would have to be 

used throughout the whole work. The theoretical tests done were experiments to test theoretical results 

to build a recompilation of concrete and informative examples that may be useful for further 

developments in the processing chain. 

The second topic mentioned, was then approached to familiarize with the algorithms and 

implementations used at Dolby. The implementations of the processing blocks are highly optimized 

processes for different configurations and processors. The tests here made were basically comparisons 

between the results obtained with maximum resolution and the results obtained for several fixed-point 

implementations that introduce a certain amount of error. This way, the precision loss and the behavior 

of the error introduced in those processing blocks could be studied, providing useful information for 

deeper understanding of the origin of the error introduced. 

For the last main topic here mentioned, real world content had to be analyzed. To do so, an analysis tool 

has been programmed in C using the necessary components from the Dolby libraries to read different file 

types, process the data, and store the statistical values of the results. To develop the tool, it was first 

necessary to familiarize with all the tools and libraries needed to be able to make the several parts and 

tools work together. When the results were obtained, an interpretation was made to find the best way to 

visualize them so useful comparisons could be made, and conclusions could be drawn. This final process 

has been made with MATLAB where several codes have also been programmed to visualize the results 

and to calculate the statistical parameters needed. 

The result of the process is a useful resource for engineers to have more tools to better develop further 

applications and increase the processing chain, ensuring enough headroom and precision requirements 

to deliver the best signal quality at the end of each process. 
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3. Theory 
This part of the work is focused in showing the effects of the quantization of a signal in different data 

domains from a theoretical point of view. The domains here explained are PCM (Pulse Code Modulation), 

MDCT (Modified Discrete Cosine Transform) and QMF (Quadrature Mirrored Filter). 

The transforms used in this part, are 64 bits floating point implementations that ensure great accuracy, 

and in the case of the MDCT, perfect reconstruction when recovering the original signal. This way, the 

effects of the quantization in those domains can be studied without considering any other distortions in 

the signal. 

When a signal is discretized to a fixed-point domain it is sampled in time and amplitude, in the time 

domain, and frequency and amplitude, in other frequency domains. This sampling will cause a loss of 

resolution of the signal in both dimensions which will be translated in a loss of precision and dynamic 

range [1]. 

Therefore, in this section, the main properties under test are the amount of error introduced by the 

discretization, and how this error introduced affects the maximal and minimal values in time and 

frequency domain. 

 

3.1. PCM domain 

The PCM domain is the most commonly known domain as it is the one in which most of the signals have 

been historically represented. There has been a lot of research on the effects of discretization in this 

domain and therefore, this part will only focus in some special interesting cases. 

 

3.1.1. SNR approximation of a discretized sinusoid 

By modeling the quantization error, the SNR (Signal to Noise Ratio) of a discretized sinusoid signal can be 

approximated as: 

����� = 1.761 + 6.02 ∙ � 

Where w is the bit word length used for quantization [2]. 

And therefore, the SNR values for different word lengths are: 

N° of bits SNR for FS sinusoid (dB) 

8 49.92 

16 98.08 

24 146.24 

32 194.40 
Table 1. SNR for Full-Scale sinusoids depending on the bit-depth 

This approximation is introduced, because a sinusoid is an interesting case when studying the effects of 

discretization with loudness normalized signals, as the loudness level of a stereo or multichannel file 

containing a pure sinusoid in each channel is easy to predict. The loudness normalization followed in this 
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part of the paper is the EBU (European Broadcasting Union) r128 recommendation, where it is specified 

that the target level of a signal should be -23.0 LUFS (or -23 LKFS).1  

3.1.2. Stereo sinusoid signal at a reference level 

The EBU recommendation states that a 1000 Hz sinusoid at -23 dBFS peak level (per channel), with 20 

seconds of duration, should have a measured loudness of -23±0.1 LUFS in all three scales defined in the 

recommendation: Momentary (M), Short-term (S), and Integrated (I). [3]  

Knowing the necessary amplitude of the wave to reach the target level, the SNR for such a loudness 

normalized signal, with different quantization word lengths, can be easily calculated with the previous 

formula. SNR for different number of quantization bits for a stereo 1000 Hz sinusoid at an EBU reference 

level of -23 LUFS: 

N° of bits Approximated SNR (dB) 

8 26.92 

16 75.08 

24 123.24 

32 171.4 

Table 2. SNR approximation for loudness normalized stereo file containing 1000Hz sinusoids at -23 LUFS depending on the bit-

depth 

This is a rough approximation, because the quantization error for such a tonal signal is just approximated 

as a saw-tooth wave with uniform distribution. Even though, a quick simulation in MATLAB has been done, 

where a pure sinusoid is generated with the necessary amplitude to fulfill the required reference level, 

and then it has been quantized with different bit depths. The results in the next table show that the 

approximation of the SNR done by the previous calculations is a rough, but also a quick good 

approximation as in most of the cases the difference was smaller than 1 dB.  

N° of bits Approximated SNR (dB) SNR of the real signal (dB) 

8 26.92 27.39 

16 75.08 74.83 

24 123.24 123.29 

32 171.40 171.03 

Table 3. SNR approximation compared to real calculation 

 

3.1.3. 5.1 multichannel sinusoid signal at a reference level 

The EBU recommendation also indicates the necessary levels to reach the target loudness level of the 

channels for a 5.1 multichannel signal, each of them containing a 1000 Hz sinusoid signal. The levels are: 

o −28.0 dBFS in L and R. 

o −24.0 dBFS in C. 

o −30.0 dBFS in Ls and Rs. 

o LFE is not taken into account in the EBU recommendation. 

                                                           
1 For more information about the EBU recommendation r128 and the loudness measurement process see: [4] [3] 
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As in the previous example, the SNR for each of the channels can be calculated depending on the bit depth 

of the quantization: 

 L, R (-28 dBFS) C (-24 dBFS) Ls, Rs (-30 dBFS) 

N° of bits Approximated SNR (dB) Approximated SNR (dB) Approximated SNR (dB) 

8 21.92 25.92 19.92 

16 70.08 74.08 68.08 

24 118.24 122.24 116.24 

32 166.4 170.4 164.4 

Table 4. SNR for loudness normalized 5.1 multichannel file containing 1000Hz sinusoids at -23 LUFS depending on the bit-depth 

 

3.1.4. SNR for different types of signals at reference level 

The loudness level of a signal is very frequency dependent, as in the loudness measurement process the 

signal is filtered with a weighting curve (K-weighting curve)2 [4]. This can produce a loudness level 

difference of up to 24 dB for two signals with the same amplitude, but with different frequency content.  

Because of this frequency dependency, a sinusoid is not the most representative signal to measure. 

Therefore, the SNR has been calculated for different types of signals with different bit depths, and the 

results can be seen in the next figure. The signals used here are mono signals, normalized to -23 LUFS 

taking the signals as the center channel when measuring its loudness level. 

 

Figure 1. SNR for different bit depths and signal types normalized to -23 LUFS 

                                                           
2 For more information about the K-weighting curve and the loudness level calculation process, consult the ITU 

recommendation BS.1770-4 [4]. 
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SNR in dB 8 bits 12 bits 16 bits 20 bits 24 bits 28 bits 32 bits 

Sine 1000 Hz 31.28 54.00 76.33 101.70 125.82 151.31 176.01 

Music 28.90 52.62 76.70 100.78 124.75 149.53 173.05 

White Noise 26.77 50.86 74.95 99.03 123.11 147.20 171.28 

Sine 30 Hz 39.16 63.33 86.91 111.36 135.35 159.40 183.51 

Table 5. Numeric results of SNR for different bit depths and signal types normalized to -23 LUFS 

As it can be seen, the SNR for different signals at the target level varies a lot depending on the frequency 

content of a signal. 

Considering that the dynamic range of a human hearing is between 110 and 130 dB of dynamic range, we 

could state, that 24 quantization bits would never produce audible quantization noise, as they provide 

enough SNR to fit the whole perceivable dynamic range, even with signal at a reference level. 

 

3.1.5. Headroom 

By quantizing a signal, its amplitude is represented with a limited number of quantization steps. This will 

round the real amplitude of the signal to the nearest quantization step, and therefore, it will change the 

original amplitude of the signal.  

Also, the time resolution used when discretizing the signal may affect the amplitude of the discretized 

signal, as some of the original peak values may lay between discrete samples. Those peaks are called inter-

sample peaks, and they can appear when recovering the original signal to the analog domain or when 

doing some kinds of processing, like re- or over-sampling. One way to detect inter-sample peaks is using 

a True-Peak meter, which will up sample the discretized signal, typically by a factor of 4, to give a more 

accurate peak level, called True Peak level3. 

Because of the previously explained reasons, leaving free headroom is a good practice before discretizing 

a signal, but setting enough headroom for any case it is a difficult task, as it will depend on the nature of 

the signal. 

To set enough headroom possible bad or worst-case scenarios, like the next one explained, are studied: 

Inter-sample peaks bad case scenario 

A typical bad case scenario will occur when the signal has a frequency of ¼ of the sampling frequency. If 

so, all the peaks of the signal may not be correctly sampled. Example below: 

Signal: pure 12000 Hz sinus, sampled at 48000 Hz, and with a phase shift of 45° 

                                                           
3 To know more about the True-Peak calculation process, see the ITU BS. 1770 recommendation Annex 2. [4] 
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Figure 2. Signal with high inter-sample peaks 

The true peaks of the signal are 3 dB higher than the ones detected at the sampled signal. 

In this case the signal with the high peaks is normalized to 0 dBFS, and therefore, the quantized signal has 

a lower peak level of -3 dB. If the quantized signal would have been normalized to 0 dBFS, then the inter-

sample peaks would have reached 3dBFS, creating possible errors when processing the signal or 

distortions at the reproduction state. 

The EBU recommends a maximum True Peak level of -1dBTP. In the next figure we can see the previous 

signal adjusted at the recommended level and quantized: 

 

Figure 3. Signal with high inter-sample peaks normalized to -1dBTP 
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In this case an adjustment of -1dB has been made, but in the case that the samples were quantized at 

Full-Scale level, an adjustment of -4dB would have had to be done. 

 

Inter-sample peaks worst case scenario 

The worst case scenario would be an infinite sinusoid critically sampled with a phase shift at the middle. 

This signal, when going to the analog domain, will cause a peak far beyond full scale (in a theoretical case, 

even to the infinite), as when the samples are multiplied by a sinc function a summation of the lobes of 

the sinc functions will occur at the center. In the next image we present an example with finite duration: 

 

Figure 4. Signal with high peak when converted to the analog domain 

 

Headroom conclusion 

Of course, this last case will probably never occur in real world signals, and therefore it should not be 

considered when searching for a sufficient headroom requirement. Looking at the first example of inter-

sample peak detection, is easy to understand the EBU recommendation of -1 dBTP. The typical true peak 

meter works at 4 times the original sampling frequency and can also miss the peaks sometimes.  

According to True peak metering – a tutorial review by Ian Dash, this method reduces significantly the 

peak detection error, but it can still have 0.17 dB of error [5]. Therefore, the -1 dBTP maximum true peak 

level recommended by the EBU seems to be enough, but only when it is sure that the true peak detection 

process has enough precision. If not, -2 or -3 dBTP would be preferable.  

Having that in mind and considering that true peaks may be 3 dB higher than the sample peaks, the actual 

headroom needed that inter sample peaks do not cause problems in further stages would be between 4 

and 6 dB headroom. 
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3.2. MDCT domain 

In this section, some theoretical concepts about the Modified Discrete Cosine Transform and the 

discretization of the signal in such a domain will be studied. To do so, a theoretical implementation of the 

transform has been implemented in MATLAB, and some tests have been made. 

The Modified Discrete Cosine Transform (MDCT) is a transform widely used for audio signal compression 

[6]. It is a modification of the Discrete Cosine Transform that uses 50% overlapped windows to avoid 

blocking artifacts. Even with the 50% overlapping, no extra data is generated because of a following 50% 

decimation of the data [7]. Thanks to the property of Time Domain Aliasing Cancelation (TDAC) the aliasing 

introduced by the decimation is cancelled when adding together the resulting adjacent blocks of the 

inverse transform [8] [9].  

To better understand the implementation here used, the mathematical expression of the implementation 

for the transform should be introduced: 

 

 Forward MDCT:  �� = �� ∑ ��� ∙������� cos � !�"#$%& '!�"%&'� (          * = 0, … , � − 1 

 Inverse MDCT:   �.� = 2 ∑  �� ∙������  cos � !�"#$%& '!�"%&'� (          / = 0, … ,2� − 1 

Where ��� = ℎ���  is the input signal multiplied by the window function. In this case the window used is a 

sine window which assures perfect reconstruction as it fulfills the next constrains for perfect 

reconstruction [10]: 

ℎ� = ℎ������  
ℎ�� + ℎ�"�� = 1 

And the sine window is defined as: 

ℎ� = sin 3 !/ + 12'2� 4            / = 0, … , 2� − 1 

 Error using ideal interpolation filter, dB 

 Oversample factor 

fs/ Phase, 

degrees 

Maximum 

sample value 

1 (base rate) 2 4 8 16 

3 30 0.866 -1.25 0.00 -0.30 -0.07 -0.02 

4 45 0.707 -3.01 -0.69 -0.17 -0.04 -0.01 

5 18 0.951 -0.44 0.00 -0.11 -0.03 -0.01 

6 30 0.866 -1.25 -0.30 -0.07 -0.02 0.00 

Table 6. True peak error on oversampled sine waves from sample timing [5] 



 

 

10 

 

There are many combinations of the gain coefficients in the literature. In this case, gains used in the 

transforms are 1/N in the analysis one, and 2 in the synthesis one. This way it is very unlikely to obtain 

coefficients in the MDCT domain that are beyond the ±1 range [11]. 

Apart of the formulas, a block diagram provides a good perspective of the whole process of forward and 

inverse transform: 

 

Figure 5. MDCT and IMDCT block processing 

 

3.2.1. Quantization effects in the MDCT domain 

The MDCT transform ensures perfect reconstruction, so it is a transparent process for the signal, so no 

error is introduced. This environment is perfect to study the effects of the quantization of a signal in the 

MDCT domain with different window lengths and quantization bit depths. The process followed for the 

purpose is the next one: 

 

 

Figure 6. Block diagram of the analysis of the quantization effects in the MDCT domain 

 

MDCT Quantization IMDCT 

- 

Input signal Output signal 

Error signal 

Window length: 256, 4096 Bit depth: 16, 24 
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As the simulation is made under MATLAB environment with 64 bits floating point number representation, 

the error introduced by the calculation process is negligible. 

The first signals used to test the effects of quantization are pure sinusoids. In particular, a sinusoid with a 

frequency multiple of the frequency resolution of the transform, which depends on the window length 

and the sampling frequency used. The other signal is a sinusoid with no direct relation with the frequency 

resolution of the transform. 

 

3.2.1.1. Input signal multiple of the transform resolution 

In the first case, the frequency used is 1125 Hz, as the window length used is 256 and the sampling 

frequency is 48000 Hz. When this signal is transformed to the MDCT domain, the energy is concentrated 

in very few coefficients, so the rest will have very little amplitudes. In the next image we can see the MDCT 

coefficients of one windowed input signal block in dBFS: 

 

Figure 7. 256 MDCT coefficients in dBFS for an 1125 Hz sinusoid 

It can already be seen that the smallest coefficients will be all quantized to the smallest quantizable value 

when using any number of bits for the quantization. This will produce a very small error, as the coefficients 

with the most energy can be quantized, but the error will be much input dependent, as the error produced 

is proportional to the amplitude of the smallest coefficients. 

When using a larger window, the coefficients have smaller values, as the energy is distributed thorough 

out more bands, so the small coefficients are even smaller, and therefore, the conditions remain equal to 

the previous example.  

In the next image, the spectrum of the original signal and the error signal when using 16 bits for the 

quantization can be seen: 
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Figure 8. PSD of 1125 Hz input and error signal after 16 bits quantization in the MDCT domain45 

3.2.1.2. Input signal not multiple of the transform resolution 

When the input signal has no simple relation with the frequency resolution of the transform, as for 

example with an 1142 Hz sinusoid in our case, the results after the transform are much different, as the 

energy is not concentrated in such few bands. In the next figure, the MDCT coefficients for an 1142 Hz 

sinusoid can be seen: 

 

Figure 9. 256 MDCT coefficients in dBFS for an 1142 Hz sinusoid 

In this case, it can be seen that more coefficients are in the achievable dynamic range with a 16 bit 

quantization. This will cause a more signal-independent quantization error. The more quantization bits 

used, the more coefficients are in the reachable dynamic range, and the resulting error has a more broadly 

distributed frequency content. The same way, the longer the window length, the smaller the coefficients, 

and therefore, the more signal dependent becomes the quantization error.  

                                                           
4 PSD (Power Spectral Density) 
5 The spectrum has been obtained by performing a 4096 samples long FFT with a rectangular window by using the 

default build in function (fft()) of MATLAB. 
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To better see the quantization effects on such a signal, a small amplitude 12715.75 Hz sinusoid is used, as 

it will appear in the middle of the spectrum. In the next figures, the quantization errors for 16 bits 

quantization and for 24-bit quantization can be seen. 

 

Figure 10. PSD of 12715.75 Hz sinus input and error signal 

after 16 bits quantization in the MDCT domain 

 

Figure 11. PSD of 12715.75 Hz sinus input and error signal 

after 24 bits quantization in the MDCT domain 

 

As it can be seen, the error is spread out through the spectrum when using more bits, and therefore, the 

error is more signal independent. 

3.2.1.3. Dithering 

To make the quantization error more independent of the input signal, dithering can be used, but when 

using dithering, the total SNR decreases. The effects of dithering in the MDCT domain are similar to the 

effects in the PCM domain, as the quantization error becomes a random noise spread throughout the 

whole spectrum of the signal. To see the effects, a triangular dither of one quantization step has been 

applied to the last example: 

 

Figure 12. PSD of 12715.75 Hz input, error and recovered signal after 16 bits quantization in the MDCT domain with dithering 
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As it can be seen, now the error is higher in some regions, but much more independent from the input 

signal. 

In the next sum up table, some SNR and THD values for the previous used signals can be seen: 

  16 bits 24 bits 

 MDCT coefficients SNR (dB) THD (dBC)6 SNR (dB) THD (dBC)6 

1125 Hz 
256 91.61 -312 138.87 -312 

4096 91.61 -301 138.87 -301 

1142 Hz 
256 75.75 -95.4 122.17 -147.66 

4096 71.09 -92.64 110.41 -137.23 

1142 Hz with dithering 256 69.24 -∞ 117.38 -∞ 

4096 57.21 -∞ 105.36 -∞ 
Table 7. SNR and THD for different bit depths and signals for quantization in the MDCT domain 

 

3.2.1.4. Clipping and wraparound in MDCT domain 

For some signals, energy can be concentrated in very few coefficients in the MDCT domain. If gain 

adjustments are not carefully made, signals with high true peak levels could generate values beyond the 

±1 range when transformed to the MDCT domain. When quantizing such a signal, the MDCT values will 

be clipped or wrapped around and this will cause distortion when performing the inverse MDCT. 

In the next examples, the signal used is a Full Scale square wave, with a fundamental frequency perfectly 

centered in a MDCT line. This will concentrate the maximum amount of energy in very few coefficients 

and values in the MDCT domain beyond ±1 will be obtained. This signal is used, because with the gains 

used in the simulation, a lot of energy is needed to obtain such values, but with other gain factors in the 

formula, values beyond ±1 could appear easily with other signals. 

The signal used is a square wave with a fundamental frequency of 843.75, as a 256 window-length (128 

MDCT length) is used. The result of the transform is the next one: 

                                                           
6 This THD (Total Harmonic Distortion) values have been obtained by using the default configuration of the thd() 

function from Matlab. 
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Figure 13. MDCT coefficients beyond full scale for a square wave of 843.75 Hz fundamental frequency 

As it can be seen, one of the bands of the MDCT has a value beyond FS. When quantizing such a signal, 

these values would be clipped or wrapped around, causing unwanted distortions when performing the 

inverse transform. 

Clipping 

The effect of clipping, in this example, is very visual, as it can be seen in the next figure. It is well known 

that a square wave is formed of an infinite sum of the odd harmonics of its fundamental frequency. In this 

case, the fundamental frequency will be clipped, and therefore, will be interpreted by the inverse 

transform as it had less amplitude than it actually should have. The only coefficient clipped is the one 

representing the fundamental frequency, so when all the other harmonics are added together, the result 

will not look like a square wave anymore because of the lack of amplitude of the fundamental. In the next 

image the result can be seen: 

 

Figure 14. Input, restored and difference signal after clipping in the MDCT domain 

This of course causes a very tonal distortion, because all the information lost belongs to one single band 

(the one that has been clipped). 
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Wrapping around 

To visualize the effect of the wraparound, the previous example has been taken, but this time, the 

coefficients will not be clipped to ±1, but instead they will be wrapped around. The coefficients now look 

like this: 

 

 

Figure 15. MDCT wrapped around coefficients 

As in the previous example, there is a change in the MDCT bin corresponding to the fundamental 

frequency of the signal, but in this case, there is also a phase shift. When adding the phasors that form 

the signal, this phase shift will produce a much more different result that could be very different than the 

original one. In the next figure, the result of the process can be seen: 

 

Figure 16. Input, restored and difference signal after wrapping around in the MDCT domain 
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Clipping and wrap around conclusion 

By seeing the resulting signals of both cases, is easy to distinguish that wrapping around causes more 

distortion to the signal. Clipping by saturation, will just change the amplitude of some of the components, 

but wrapping around would change the amplitude and the phase of the components. Also, informal 

hearing tests have been performed, and the signals that have been wrapped around sounded much more 

distorted than the ones that have been just clipped. 

 

3.2.2. True peak level 

To see how the quantization in the MDCT domain affects the true peak level of a signal, we will measure 

the true peak level of a signal at the input and at the output of the transform. 

The signal used is a classic example for true peak measurement examples, and it has been previously used 

in section 3.1.5. It is a sinusoid with an oscillation frequency of a quarter of the sampling frequency, with 

a 45° phase shift. In this case, since the sampling frequency used is 48000 Hz, the input signal will be a 

12000 Hz sinusoid. 

This kind of signal, when sampled and normalized to 1, has a true peak level of +3dBFS, as it has high inter-

sample peaks. With the simulation used, the signal has 3.02 dBTP, and after the transform and inverse 

transform, the signal still has a true-peak of 3.02 dBTP, so it has not experienced any change in the true 

peak level.  

Some other tests with other signals with different true peak levels have been performed and the true 

peak value of the output signal has been always very similar to the input signal. Therefore, it can be 

concluded that the true peak level of a signal is maintained, independently of the sample peaks values.  

 

3.3. QMF domain 

Quadrature Mirrored Filters (QMF) are known to be a filter bank that divides the signal in two or more 

lapped sub-bands [12] [13]. As the frequency content of the original signal is split out, down sampling in 

the sub band signals can be performed without causing aliasing. When the sub-band signal is sub-sampled 

by a factor equal to the number of sub-bands, the system is known as a critically sampled system. The 

split, sub-sampled signal is usually processed to apply some changes to the original signal. Afterwards, in 

the synthesis part, the sub-band signals are again up-sampled and added together [14]. This kind of filter 

banks are extensively used in many fields, and very often used in audio, where they are used to perform 

any kind of frequency band processing, such as perceptual audio coding or multi-band equalizers [15]. In 

the next figure, a block diagram of an M band critically sampled QMF bank can be seen: 
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Figure 17. Critically sampled analysis and synthesis QMF filter bank 

 

The QMF filter bank used at Dolby is a hybrid lapped filter bank as it divides the signal first in 64 lapped 

bands, and then it divides again the 3 lower sub-bands in 8, 4, and 4 smaller bands, respectively, for more 

frequency resolution in the low frequencies. Also, the filter used, is the same one for all the bands. This is 

possible because the signal itself is first multiplied by a complex factor that moves the frequency content 

of the signal to fit the corresponding band. Therefore, the transform used at Dolby components is called 

HCQMF (Hybrid Complex Quadrature Mirrored Filter). Because of its complex representation, the QMF 

transform used by Dolby is not a critically sampled transform, as there are two times the minimum values 

needed to avoid aliasing, as there is a real and an imaginary value for every coefficient. 

In this section, the filter bank (or transform) used is just a complex QMF with 64 bands, so the lower bands 

are not further sub-divided. Even though, this 64 band CQMF is the actual primary transform used in the 

Dolby components, as it uses the same methodology of using the same FIR filter for all bands. The filter 

used is a result of an optimization process, to reduce distortion and leaking to adjacent bands. The filter 

used is the next one: 
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Figure 18. Prototype filter used in the QMF analysis 

Even after the optimization process, the transform does not provide perfect reconstruction, and it 

introduces distortion to the signal. In the next figure, the frequency response of the filter bank can be 

seen, and the noise floor can be estimated by seeing the side lobes of the filters. In this image, the lower 

bands are indeed sub-divided. 

 

Figure 19. All filters of the HCQMF used in Dolby components7 

 

The default gain factor of the filter is 
�√6, but to avoid overflows, in this section the filter has again factor 

of 
�6, where 7 is the length of the filter. This will be compensated at the inverse transform. 

 

                                                           
7 Image provided by Dolby Laboratories 
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3.3.1. Distortion of the transform 

To study the native distortion of the transform, several tests with three different signals have been made. 

The first signal is a sinusoid which frequency lies perfectly in the center of the band width of the filter, in 

this case 562.5 Hz. The second one, a 3000 Hz sinusoid with no relation with the filter, and the last one a 

white noise signal. 

For the first signal, the transform presents high harmonic distortion throughout the whole spectrum. For 

the second one, the resulting error is similar to the first one, with high harmonic components, but much 

lower than in the first case. And for the white noise signal, the error introduced, is very uniform in the 

whole spectrum, so has no longer harmonic components, and it is lower than in the last two cases. In the 

next figures, the error for the 562.5 Hz sinusoid and the noise signal can be compared: 

 

Figure 20. PSD of input and error signal for 562.5 Hz 

sinusoid after QMF transform 

 

Figure 21. PSD of input and error signal for white noise 

after QMF transform 

 

In the next table, the values for SNR and THD can be seen: 

Signal SNR (dB) THD (dBC) 

Sinus 562.5 Hz 75.33 -91.89 

Sinus 3000 Hz 75.53 -107.31 

White noise 78.29 -∞ 
Table 8. SNR and THD values for different signal types for the QMF transform 

From all these three examples we can conclude that the transform works better when the energy of the 

signal is distributed in several bands, and it is not very focused in just one of them, as this would cause 

harmonic distortion that would spread throughout the spectrum. 

To further check the harmonic distortion of the transform, another signal has been used. The signal is a 

typical test signal used in Dolby. As it can be seen in the next figure, the signal has several parts, all of 

them with different characteristics: 
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Figure 22. Test signal with different parts 

The middle part of the signal is a full scale 1000 Hz sinusoid. To test the harmonic distortion, this signal 

will be given to the transform, and then the full-scale sinusoid will be subtracted of the original signal, and 

the results will be compared. 

 

Figure 23. Input, restored and difference signal after QMF 

transform for test signal 

 

Figure 24. PSD of the input, error and restored signal after 

QMF transform for test signal 

 

Figure 25. Input, restored and difference signal after QMF 

transform for test signal without full scale sinus 

 

Figure 26. PSD of the input, error and restored signal after 

QMF transform for test signal without full scale sinus 

 

As it can be seen, the maximal error is caused by the sinusoid, and this can be seen in the time and 

frequency domain error signals, where the harmonic components are very present. This can also be seen 
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in the resulting SNR values of both transforms. The first, with the sinusoid part has an SNR of 75.84 dB 

and the second one, without the sinusoid, has a SNR 3 dB better than the last one, 78.56 dB. 

3.3.2. Frequency response of the transform 

When looking at the frequency response of the transform, some lobes caused by the filter bank can be 

seen. In this section the difference between different regions of the spectrum will be presented in order 

to determine how this irregular frequency response of the transform could affect the result. 

In the next image, the frequency response of the simulation used can be seen. Also, a detail of the same 

frequency response is drawn. The amplitude difference between specific frequencies can be seen. 

 

Figure 27. Flat frequency response and QMF filter bank 

frequency response 

 

Figure 28. Detail of the QMF filter bank frequency response 

 

At 630 Hz the transform has a positive lobe, but in 664.8 Hz the transform response is equal to flat 

response. Therefore, two sinusoids with the previous mentioned frequencies have been used to test the 

amplitude difference between spectral regions. In the next image, the spectrum of the error signal of both 

signals used can be seen. 
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Figure 29. PSD of the recovered and error signals for two frequencies with diffrent amplitude in the QMF 

As it can be seen, the recovered signals have almost the same amplitude, they defer only 0.1 dB from each 

other, but there is 10 dB of variation between amplitude of the harmonics of the error signals, as they 

have very small amplitudes. This error introduced by the frequency response variations of the transform 

is so small that can be neglected. 

 

3.3.3. Quantization in the QMF domain 

In this section the effects of discretization in the QMF domain will be presented. The procedure to test 

the effects will be the same done in the MDCT domain. 

First a sinusoid input will be given to the transform, and then it will be quantized in the QMF domain with 

16 and 24 bits. The sinusoid frequencies will be the same as in section 3.3.1. 

First the 3000 Hz is used, and it will be quantized with 16 bits. With such a quantization, some error is 

introduced as some coefficients of the QMF are smaller than a quantization step. In the next plot the 

effects of the quantization can be seen: 
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Figure 30. PSD of the input signal and error signal after quantizing with 16 bits in the QMF domain 

Beyond a certain threshold the PSD of the error becomes flatter and looks like a PSD of a noise signal. The 

SNR is almost maintained in this case, but the THD is better in the quantized signal than in the directly 

recovered from the transform. This is because the harmonic behavior of the error introduced by the 

transform for such an input signal. When quantizing, the small harmonic components are lost, and the 

energy is distributed throughout the spectrum and therefore the THD is improved. 

With a 24 bits quantization, there is enough precision for all the QMF coefficients to fit in the available 

dynamic range, and therefore the spectrum of the error will be very similar to the original one. 

 

Figure 31. PSD of the input signal and error signal after quantizing with 24 bits in the QMF domain 

In this case the SNR and the THD are also very similar to the original case without quantization, as the 

transform introduces more error than the quantization. 

There is a very similar behavior when quantizing a signal with its frequency centered in one of the bands 

of the transform and when the input signal is noise. When using a 16 bit quantization, the quantization 

error introduced is bigger than the distortion of the transform, and when using 24 bits, the quantization 

error is smaller than the distortion introduced by the transform. 
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3.3.3.1. Clipping and wrap around in the QMF domain 

The aim of this section is to study the effects of clipping and wraparounds in the QMF domain, therefore, 

values beyond the ±1 range should be obtained. This is easily achieved if the gain coefficients of the filter 

are adjusted, so in this section, the gain adjustment of the filter will be 
�6/� and it will be therefore 

afterwards corrected with 
69. 

The effects of clipping and wrap around in the QMF domain are very similar to the effects in the MDCT 

domain, as in both cases, clipping or wrapping around is a change in the frequency domain, that will only 

affect the components of the bands affected in every case. These changes in the frequency domain, will 

change the result of synthesis process. Like in the MDCT domain, when a signal is clipped by saturation in 

the QMF domain there will be just an amplitude change in the frequency components of those affected 

bands, but when wraparound happens, the change is not only in amplitude, but also in phase. This could 

be not critical in some signals, but in others could change the nature of the signal completely. 

The example used in the MDCT domain section used a square wave to exemplify these effects, as the 

results are very visual and easy to understand. Therefore, in the QMF domain, a square wave is also used. 

In the next figures, the input and the output signals and the resulting QMF coefficients when clipped and 

wrapped around can be seen: 

 

 

 Clipping  

Figure 32. Input, restored and difference signal after 

clipping in the QMF domain 

Figure 33. Original and clipped coefficients of the real part 

of the CQMF transform 
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 Wraparround 

 

Figure 34. Input, restored and difference signal after 

wrapping around in the QMF domain 

 

Figure 35. Original and wrapped around coefficients of the 

real part of the CQMF transform 

As it can be seen, the effects are very similar as in the MDCT 

3.3.3.2. Dithering 

Now the effects of dithering in the QMF domain will be presented. The input signal used in this case has 

a small amplitude (0.1) and it is a sinusoid of 3000 Hz quantized with 24 bits. The results with and without 

dithering, will be compared. The dither used is a triangular dither of one quantization step. 

 

Figure 36. Original, recovered and error signal after 

quantizing in the QMF domain without dithering 

SNR = 75,42 dB 

THD = -106,34 dBC 

 

Figure 37. Original, recovered and error signal after 

quantizing in the QMF domain using triangular dithering 

SNR = 75,14 dB 

THD = -107,41 dBC 

The SNR stays almost equal, because of the amplitude of the harmonic distortion of the recovered signal. 

When dithering, a lot of the harmonic components disappear under the added noise. The THD decreases 

when dithering as the error of quantization with dithering has a much flatter spectrum, and less harmonic 

components. Even though, those values could change depending on the calculation process of THD. In 

this case just the 5 first harmonics are taken into account for the calculation. 
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3.3.3.3. Reference levels, quantization in QMF domain and SNR 

The next figure sums up the results previously presented as it shows the relationship between the 

quantization bit-depth in the QMF domain and the SNR of the final recovered signal for three different 

signal types, a sinusoid of 555 Hz, a white noise signal and a music sample. 

 

Figure 38. SNR for different bit-depths and signals at a reference level (-23 LKFS/LUFS) 

As it can be seen, the SNR increases when the bit-depth is increased, but just until a certain threshold 

where it reaches the maximum SNR that the transform offers. This happens with all the different signals. 

It is also important to mention that the signals used in this plot are loudness normalized signals to match 

the EBU target level of -23 LUFS as center (C) channels. This means that a music piece that matches the 

reference loudness level, will have approximately 60 dB SNR when quantized with 16 bit. When the bit 

depth is increased to 24 bits, the maximum SNR achieved is 75 dB. Any of these cases is not enough to 

cover all the human perception dynamic range, but it is a reasonable value that could provide good 

dynamic ranges for most production purposes. 

It is also worth mentioning that since the distortion created by the transform is very tonal, and input 

related, when this kind of signal is processed by a perceptual encoder this kind of distortion will be almost 

certainly cancelled [15]. 

 

3.3.4. True peak level 

To study the behavior of the true-peaks of a signal when going through the QMF transform an experiment 

has been planned. The transform will be fed with a sinusoid signal of a quarter of the sampling frequency, 

in this case 12000 Hz as 48000 Hz is used as sampling frequency. The signal will only have samples at full 

scale and at 0, as it will only have 4 samples per cycle. When measuring the true peak of such a signal, a 

true peak value of 0 dBTP is obtained. 



 

 

28 

 

When this signal goes through the analysis filter, a phase shift of 45° in the complex QMF domain, by 

simply multiplying with the complex value 
√�� + √�:� , is applied. Then the signal is synthesized back to the 

time domain and the true-peak level is again analyzed. The result showed that the true peak level of the 

signal is maintained, as the recovered signal has high inter-sample peaks, but the real samples of the signal 

are not at dBFS as in the input signal. The result can be visualized in the next figure: 

 

 

Figure 39. 12000Hz sinusoid and recovered signal after phase shift in the QMF domain 

 

 

To better prove that the true-peak level is maintained when going through the QMF transform, the inverse 

of the previous test is performed. Now the transform is fed with a 12000 Hz sinus with a 45° phase shift 

and normalized to full scale. The true peak level of such signal is at 3 dBTP. In the transform a phase shift 

in the complex frequency domain is also introduced, and the signal is transformed back to the time 

domain. The resulting signal is a sinus signal with peaks beyond full scale, and a true peak level of 3 dBTP, 

so it is also maintained after the transform. The signals can be seen in the next figure: 

 

Figure 40. 12000Hz sinusoid with 45° phase shift and recovered signal after phase shift in the QMF domain 
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4. Real world fixed-point processing blocks 

4.1. Fixed point basic operations 

In this section different fixed-point operations will be presented, together with their headroom and 

precision requirements. The operations are: 

 Addition 

 Multiplication by scalar 

 Multiplication of two signals 

In this section the signals are assumed to be represented in the time domain as a wave form and in the 

range between 1 and -1. 

Addition: 

The addition requires extra headroom available to fit the result of the operation, the maximum amplitude 

of the two signals added should meet the condition ;<=>� + ;<=>� ≤ 1 (where AMaxi is the maximum 

amplitude of the ith signal) to ensure that the resulting signal fits in the available range. 

There are no extra precision requirements for the addition if the previous condition is met. Even though, 

the output signal is normally scaled when adding two signals. This process is made by multiplying the 

signal by a scalar factor, and this does require extra precision. 

If the headroom condition is not met, the necessary bits to represent the resulting signal are DE =max(D= + DH) + 1 where Ba and Bb are the number of bits to represent the original signals [16]. 

Multiplication by a scalar: 

The multiplication operation does not require extra headroom when the scalar factor or gain factor (LM) 

is smaller than 1. If the gain factor is greater than 1, the signal should meet the condition  |;<=>| ∙ LM ≤ 1 

(where AMax is the maximum amplitude of the signal) to ensure that the resulting signal fits in the available 

range. 

Multiplying by a scalar requires more precision in order to represent the content with the same exactitude 

as in the original signal, as the resulting amplitudes of the samples may not be a multiple of the 

quantization step. If so, a maximum error of half a quantization step (or 3dB) will be introduced. If the 

gain factor is smaller than 1, the smallest values of the original signal would be then smaller than a 

quantization step, so their information would be lost. The number of bits required to represent the exact 

result of the operation is equal to the sum of the bits used to represent the original signal and factor [16]. 

Multiplication of two signals: 

The multiplication of two signals is often used in many processes such as windowing, for example. This 

operation does not require extra headroom when both signals are expressed in the same range of values. 

As in the previous case, multiplying two signals requires extra precision. To be exact, the number of bits 

required in the resulting signal must be equal to the sum of the bits used to represent the original signals 

[16]. If not, a maximum error of a half quantization step (or 3 dB) will be introduced to the signal and the 

SNR will be therefore decreased, and the dynamic range will be limited to the maximum representable 

range with the number of bits used to represent the result. 
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 Square of a signal: 

As a special case for the multiplication, the square of a signal is now also presented. It is often used to 

calculate the energy. The operation requirements are very similar to the previously explained, as it is 

mainly a multiplication of two signals, so there are no headroom requirements, and the resulting signal 

requires as many bits as the sum of the bits used to represent the original signal.  

In this case, though, if the range that is being represented includes negative numbers, the result of the 

operation will return always a positive number, leaving one free bit as the representation of the sign is no 

longer needed. This bit could be used to increase the SNR of the square of the signal, but this means that 

the binary number type must be changed, and this could cause interpretation problems. 

 

4.2. Quantization error propagation theory 

For some fixed-point operations there is a precision loss in the process due to the quantization with limited 

precision. This error can be seen as an added noise to the signal. This noise can be modeled depending on 

the quantizer used as a uniformly distributed white noise with different means and variances depending 

on the quantization step q, the number of bits eliminated during the quantization k and the type of 

quantization mode: truncation, conventional rounding or convergent rounding [17]. The white noise mean 

and variance are modeled as: 

Quantization mode: Truncation Conventional rounding Convergent rounding 

Mean 
O2 P1 − 2��Q 

O2 P2��Q 0 

Variance 
O�12 P1 − 2���Q 

O�12 P1 − 2���Q 
O�12 P1 − 2���"�Q 

Table 9. Mean and variance of quantization error for different types of quantization [17] 

Depending on the operation done, this added noise will propagate differently. If two scalar noises are 

defined, R> and RS, which are associated to two inputs (X and Y) of the operator, the operator will 

generate an output noise RT defined as: 

RT = ��R> + ��RS 

Where ��and �� are defined depending on the operation type as: 

Operation Value of UV Value of UW 

X = Y ± [ 1 ±1 

X = Y ∙ [ [ Y 

X = Y[ 
1[ − Y[� 

Table 10. Propagation of quantization error for different operations [17] 
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It is easy to understand the previous formula just by studding the multiplication of two signals. If we 

multiply two quantized signals (\, ]), which are composed by the signals (Y, [), plus the quantization noise 

(R>, RS), we can model the multiplication as: 

\ ∙ ] = (Y + R>) ∙ P[ + RSQ = Y[ + R>[ + RSY + R>RS 

If we divide the result between signal and noise parts, we can identify as the resulting noise (RT): 

RT = [R> + YRS + R>RS 

As the term R>RS is much smaller than the others, it can be neglected, and the result is the same as in the 

previous formula: 

RT = [R> + YRS 

To prove the previous theory, the next experiment is done:  

Two white noise signals are generated and quantized with 16 bits and re-quantized with 8 bits, losing 8 

bits precision, and therefore, generating a quantization error that will propagate through the operations. 

The quantization uses conventional rounding, so the expected mean and variance values can be 

calculated. Also, the real mean and variance obtain in the experiment can be calculated and compared to 

the expected value: 

 Mean Variance 

Signal 1 1.5819 ∙ 10�a 5.1463 ∙ 10�a 

Signal 2 1.5128 ∙ 10�a 5.1458 ∙ 10�a 

Expected values 1.5259 ∙ 10�a 5.0862 ∙ 10�a 

Table 11. Mean and variance of the quantization errors of two noise signals and their expected values 

To prove the error propagation through the operations, the two quantized signals will be added, and the 

result will be compared with the addition of the double precision signals. By doing this, the error of the 

signal can be extracted and should match the addition of the first two quantization errors. The same 

process has been made for the product of those signals.  

The errors obtained are compared to the expected error according to the error propagation theory. The 

results can be seen in the next table: 

  Error propagation theory Actual error of the signals 

Addition Mean 3.1034 ∙ 10�a 3.1034 ∙ 10�a 

Variance 1.0290 ∙ 10�a 1.0291 ∙ 10�a 

Multiplication Mean 3.4034 ∙ 10�d 3.4216 ∙ 10�d 

Variance 3.4303 ∙ 10�e 3.4302 ∙ 10�e 

Table 12. Mean and variance values of the propagated error after addition and multiplication and the theoretical values 

As it can be seen, the results match the predictions made by the propagation model. 

When doing the square of a signal this may change a little, as the errors and signals that are being 

multiplied are the same, so the formula would be: 

\ ∙ \ = (Y + R>) ∙ (Y + R>) = Y� + 2R>Y + R>� 
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As the last term will be much smaller than the other, the error can be approximated as: RT = 2R>Y 

In the next two plots the propagation error of the square of a signal that has been quantized with 16 bits 

can be seen. The maximal error of such a signal would be 
∆�  = 1.5 ∙ 10�a, but when squared, the maximal 

error will be twice that value. Then the theoretical propagation with the actual propagation of the square 

of a real signal will be compared: 

 

Figure 41. Histogram of the propagated error when squaring 

the signal 

 

Figure 42. Histogram of the propagated error according to 

the propagation theory 

 

The previous figures show the histogram of the errors that approximate the PDF of the noise resulting 

from the multiplication of two uniformly distributed noises. This distribution is known as the 

multiplication distribution, and it also confirms the noise propagation theory through basic operations. 

 

4.3. Mean square 

With the theory introduced in the previous sections, a practical fixed-point and more complex example, 

such the mean square calculation, is here introduced. The mean square operation is very often used to 

calculate the signals energy. It is based in a multiplication of a signal by itself, an addition of all the squared 

numbers and a division by its length, obtaining the mean of the squared of a signal.  The error propagation 

of such a signal is a little bit more complex than the previous examples, but conclusions can be drawn by 

looking at the probability distribution of the resulting error at each stage. 

Square: 

As it has already seen, the quantization noise of a signal can be approximated as a uniformly distributed 

noise with a mean value near to 0. When multiplying such noise by itself, in theory, the resulting noise 

will have a multiplication distribution with mean value also near 0 and a maximum value of two times the 

quantization step used for the input signals. But the fixed-point multiplication ads more noise to the result. 

This noise has a maximum value of half a quantization step, and it will be added to the previous one. 
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Mean: 

When adding the squared signals, the previous error will be accumulated for every addition. If the addition 

is performed with an accumulator there is no need to scale the signal down first, and no extra error will 

be accumulated, as the accumulator provides enough headroom to contain the result. When performing 

the last division to calculate the mean, an error will be introduced with a maximum value of half a 

quantization step 

If the addition is performed without accumulator, a scaling factor should be applied and will introduce 

more noise to the calculation. Since a division by the length of the signal is needed to calculate its mean, 

the division will be performed before the addition and will act also as a scaling factor for the addition. The 

error of the fixed-point division will be accumulated when adding all the values of the signal, but the 

addition itself will not introduce any extra error. 

Now two block diagrams of both processes are presented, one with accumulator in the addition process 

and the other without it:



 

 

 

 

3
4

 

 

 With accumulator: 

 

 

 

 

 

 

 

 

 

 Without accumulator: 
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Figure 43. Distributions of the error through the process of mean square calculation with accumulator 
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Figure 44. Distributions of the error through the process of mean square calculation without accumulator 
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It can be seen that the results are very different for both cases. In the first one, the error of the scaling is 

not accumulated when adding all the values of the signal, and therefore the maximum error is still half of 

a quantization step. In the second case, though, the error of the scaling is accumulated, and therefore, 

the resulting error is bigger, and it will depend on the size of the block in which the mean square is being 

calculated.  

It is also worth mentioning, that the distribution of the error signals changes depending on the case. When 

the calculation without accumulator is done, all the uniformly distributed errors introduced by the fixed-

point scaling are added, and therefore, a sum distributed random signal is obtained. When using an 

accumulator, the resulting error still has a uniform distribution, as the accumulated error is scaled down, 

and a new bigger and uniform error is added at the last stage. 

 

RMS error for 16 

bit quantization 
Block size = 128 Block size = 640 Block size = 4096 

Accumulator 8.8026e-06 8.8567e-06 8.8008e-06 

No accumulator 9.8292e-05 2.6154e-04 0.0024 

Table 13. RMS error for 16 bit quantization values for the calculation of the mean square value for different block sizes 

To obtain the previous values, the mean square of a white noise signal has been calculated with both 

methods. It can be seen that without accumulator the error grows together with the block size of the 

calculation, as the error introduced by the scaling will also be added. In the case of the accumulator, the 

resulting error is independent of the block size as no error is accumulated in the addition. 

 

4.4. Fixed point implementation of the transforms 

In this section, the results of testing the real fixed-point implementations of the MDCT and QMF 

transforms used at Dolby will be presented. The results are highly implementation dependend as 

differently optimized implementations for different processors lead to different results [18]. Therefore 

some results presented in the next sections could not be explained with detail because of the complexity 

of the processes involved in the transforms combined with the time constrains faced during the project. 

This part will focus on the error introduced by the transforms, it source, and the distribution of the error 

throughout the bands. In section 5 more will be explained about the maximum reachable values with real 

world signals, and therefore, more information about the headroom requirements of the transforms can 

be obtained. 

 

4.4.1. MDCT 

To be able to test the precision of the MDCT transform, it has been isolated from its inverse (IMDCT) and 

a spectral analysis has been done to study the error distribution throughout the frequency bands. 

The error has been obtained by subtracting the result obtained using the 64 bits floating-point 

implementation and the fixed-point 16 bit. This procedure has been made for different signals and 

different window lengths (4096 and 256). 
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Long signals had been given as input, and therefore the output is a series of transforms, in our case, of 

length 2048 or 128 samples. The results shown are the average of all the samples that correspond to the 

same band of the MDCT transform. The error is shown, not as an average, but as a histogram per band, 

where the more likely errors per band are displayed with lighter colors. This way the maximal and minimal 

errors can be taken into account, but also the more likely cases are shown. 

In the next images, examples of some results can be seen. They have been obtained by using a generic 

fixed-point build configuration, implemented with standard C operators, that is able to run on different 

processors (generic_risc16x32), where 32 bit word length is used for the data, and 16 bit word length is 

used for the coefficients. The result has therefore a SNR around 90 dB, as the coefficients set the maximum 

precision of the calculations. 

 

Figure 45. Average MDCT of size 4096 for a 10s noise signal 

and histogram of the error for 16 bit coefficient precision of 

each band 

 

Figure 46. Average MDCT of size 4096 for a 10s 562.5Hs sine 

signal and histogram of the error for 16 bit coefficient 

precision of each band 

 

It can be seen in the histograms of the error that for the noise signal, the error can have different values, 

but in the case of the 562.5 Hz sinusoid, the error is always the same, as the frequency of the sinus is 

perfectly centered in a MDCT band. 

To see how the calculation process affects the results a similar configuration to the previously used has 

been modified (from model_risc16x32 converted to model_risc32x32) so that 32 bits are used for both, 

the data and the coefficients. In this case the precision of the result will be determined by the number of 

operations that produce a loss of precision. Therefore, the SNR of the result should be predictable if the 

number of operations is exactly known. 
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This particular implementation of the MDCT is fairly complex, and because of time constrains a deeper 

analysis of the process could not be reached. Even though, it is known that the core of the transform is a 

radix4 complex Fast Fourier Transform8. 

Knowing that, the shape of the resulting error can be better understood, as the main part of the error is 

coming from the operations involved in the FFT. In the case of a 256 MDCT window length, a radix 4 scaled 

64 FFT is used and in the case of a 4096 MDCT window length, a radix4 scales 1024 FFT is used. The results 

obtained for a white noise signal are the following: 

 

Figure 47. Average MDCT of size 256 for a 10s noise signal and 

histogram of the error for 32 bit coefficient precision of each 

band 

SNR = 141.4 dB 

 

Figure 48. Average MDCT of size 4096 for a 10s noise 

signal and histogram of the error for 32 bit coefficient 

precision of each band 

SNR = 128.6 dB 

 

As it can be seen, the lower bands show an unusual behavior as some bands have more error than others. 

This may be an effect caused by the order of the samples in the complex FFT implementation, as not every 

sample follows the same path of the radix4 algorithm, and different twiddling factors are used [19] [20]. 

Therefore, different errors may be obtained in different regions of the transform. The same error shape 

is obtained in the QMF transform, and some tests have been made to test the source of this error (4.4.2. 

QMF). 

This phenomenon could not be explained with detail, but it shows the impact of the FFT in this MDCT 

implementation. Therefore, to better understand the source and amount of error introduced by the 

calculations, a better understanding of the FFT algorithm used is necessary.   

Another important fact is the amplitude difference between both transforms. The shorter transform has 

a bigger amplitude as the longer transform, as the energy of the signal is divided in less bands. This effect 

is more visible when the signals energy is spread through all the bands. 

                                                           
8 To exactly know how the MDCT can be implemented by using an FFT, the mathematical approach can be checked 

at Efficient Implementation of the Complex Modulated Filter Bank by Per Ekstrand [14]. The chapter of interest is 

annexed in Annex 3: Fast DCT type IV transform by Per Ekstrand (Coding Technologies). 
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To see the impact of the bits used to represent the coefficients of the transform, in the next images the 

evolution of the SNR depending on the coefficient bits and the transform length can be seen. The plot has 

been obtained by performing the transform with the same input signal but changing the number of bits 

of the transform coefficients. 

 

Figure 49. SNR vs. coefficient bits for a MDCT of a 256 

window length 

 

Figure 50. SNR vs. coefficient bits for a MDCT of a 4096 

window length 

4.4.2. QMF 

To test the precision of the QMF transform, almost the same procedure as in the MDCT test has been 

followed. The figures below represent the same as in the previous section, an average of several 

transforms, and a histogram for every band of the QMF. 

First, the 64 bit transform has been performed, in order to get the results with the maximum precision. 

Then, the results with maximum precision will be compared to the results of other configurations with 

less precision to extract their error. As the QMF used is in fact a CQMF the values represented here are 

the absolute values of the results. 

As the QMF has less bands than the MDCT, statistical box-plots can be presented. In these plots, the 

central red line represents the median, and the edges of the box the 25th and 75th percentiles. The lines 

extend to the last samples that are not considered outliers, and the outliers are represented with a red 

cross. Finally, the continuous red line represents the mean of each band and the blue line the average of 

all the QMF transforms obtained through the duration of the signal. 
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Figure 51. Average QMF result and distribution of the error of each band with 16 bit coefficient precision for a noise signal 

In the previous image the result obtained with 16 bit coefficient can be seen. As seen in other cases, the 

SNR is around 90 dB as the coefficients set the maximum precision of the result. An important fact to 

remark is the amplitude difference between the QMF and the MDCT transform. The QMF show an average 

result around 10 dB higher than the MDCT. In section 5, more comparisons between the results of the 

MDCT and QMF will be made and commented. 

In the next figure, the plot presented is the result obtained for music. 

 

Figure 52. Average QMF result and distribution of the error of each band with 16 bit coefficient precision for music  

As it can be seen, the distribution of the error in every band is very similar, as they are broad band signals 

with frequency components throughout all the spectrum. But in the case of music, the lower band 
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presents higher amplitude error than the rest, probably caused by the fact that low frequencies are very 

present in music. 

This distribution of error is different when the signal has its energy in just few bands. In the next case, the 

frequency chosen is perfectly in the center of a filter response. This causes that the errors obtained are 

always the same and therefore the distribution of the error of every band is very narrow. 

 

Figure 53. Average QMF result and distribution of the error of each band with 16 bit coefficient precision for an 1875 Hz sine 

 

The following result has been obtained, as in the previous section (4.4.1. MDCT), by modifying the 

configuration used so that data and coefficients have the same precision: 32 bits. The error in the next 

figures is again presented as histograms, in order to be comparable with the results from the MDCT. 

 

Figure 54. Average QMF result and histogram of the error of each band with 32 bit coefficient precision 
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Here, the same phenomenon as in the error obtained in the MDCT can be seen. The QMF implementation 

has a non-uniform error distribution, where the odd bands of the lowest half of the transform have a 

greater error than the others. To prove that this error is coming from the FFT, different tests have been 

made: 

First, the effects when changing the transform length had been checked. A 32 band QMF has been used, 

and the result was similar to the 64 band QMF, as the odd bands of the lower half of the transform had 

more error than the rest. 

To discard overflows in the process, a signal with 2 bits (12 dB) of headroom has been used. The result 

has been the same as in the previous case. 

Once the overflows have been discarded, the possibility that this effect may come from the type of filter 

used in the transform has been also checked, and the result with different filters has always been very 

similar. 

The last theory is that the effect could be caused by the twiddling factors of the FFT used. When changing 

the twiddling factors, a change can be seen in the distribution of the error histograms: 

 

Figure 55. Average QMF result and histogram of the error of each 

band with 16 bit coefficient precision with mini twiddle 

coefficients 

 

Figure 56. Average QMF result and histogram of the error of each 

band with 16 bit coefficient precision with full twiddle coefficients 

 

The difference between the figures is subtle, but the overall error is higher in the right figure, because the 

full twiddle factors are used. The distributions of the histograms of the lower bands have changed, proving 

that this effect is caused by the operations in the FFT.  

To see the importance of the precision of the coefficients used in the transform, several tests have been 

performed by changing the data bit-depth (Lfract bits) and the coefficient bit depth (Sfract bits) used by 

the implementation to obtain the SNR of all the possible combinations of Lfract and Sfract bits. This will 

give a good overview of what bits act as a bottle neck and why. The results obtained can be seen in the 

next figure: 
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Figure 57. SNR for different combinations of data and coefficient bit depths 

This matrix has been obtained using a white noise signal at -12 dBFS to ensure no overflows. As it can be 

seen in the figure above, the Lfract bits are the most critical as the result of the operations will be 

represented with this number of bits, and therefore, they limit the SNR and the dynamic range of the 

result. Even though, if the coefficients are represented with less bits than the data, the result of the 

operations will also be inaccurate because of the error introduced by the coefficients. 
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5. Real world signal analysis 
When designing some complex processes, it is sometimes difficult to stablish sufficient safety measures 

such as headroom or precision requirements of the processes. Those predictions can be based in rule of 

thumb thoughts about the theoretical functioning of the processes involved, but, if doing so, errors along 

the processes are still probable. Also, they can be based in worst case scenarios, but in very complex 

processes, these measures would over-dimension the requirements, as worst-case scenarios are usually 

unrealistic and improbable in the real world. 

The purpose of this section is to give some real-world signal statistics in different data domains and 

through different processes involved in the coding and decoding of different Dolby components such ac-

4 or the delivery of Dolby Atmos content. To do so, an analysis tool has been programmed, together with 

some help of some Dolby engineers to be sure all the different components used work properly together.  

After the tool has been successfully programmed and functioning, it is able to read any audio delivery 

configuration such as: mono, stereo, multichannel and object-based immersive audio files. It analyzes 

every channel or object given as input and, depending on the input configurations, it performs down-

mixes or renderings to smaller channel configurations and it analyzes the down-mixed content again. By 

doing this, the behavior of the processes involved can be tracked and, as the signals used are real content, 

the requirements of this processes could be analyzed and adjusted if necessary. In the next figure a block 

diagram of the tool can be seen. 

 

Figure 58. Block diagram of the multichannel analysis tool 

As it can be seen, the tool reads different input configurations and, in the case of Atmos content, it 

analyzes every object and channel of the original content. Then, it performs a rendering to a 5.1 and 2.0 

channel configuration, using the Dolby Object Audio Renderer (OAR) as specified in ETSI TS 103 448 V1.1.1 

(2016-09) [21], and analyzes every channel of the renderings.  



 

 

44 

 

If the content is channel based, a LoRo down-is performed and the tool analyzes the two final channels. 

The LoRo down-mixing process is made using the next coefficients: 

LoRo  L R C LFE Ls Rs 

L 1 0 √2 0 √2 0 

R 0 1 √2 0 0 √2 

Table 14. Coefficients for the LoRo down-mix 

The down-mix performed with those coefficients is sometimes also called “power preserving, which 

means that the result of the down-mix is not normalized to the maximum possible value. 

The channel analyzer, analyses every input channel the same way. It reads two different block sizes, 2048 

samples long, and 3 seconds (or 144000 samples long) blocks9. For each block the mean square value, the 

maximum peak value, and the maximum true peak value are calculated. Also, two domain transforms are 

also performed, the MDCT and the QMF. For the MDCT, two blocks of the input signal are used so the 

output of the transform is 2048 complex samples long, and the QMF is performed in sub-blocks of 64 

samples long. The QMF is used to calculate the energy of the signal in each band. 

The results of each calculation are sent to a histogram object that creates a histogram for each of the 

parameters, and in the case of the transforms it performs a histogram for each line of the transforms 

(2048 for MDCT and 64 for QMF). With these histograms, statistical parameters such as percentiles can 

very easily calculated. In this case, all the plotting and statistical calculations have been obtained with 

MATLAB. In the next figure, a block diagram of the channel analyzer can be seen. 

 

Figure 59. Block diagram of the channel analyzer 

The content that has been analyzed can be basically grouped in three groups: Original stereophonic music 

content from CDs, original multichannel cinematic content from DVDs, and original object-based 

immersive content from Dolby Atmos Master Files. In the next sections the results of such analysis will be 

presented. 

                                                           
9 The results for the long blocks have been neglected as they were redundant. 
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5.1. Stereophonic music content 

In this category of content, four sub-groups have been differentiated. The sub-groups categories are based 

on their music genre. The sub-groups are: Classica, Jazz, Rock and Pop. 

It is difficult to make such a rough classification with music, as it is sometimes too diverse, and categories 

can always be sub divided. But these four categories can good represent the technical differences 

between music types. 

To have enough data, a relatively big sample for each category has been analyzed10. The content used, 

has always been original content directly obtained from original CDs to make sure that no “lossy” encoding 

processing has been previously made to the signals. The parameters analyzed are the ones explained in 

the previous section: mean square values of 2048 samples long blocks, peak values, true peak values, 

amplitude of MDCT bands and energy of QMF bands.  

Now a comparison between genres will be presented: 

These four genres have very different dynamic behavior, and this can be seen in the results obtained. In 

the next table, the maximum values, and the 95th percentile of each parameter is presented, as these two 

values combined give a good idea of the distribution of the histogram obtained after the analysis.  

When looking only at the maximum values, it could be thought that classical music uses as much 

compression as rock. But when looking at the difference between the maximum value and the 95th 

percentile, it can be easily seen, not only that classical music is much more dynamic than rock, but also 

that rock hits the full-scale value very often, as the maximum value and the 95th percentile are very close 

or are even the same value. 

Music content 
Mean 

square 
Peak True Peak MDCT QMF 

Classical 

95th percentile -19 dBFS -9.5 dBFS -9.5 dBFS -35 dBFS -29 dBFS 

Highest 

value11 

-4 dBFS 0 dBFS 1.5 dBFS -1 dBFS -7.5 dBFS 

Jazz 
95th percentile -12.5 dBFS -2.5 dBFS -2 dBFS -21 dBFS -20 dBFS 

Highest value -3.5 dBFS 0 dBFS 1.5 dBFS -1.5 dBFS -6.5 dBFS 

Rock 
95th percentile -7 dBFS 0 dBFS 0 dBFS -15.5 dBFS -13.5 dBFS 

Highest value -2 dBFS 0 dBFS 2.5 dBFS 0.5 dBFS -6.5 dBFS 

Pop 
95th percentile -7.5 dBFS 0 dBFS 0 dBFS -13 dBFS -13.5 dBFS 

Highest value -2 dBFS 0 dBFS 2.5 dBFS 1 dBFS -6.5 dBFS 

Table 15. Highest and 95th percentile values for mean square, peak, true peak, MDCT and QMF for all genres 

With this sum up table, it can already be seen that such high levels, as the ones achieved by rock or pop, 

can be problematic [22] as some values beyond full scale are appearing in the transforms. These values, 

if being processed with fixed point processors, would have been clipped or wrapped around, causing 

errors when synthetizing the signal.  

                                                           
10 For a complete list of the music content that has been analyzed, see: Annex 1: List of content used for analysis of 

stereophonic music. 
11 The highest values shown in the entire document are normally outliers of the histogram distribution, and 

therefore, they do not represent the behavior of the average. Nevertheless, they are important to determine the 

possibility, even if remote, that some samples may have values beyond the full-scale range. 
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This is a concerning fact, as the signals here analyzed are only original content, and no down mixing, 

dynamic processing or any other process that could concentrate the energy in one channel has been 

performed. 

In the next figures, a comparison between the distributions obtained for each genre can be seen. These 

figures, show the normalized histograms of the mean square, peak and true peak values for the different 

genres. The histograms just show the relative amount of times that a value has appeared in a music 

category, so it shows the average nature of the signals for each genre. 

 

Figure 60. Normalized histograms of mean square values and their 5th and 95th percentiles for different genres 

 

Figure 61. Normalized histogram of peak values for different genres 
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Figure 62. Normalized histogram of true peak values for different genres 

It is interesting to see the different distributions between genres. Classical music is the most dynamic and 

it has almost a normal distribution shape in all three cases.  

The mean square value, gives an idea of the amount of energy that the signal has in time. It can be seen, 

that pop or rock are genres where the signal has a lot of energy in an extended amount of time, as their 

distributions are narrow and have high mean values.  

By looking at the peak and true peak distributions, it can be seen in which genres more amount of limiting 

is used, as the amount of values at full scale is much higher in pop and rock than in jazz or classical. Also, 

the kind of sounds involved in every music genre can give some information, as in the classical music there 

are almost no values at 0 dBFS, but in jazz 0 dBFS values start to appear. This could be caused by the 

presence of percussion instruments, such as drums, in jazz music. Those instruments, when recorded, 

normally generate high amplitude signals and can hit full scale easily. 

 

5.1.1. Transforms 

As mentioned before, the transforms used are the MDCT and the QMF. In these sections the results of 

the transforms for each genre will be presented. In Figure 63 to Figure 70, the results can be seen. The 

figures represent a color code histogram for each band of the transform, where the values that appeared 

more often in each band are colored with lighter colors. The color code is normalized through all the 

bands, so there can be some color changes between figures, as a specific histogram bin of a band may 

have higher values than in other figures. Also, the lines for the 5th and 95th percentile in red, and the 

maximum and minimum values in green can be seen. 
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5.1.1.1. MDCT 

By looking at the Table 15, together with the figures below, some interesting observations can be made, 

and differences between genres can be detected. 

First of all, it is clear that the results for pop and rock music are similar as they present high values and 

their spectral content is also similar. Also, both genres present a maximum value in the MDCT domain 

that is beyond the full-scale range. Also, the dynamics presented in the MDCT domain are similar as the 

values of the mean 5th and 95th percentile respectively are -97 and -51.3 for rock and -104.7 and -52 for 

pop music. 

Pop and rock are different than the results for classical music, as this genre presents much lower values. 

The percentiles of classical music are lower than any other genre presented here, with a mean value for 

the 5th and 95th percentiles of -125.9 dB and -77.9 dB respectively. It is interesting to note that the 

harmonic content of classical music can be observed in the form of the MDCT. Another interesting fact is 

that the use of dither and noise shaping techniques can be seen in the MDCT transform for classical music, 

where the high frequency bands show a higher level than it would be expected. 

The results for jazz are in between the previous two cases, where higher values than classical music are 

achieved, but not as high as pop or rock. The mean percentile values obtained are -105.3 dB and -60.1 dB 

for the 5th and 95th percentiles respectively. 

The common facts for all genres are that their general spectral shape is similar, as the lower bands present 

always the maximum amplitude, and it decays as the frequency increases. Also, it is interesting to observe 

the dynamics in the MDCT domain, because, even though in the PCM domain the signals had very different 

dynamic ranges, by looking at the difference between the mean percentiles, it can be seen that in all 

genres almost the same value is obtained. Even more, the genre with less dynamic range in the PCM 

domain is the one that presents the maximum difference between percentiles in the MDCT domain. 

 

Genre Mean 5th percentile (dBFS) Mean 95th percentile (dBFS) Difference (dB) 

Classical -125.9 -77.9 48 

Jazz -105.3 -60.1 45.2 

Rock -104.7 -52 52.7 

Pop -97 -51.3 45.7 

Table 16. Mean values of the 5th and 95th percentiles and its difference for all genres



 

 

 

 

4
9

 

 

 

 

Figure 63. MDCT band histograms for classical music 

 

Figure 64. MDCT band histograms for jazz music 

 

Figure 65. MDCT band histograms for rock music 

 

Figure 66. MDCT band histograms for pop music 
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5.1.1.2. QMF 

By looking at the results in Table 15, the QMF have surprisingly low values in comparison with the MDCT 

transform. This is because one extra bit of headroom is saved in the QMF transform to avoid overflows 

with signals that may have a DC offset, or that may act as one for a QMF block length such as a square 

wave with a low fundamental frequency. This amplitude difference is present in all the results shown in 

this work, as these are the actual transforms used at Dolby. 

This decrease of the maximum values obtained in the QMF transform is shown in Table 15, but even 

though, the 95th percentile is almost equal to the values obtained for the MDCT. The mean values for the 

5th and 95th percentiles for each genre have been also calculated for the QMF results, and they show that 

even though the maximum level is lower than in the MDCT, the percentiles are higher. Also, that the 

difference between percentiles, stays almost equal in comparison with the MDCT. In the next table the 

numeric results can be seen: 

 

Genre Mean 5th percentile Mean 95th percentile Difference 

Classical -117.7 -68.7 49.0 

Jazz -98.3 -52.4 45.9 

Rock -92.1 -44.6 47.5 

Pop -99.9 -45.2 54.7 

Table 17. Mean 5th and 95th percentile values and their differences 

This shows that the transforms distribute the energy differently because of their different block sizes 

and therefore number of bands, and because of the energy calculation in the QMF. In the next images 

the resulting plots for the QMF results can be seen: 
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Figure 67. QMF band histograms for classical music 

 

 

Figure 68. QMF band histograms for jazz music 

 

Figure 69. QMF band histograms for rock music 

 

Figure 70. QMF band histograms for pop music 
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5.2. Multichannel cinematic content 

In this section, the analysis results for 5.1 cinematic content will be presented. The content used is 

specifically cinematic content, so multichannel music and TV programs have been left apart. The list of 

content used can be seen in the Annex 2: List of content used for analysis of cinematic multichannel 

content. 

First of all, the content of every channel will be compared, to better understand the nature of the signals. 

By looking at the true peak level of the signals some conclusions can be drawn, so in the next figure, the 

true peak value for every channel can be seen: 

 

The plot above shows that some of the channels present more true peak values at full scale level, or 

beyond, than others. The channels that present higher true peaks are the Left and Right and the Center 

channels. Also, limiting can be appreciated in the plot in those channels, as a high amount of true peak 

values are at 0 dBFS. This is not a strange fact, as in these channels usually concentrates all the dialog of 

a film, and compression and relatively high levels are usually used when mixing to increase intelligibility. 

Now, the mean square values of the signals will be presented, as it is a good approximation of the energy 

in each channel: 

Figure 71. Normalized histograms of true peak values for different channels 
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Figure 72. Normalized histogram of mean square values for different channels 

 

With the mean square values of the channels, it can be seen again, that the channel with the higher 

amount of energy are the Center and Left and Right channels, as the most important information of the 

film, such as dialog and music, is normally in those channels. Even though, the Center channel out stands 

the others and shows a narrower distribution than any other channel. This is because, the Center channel 

carries most of the dialog of a film, and with this plot can be seen how the dialog level is used as a 

reference for the level of all the other elements of a film. This is described in the EBU r128 

recommendation as “anchor signal” [23]. 

Also, it can be seen that the LFE channels has much less energy than the other channels, but it is important 

to know that a 10 dB gain to the LFE channel will be applied in the play back stage. 

Note: the high peak in the LFE channel is caused by the high amount of silence in this channel, combined 

with the dithering used. In the analysis, the last bin of the histograms is considered as silence, and 

therefore is never considered. But when dithering is used leaving silence parts out of the histograms is 

more complicated due to the different types of dithering and quantization methods. 

 

5.2.1. Down mixing 

The down mixing results in this section are obtained when analyzing the LoRo down mix of the original 

5.1 content. The LoRo coefficients used when down mixing are the ones presented in Table 14. 

It can be easily seen by looking at the coefficients that the energy of the signals will be concentrated in 

fewer channels. Taking in mind that in some channels there was many peak values at 0 dBFS, it is very 

probable that, when down mixing, values beyond full scale will be obtained. In the next figures the 

comparison between the original content and the down mixed content, for mean square and peak values, 

can be seen. In this plot the LFE channel is left out, as it is not taken into account for the LoRo down-mix. 
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Figure 73. Normalized histogram of mean square values and its 5th and 95th percentiles for 5.1 and its LoRo down-mix 

 

Figure 74. Normalized histogram of peak values and its 5th and 95th percentiles for 5.1 and its LoRo down-mix 

As it can be seen in the images, the energy is higher in the down mixed channels than in the multichannel 

ones, as the energy has been just concentrated in fewer channels. The levels have increased around 6 dB, 

in both cases (mean square and peak values). This causes that many peak values are beyond full scale 

range and therefore, those values would be clipped or wrapped around in a real fixed-point system. This 

can also be potentially dangerous, as it could cause overflows also when transforming the signal to other 

domains. To prove it, in the next table, a list of the maximum value and the 95th percentile of each 

parameter analyzed is presented: 



 

55 

 

 

Multichannel 5.1 Mean square Peak True Peak MDCT QMF 

Multichannel 
95th percentile -18.5 dBFS -9 dBFS -9 dBFS -33.5 dBFS -28 dBFS 

Highest value -1 dBFS 0 dBFS 2.5 dBFS 2 dBFS -6 dBFS 

LoRo down 

mix 

95th percentile -12 dBFS -2.5 dBFS -2.5 dBFS -24.5 dBFS -21 dBFS 

Highest value 4.5 dBFS 7.5 dBFS 8.5 dBFS 6.5 dBFS 1.5 dBFS 

 Δ 95th percentile +6.5 dB +6.5 dB +6.5 dB +9 dB +7 dB 

 Δ Highest value +5.5 dB +7.5 dB +6 dB +5 dB +7.5 dB 

Table 18. Mean square, peak, true peak, MDCT and QMF 95th percentile and maximum value for multichannel content and its 

LoRo down-mix and their increments 

As it can be seen, the values of all the parameters increase when down mixing, showing an average 

increase of 6.7 dB. It can also be seen, that values beyond full scale in the MDCT domain have been already 

obtained with the original content, and therefore, when down mixed, those values are even higher 

causing more potential error in the MDCT domain of a hypothetical real fixed-point system. The down 

mixed content generates values over full scale in the QMF domain too. 

5.2.2. Transforms 

In this section the results of the MDCT and QMF transforms will be again presented. This time, the 

comments on the results will focus on the differences between channels, as the transforms can give a 

good representation of the content of each channel. As it is mentioned, the signals used in this section 

are 5.1 signals, so the channels used are Left (L), Right (R), Center (C), Low Frequency Effect channel (LFE), 

Left surround (Ls) and Right surround (Rs). As the content for L and R channels are very similar, the results 

of these channels will be presented together, the same happens with the Ls and Rs channels. 

First, the results for the L and R channel: 

 

 

Figure 75. MDCT band histograms for channel based 5.1 cinematic content (L and R channels) 
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The difference between the percentiles for the L and R channel is 70.3 dB. It can also be seen, that the 

signal has a harmonic nature, with higher amplitude in the low and mid frequencies, as these channels 

are often used for background music. Also, the use of noise shaping techniques can be seen, as the high 

frequency bands show a high concentration of low amplitude values. The maximum values obtained in 

the transform are beyond full scale, presenting up to +2 dBFS in the low frequency bands, so there are 

high energy signals in the L and R channels. 

Now the results for the Centre channel will be presented: 

 

Figure 76. MDCT band histograms for channel based 5.1 cinematic content (C channel) 

 

The Centre channel is often used for speech content, and this can be seen in the previous figure, where 

the first area corresponds to the speech frequency range, and the second one, is the result of noise 

shaping techniques. Here the dynamic range is very similar to the previous one with an average difference 

between the percentiles of 67.14 dB and a maximum value of +1.5 dBFS in a low frequency band. Now 

the results for the Ls and Rs channels will be presented: 
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Figure 77. MDCT band histograms for channel based 5.1 cinematic content (Ls and Rs channels) 

In this case, the signals have less energy than in the two previous examples, as both percentiles are lower, 

but the difference between them is very similar as in the previous cases, 70.1 dB. The maximum value is 

also lower than in the previous examples with a value of 0 dBFS. The 5th percentile is approximately 20 dB 

lower than in the previous case, causing the high dynamic range on Figure 80. Also, the noise shaping 

techniques can be seen in the high frequency bands. Now the LFE channel results will be presented: 

 

Figure 78. MDCT band histograms for channel based 5.1 cinematic content (LFE channel) 

In this case it is clear that the results are from the LFE channel, as there is a clear difference between the 

low frequency bands and the rest, where the low bands present high energy and all the rest have much 

lower values. The maximum value of the transform for the LFE channel is +1.5dBFS and it is, of course, in 

a low frequency band. The difference between the percentiles, is in this case, 68.95 dB. It is surprising, 

though, that the maximum values are so high for all the transform bands. This is caused by errors during 
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the rendering from the mixing session to a certain channel configuration, as some elements that do not 

belong to the LFE channel have been detected in this channel, like in the next example: 

 

Figure 79. Spectrogram from a clip of the LFE channel from a film with multichannel 5.1 audio 

These unfiltered parts in the LFE channel could cause some problems in some cases, as the level of content 

of the LFE channel will be increased 10 dB and, therefore, could prorogue unpleasantly high levels if it is 

not filtered before the processing. This can be very problematic for example in the case of Headphone 

rendering, as LFE channel is also taken into account. 

Another surprising thing of the results is the periodic shape of the transform. This could be caused by the 

side lobes of the window used for the transform, together with the fact that there is very little energy in 

the mid and high frequency bands. 

Finally, it can be also observed that dithering and noise shaping techniques have been used in some files 

as an increase of the amplitude in the high frequency bands. When combining all the channels, the 

resulting results are the following: 

 

Figure 80. MDCT band histograms for channel based 5.1 cinematic content 
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As it can be seen, all the previously described characteristics are present in the figure. The mean difference 

between the percentiles if all the channels are taken into account is 86.5 dB, but each channel separately 

has a mean difference between percentiles of 69.21 dB. This will be now compared with the results for 

the LoRo down mix. 

 

Figure 81. MDCT band histograms for channel based 5.1 cinematic content (LoRo down-mix) 

The overall shape of the transform is similar to the previous one, but there are some key characteristics 

that are different this time. First of all, the difference between the percentiles has decreased from mean 

per channel of 69.21 dB to 64.5 dB, and the maximum value has also increased from +2 dBFS to +6.5 dBFS. 

The 5th percentile is now much higher than in the previous example, as there are fewer channels and 

therefore less silence or small signals.  

All the previously explained characteristics are very similar for the QMF domain, but with a lower 

maximum amplitude and fewer bands. One big difference between the results from MDCT and QMF, is 

that for the MDCT, just the amplitude of each band is shown, but for the QMF the results represent the 

energy contained in each band. To show the comparison between transforms and the evolution of the 

results for both transforms, the results for the MDCT and QMF for 5.1 and LoRo are presented in the next 

figures:
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Figure 82. MDCT band histograms for channel based 5.1 cinematic content 

 

Figure 83. QMF band histograms for channel based 5.1 cinematic content 

 

Figure 84. MDCT band histograms for channel based 5.1 cinematic content (LoRo down-

mix) 

 

Figure 85. QMF band histograms for channel based 5.1 cinematic content (LoRo down-

mix) 
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5.2.3. Loudness 

Another important parameter of the analyzed files is its loudness level, as normally the signals will be 

loudness normalized when played back. The analyzed cinematic content is not mixed to reach the 

recommended loudness target (nor the one recommended by EBU (-23 LUFS), neither the one 

recommended by ATSC (-24 LKFS)), as the analysis shows an average loudness level of -16.5 LUFS.  The 

level of such a signal, therefore, would be adjusted at the play back environment, if the loudness 

normalization is activated, or at the ingest or broadcasting stage of any broadcaster that follows the 

recommendations. 

Also, the Loudness Range of a signal is also important, as some play back environment will apply dynamic 

processing to the signal at the playback stage if the signal shows too high dynamic range. The analysis 

shows an average loudness range of 37.5 LU for cinematic multichannel content. This could be good at 

the theater, but it would be challenging for any living room if playing the signal without any kind of 

dynamic processing. So, the signal will go through dynamic processing at the playback stage. [24] 

In the next image, the histogram for momentary loudness level of the files analyzed, the 10th and 95th 

percentiles (representing the loudness range), the average loudness range value, and the average 

loudness level value, can be seen: 

 

Figure 86. Normalized histogram of momentary loudness for multichannel 5.1 cinematic content and its 10th and 95th percentiles 

When down mixing the signal to a stereo configuration, the Loudness Range value even increases one LU, 

as the 95th percentile increases in the process. Another interesting fact about the stereo down mixing is 

that, even though the mean square and peak values increase approximately 5 to 10 dB, the loudness 

measure of the resulting signal does not show such a big increase. The original multichannel content 

loudness level is -16.5 LUFS and the stereo down mix has a loudness level of -15.6 LUFS. This gives a good 

idea to understand how important the surround channels are for the loudness level calculation. 
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5.3. Object-based cinematic content 

In this section, the content analyzed is no longer based in a fixed number of channels, instead, it is based 

in objects that are always accompanied by metadata that determines their position in a three-dimensional 

space. The data sample used in this section is formed by 11 pieces formed by films and trailers. This sample 

is much smaller than the used in the previous as it is difficult to obtain access to this content because of 

its sensibility. 

As explained in the beginning of the section 5, the audio content of every object has been analyzed first. 

Then a rendering to a fixed loudspeaker configuration is performed and, as in the previous sections, every 

channel for all loudspeaker configurations will be analyzed and compared. So, firstly, the results for the 

original object-based content are presented. 

Analyzing object-based content presented some extra difficulties, in comparison with channel based, 

because of the big amount of silence that is present in the audio tracks of the objects. This silence would 

not have been important, if dithering would not have been used, or if the metadata for active or inactive 

objects would had been set. This presented a problem, as all histograms where biased by the big amount 

of low values caused by dithering. To solve that, the files with dither have been identified, and eliminated 

from the sample used to obtain the data. 

The results obtained show that the content has greater dynamic than other previously analyzed content 

types. They also show relatively low 95th percentiles, but surprisingly high maximum values. The maximum 

value and the 95th percentiles of each parameter can be seen in the next table: 

Atmos Mean square Peak True Peak MDCT QMF 

Atmos 

Channels 

95th percentile -22 dBFS -13 dBFS -13 dBFS -33.5 dBFS -30 dBFS 

Highest value -0.5 dBFS 0 dBFS 1 dBFS 2.5 dBFS -5.5 dBFS 

Table 19. Highest and 95th percentile values for mean square, peak, true peak, MDCT and QMF for object-based cinematic 

content 

The maximum values, are surprisingly high considering that object based content will always be rendered 

to a specific channel configuration, and therefore, the final channels will always have the same or more 

energy than the original signals. Those high levels in the original content cause levels over full scale for 

the true peak value and in the MDCT. This is problematic when rendering, as more and higher values over 

full scale will be obtained. 

It has been observed, that the bed channels have higher values than the objects, and those channels are 

the ones causing high true peaks. In the next table the 95th percentile and the maximum value for objects 

and beds is compared: 

Atmos Mean square Peak True Peak MDCT QMF 

Atmos Beds 
95th percentile -19 dBFS -10 dBFS -10 dBFS -29.5 dBFS -27 dBFS 

Highest value -0.5 dBFS 0 dBFS 1 dBFS 1.5 dBFS -5.5 dBFS 

Atmos 

Objects 

95th percentile -25.5 dBFS -16.5 dBFS -16.5 dBFS -37.5 dBFS -34 dBFS 

Highest value -1 dBFS 0 dBFS 0 dBFS 2.5 dBFS -6 dBFS 

 Δ 95th percentile -6.5 dB -6.5 dB -6.5 dB -8 dB -7 dB 

 Δ Highest value -0.5 dB 0 dB -1 dB -1 dB -0.5 dB 

Table 20. Mean square, peak, true peak, MDCT and QMF 95th percentile and maximum value for beds and objects and their 

increments 
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As it can be seen, the beds present higher values in both, maximum value and 95th percentile, but the 

increase in the percentile is much bigger than the maximum value. This indicates that the objects have a 

higher dynamic range than the beds. It must be also considered that beds would never be silent, while 

objects in the original master file are silent most of the time. Even though the silence has been filtered 

out of the histograms, if dithering has been used in the object tracks, the silence will still be shown in the 

plots. In the next figures the histograms for the beds and the objects are compared, for the mean square 

and true peak value: 

 

Figure 87. Normalized histogram of mean square values and its 5th and 95th percentiles for bed and object channels 

 

Figure 88. Normalized histogram of peak values for bed and object channels 
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5.3.1. Rendering 

In the case of object based content, no down mix has been performed, like in the previous section. Instead, 

the Object Audio Renderer, as specified in ETSI TS 103 448 V1.1.1 (2016-09), used for Dolby Atmos has 

been used. The process is similar to a down mix, but more complex as it takes other variables into account 

like all three spatial dimensions, sizes of the audio objects, gains, etc. The renderings used in this section 

are a rendering to 5.1 and to stereo 2.0, to be comparable to other cinematic content. 

In the next table the maximum values and the 95th percentile of every parameter analyzed for the 

original object-based input and the 5.1 channel rendering can be seen: 

Atmos Mean square Peak True Peak MDCT QMF 

Atmos 

Channels 

95th percentile -22 dBFS -13 dBFS -13 dBFS -33.5 dBFS -30 dBFS 

Highest value -0.5 dBFS 0 dBFS 1 dBFS 2.5 dBFS -5.5 dBFS 

5.1 rendering 
95th percentile -18 dBFS -9 dBFS -9 dBFS -29 dBFS -26 dBFS 

Highest value -0.5 dBFS 6.5 dBFS 6.5 dBFS 1.5 dBFS -1.5 dBFS 

 Δ 95th percentile +4 dB +4 dB +4 dB +4.5 dB +4 dB 

 Δ Highest value 0 dB +6.5 dB +5.5 dB -1 dB +4 dB 

Table 21. Mean square, peak, true peak, MDCT and QMF 95th percentile and maximum value and their increments for object-

based content and its 5.1 rendering 

As predicted, the values have increased when rendering to a 5.1 channel configuration. The values 

obtained after rendering are very similar to the values of the channel-based content presented in the 

previous section. The peak and true peak values are the exception as they present much higher values, 

that when rendering to 2.0 will become even higher. 

The increment of the maximum values is not as high as expected in some cases and even a curious case 

can be seen in the case of the maximum value of the MDCT. The maximum value obtained in the MDCT 

has decreased after the rendering. This can be caused by the trims set in the object audio metadata that 

causes an attenuation to the surround and height channels. 

Now, the results for 2.0 rendering are presented: 

Atmos Mean square Peak True Peak MDCT QMF 

Atmos 

Channels 

95th percentile -22 dBFS -13 dBFS -13 dBFS -33.5 dBFS -30 dBFS 

Highest value -0.5 dBFS 0 dBFS 1 dBFS 2.5 dBFS -5.5 dBFS 

2.0 rendering 
95th percentile -12.5 dBFS -3 dBFS -3 dBFS -22 dBFS -20 dBFS 

Highest value 3 dBFS 8.5 dBFS 8.5 dBFS 3.5 dBFS 1.5 dBFS 

 Δ 95th percentile +9.5 dB +10 dB +10 dB +11.5 dB +10 dB 

 Δ Highest value +3.5 dB +8.5 dB +7.5 dB +1 dB +7 dB 

Table 22. Mean square, peak, true peak, MDCT and QMF 95th percentile and maximum value and their increments for object-

based content and its 2.0 rendering 

As it can be seen, the values have grown higher than in the last rendering. An important value to remark 

here is the increase of the 95th percentile, as it has experienced a mean growth of 10 dB for all the 

parameters measured. This must be considered for planning headroom requirements as it is a substantial 

increase that has been measured with the 95th percentile, which means that this is not a single outlier 

case, but a significant percentage of all samples. 
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Also, the maximum values have experienced a substantial increase, even though not as big as the 95th 

percentile values. Now the peak and true peak values are far beyond the full-scale level and would be, 

therefore, severely clipped in a hypothetical fixed-point system. 

All these effects can be graphically seen in the next three figures, where the mean square value, the peak 

value and the true peak value for the original content, the 5.1 down mix, and the 2.0 down mix are 

presented: 

 

Figure 89. Normalized histogram of mean square values and its 5th and 95th percentiles for object-based content and its 5.1 and 

2.0 rendering 

 

Figure 90. Normalized histogram of peak values and its 5th and 95th percentiles for object-based content and its 5.1 and 2.0 

rendering 
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Figure 91. Normalized histogram of true peak values and its 5th and 95th percentiles for object-based content and its 5.1 and 2.0 

rendering 

 

5.3.2. Transforms 

In this section, the results for the MDCT and QMF transforms for the resulting rendered to 5.1 and 2.0 

signals are presented. In this part the comments will be focused in the amplitude and dynamic range 

differences when rendering to different number of channels. The results for both transforms are very 

similar, and therefore they can be commented together. The results for object based audio are not 

presented here, as because of the great amount of silence in the objects, it is difficult to visualize properly 

the results of the transforms. 

First, when looking at the results for the 5.1 rendering below, it is noticeable how dynamic the transforms 

are in comparison with the transforms presented for the music content. In this case, every band has a 

broad area colored with lighter colors that indicates a relative high concentration of values. Also, an area 

with very low values can be seen throughout all the bands, probably caused by very small amplitude 

signals in some of the channels, like the surrounds or LFE, as seen in the previous section 5.2. 

Then, when comparing the results with the 2.0 rendering, it is clear how this low energy region on the 

transforms is gone, because the signals are now concentrated in fewer channels and therefore, there is 

no channel with only low amplitude signals. Also, it can be seen how the overall level has increased, and 

that the light-colored areas have become a little narrower because of this addition of the signals in fewer 

channels. 

By looking at the maximum values, it can be seen how the values that are beyond 0 dBFS are always in 

the lower bands of the transform. In the rendering for 5.1 there are fewer bands, and with lower levels 

beyond 0 dBFS than in the 2.0 rendering. 
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Figure 92. MDCT band histograms for object-based cinematic content rendered to 5.1 

 

Figure 93. QMF band histograms for object-based cinematic content rendered to 5.1 

 

Figure 94. MDCT band histograms for object-based cinematic content rendered to 2.0 

 

Figure 95. QMF band histograms for object-based cinematic content rendered to 2.0 
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6. Conclusion 
The aim of this thesis has been to provide information and documentation about the behavior of several 

data domains and computation processes together with the nature of real world signals. This has been 

partially, but successfully accomplished. 

Chapter 2 provides an overview of the relation between the quality of a quantized signal (SNR) with the 

recommended reference loudness levels in the time domain. Also, it provides information about the 

behavior of MDCT and QMF in a theoretical environment, together with the effects of quantization in 

those domains. The objectives for this section were successfully accomplished, as all the planed topics 

have been covered and meaningful results have been obtained. 

In chapter number 3, an analysis of fixed point-processing blocks has been provided. The fixed point basic 

operations have been reviewed, and the implementations for the MDCT and QMF transforms have been 

tested. This gives some important insides of the error introduced by those processes and its distortion.  

Even though the results of this part are not deceiving, the information provided is not detailed enough 

because of the complexity of the processes involved in the transforms, together with the time constrains 

of the project. There are also many other processes that could be analyzed, as they are also critical for the 

quality of the result of some processes. Those processing blocks are, for example: OAR for different 

channel configurations, Dolby volume, headphone rendering, up-mixing, etc. 

Finally, in chapter number 4, the results for the real world content analysis have been presented. The 

analysis was performed for different contents such as music, channel based cinematic and object-based 

cinematic. The behavior of these signals in the three main data domains has been also presented, together 

with the effects of the Object Audio Renderer (OAR) for 5.1 and 2.0 configurations and the down-mixing 

process from 5.1 to 2.0. These results showed have been obtained without using any kind of limiting in 

order to provide information about potential overflows in the fixed-point domain. 

The results obtained in chapter 4 provide important statistics about the nature of the signals, but there 

are more channel configurations, content types or genres that could be analyzed. For example: Channel 

based immersive cinematic, sports and TV content, immersive music content, 7.1.4 and 5.1.4 OAR 

configurations, 7.1.4 or 5.1.4 to 5.1 or 2.0 down-mixing, etc. 

Even with the limitations of the work, with all the information provided that has been mentioned above, 

a better understanding of the functioning of the transforms and processing blocks and of the nature of 

the signals should be achieved. Providing, therefore, important knowledge to better plan and meet he 

optimal headroom and precision requirements for every domain in a signal processing chain. 
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Annexes 

Annex 1: List of content used for analysis of stereophonic music 

Classical: 106 songs from 10 CDs 

 CD list: 

1. Wolfgang Amadeus Mozart - Klaviekonzerte Nr. 20 & 24 (Martin Stadtfeld) 

2. Anne-Sophie Mutter - Beethoven Violin Concerto; Romances 

3. Christian Gerhaher - Franz Schubert Winterreise 

4. Fretwork - Purcell The Fantazias & In Nomines 

5. Günter Wand NDR Symphony Orchestra Hamburg - Bruckner Symphony #5 

6. Heinz Holliger & Friends - Britten - Mozart 

7. Johann Sebastian Bach - Oratorios BWV 249 & BWV 11 [Suzuki] 

8. Kronos Quartet - Winter Was Hard 

9. Marin Alsop - John Adams Shaker Loops; The Wound-Dresser; Short Ride in a Fast Machine 

10. Royal Concertgebouw Orchestra - Shostakovich Symphony No. 8 

Jazz: 45 songs from 6 CDs 

 CD list: 

1. Steve Coleman - On the Rising of the 64 Paths 

2. Andy Sheppard - Soft on the Inside 

3. Carla Bley - Fleur Carnivore 

4. Intergalactic Maiden Ballet - Intergalactic Maiden Ballet 

5. John Coltrane - Giant Steps [Deluxe Edition] 

6. SNO - Sunday Night Orchestra - Music Without Words 

Rock: 176 songs from 14 CDs 

 CD list: 

1. Arctic Monkeys - Whatever People Say I Am, That's What I'm Not 

2. Blink 182 - Enema Of The State 

3. Die Toten Hosen - Laune der Natur 

4. Kitchens of Distinction - Cowboys and Aliens 

5. Metallica - Death Magnetic 

6. New Model Army - Between Dog and Wolf 

7. Nirvana - Nevermind 

8. OK Kid - Zwei 

9. Radiohead - The Bends 

10. Rage Against The Machine - Evil Empire 

11. Ramones - Too Tough to Die 

12. Red Hot Chili Peppers - Californication 

13. Red Hot Chili Peppers - Mother's Milk 

14. The Cranberries - No Need To Argue 

 



 

 

 

Pop: 126 songs from 11 CDs 

 CD list: 

1. The Unthanks - Mount the Air 

2. ABBA - Super Trouper 

3. Austra - Feel It Break 

4. Falco - Out of the Dark (Into the Light) 

5. Goldfrapp - Silver Eye 

6. K.Flay - Every Where Is Some Where 

7. Madonna - Music 

8. Michael Wollny - Nachtfahrten 

9. Seiler & Speer - Ham Kummst 

10. Sleigh Bells - Reign of Terror 

11. The National - Alligator 

 

  



 

 

 

Annex 2: List of content used for analysis of cinematic multichannel content 

 

1. 2014 World Series Film 

2. Akira 

3. Amelie 

4. Apocalypse Now Disc 

5. Batman Begins 

6. Battle for the Planet of the Apes 

7. Beneath The Planet Of The Apes 

8. Black Hawk Down 

9. Conquest of the Planet of the Apes 

10. Das Boot 

11. Escape From The Planet Of The Apes 

12. Finding Mr. Right 

13. Flying Swords of Dragon Gate 

14. Fury 

15. House Of Flying Daggers 

16. Iceage 

17. In The Mood for Love 

18. Inception 

19. Letters From Iwo Jima 

20. Master And Commander 

21. Pacific Rim 

22. Pulp Fiction 

23. Punch Drunk Love 

24. Ray 

25. Reservoir Dogs 

26. Saving Private Ryan 

27. Spirited Away 

28. Stop Making Sense 

29. Superman Returns 

30. The Bourne Identity 

31. The Dark Knight 

32. The Dark Knight Rises 

33. The English Patient 

34. The Lord Of The Rings The Two Towers 

35. The Matrix 

36. The Planet of the Apes (1968) 

37. The Roxy 

38. Titanic 

39. Up 

40. Whiplash 

  



 

 

 

Annex 3: Fast DCT type IV transform by Per Ekstrand (Coding Technologies) 

 

The M-point DCT type IV matrix can be computed by an half-size FFT core with pre- and post-twiddling. 

The DCT type IV transform is defined 

 

Split the summation into two sums with even and odd-indexed samples as 

 

In the same way, split the output samples into an even-indexed and odd-indexed sequence as 

 

and 

 

Using ordinary trigonometric reductions, Eq. 3 and Eq. 4 equal 

(1) 

(2) 

(3) 

(4) 



 

 

 

 

And 

 

If we define a new complex sequence z(n) by 

 

 

the two output sequences (Eq. 5 and 6) can be expressed 

 

and 

(5) 

(6) 

(7) 

(8) 



 

 

 

 

Thus 

 

where 

 

This is a M/2-point DFT of a twiddled version of the signal z(l) followed by post-twiddling. The DST type 

IV computation can be deduced analogously. 

  

(9) 

(10) 

(11) 



 

 

 

  



 

 

 

 


	Abstract
	Key words
	Table of contents
	Table of figures
	Table of tables
	1. Introduction
	1.1. Objective

	2. Methodology
	3. Theory
	3.1. PCM domain
	3.1.1. SNR approximation of a discretized sinusoid
	3.1.2. Stereo sinusoid signal at a reference level
	3.1.3. 5.1 multichannel sinusoid signal at a reference level
	3.1.4. SNR for different types of signals at reference level
	3.1.5. Headroom

	3.2. MDCT domain
	3.2.1. Quantization effects in the MDCT domain
	3.2.1.1. Input signal multiple of the transform resolution
	3.2.1.2. Input signal not multiple of the transform resolution
	3.2.1.3. Dithering
	3.2.1.4. Clipping and wraparound in MDCT domain

	3.2.2. True peak level

	3.3. QMF domain
	3.3.1. Distortion of the transform
	3.3.2. Frequency response of the transform
	3.3.3. Quantization in the QMF domain
	3.3.3.1. Clipping and wrap around in the QMF domain
	3.3.3.2. Dithering
	3.3.3.3. Reference levels, quantization in QMF domain and SNR

	3.3.4. True peak level


	4. Real world fixed-point processing blocks
	4.1. Fixed point basic operations
	4.2. Quantization error propagation theory
	4.3. Mean square
	4.4. Fixed point implementation of the transforms
	4.4.1. MDCT
	4.4.2. QMF


	5. Real world signal analysis
	5.1. Stereophonic music content
	5.1.1. Transforms
	5.1.1.1. MDCT
	5.1.1.2. QMF


	5.2. Multichannel cinematic content
	5.2.1. Down mixing
	5.2.2. Transforms
	5.2.3. Loudness

	5.3. Object-based cinematic content
	5.3.1. Rendering
	5.3.2. Transforms


	6. Conclusion
	Bibliography
	Annexes
	Annex 1: List of content used for analysis of stereophonic music
	Annex 2: List of content used for analysis of cinematic multichannel content
	Annex 3: Fast DCT type IV transform by Per Ekstrand (Coding Technologies)


