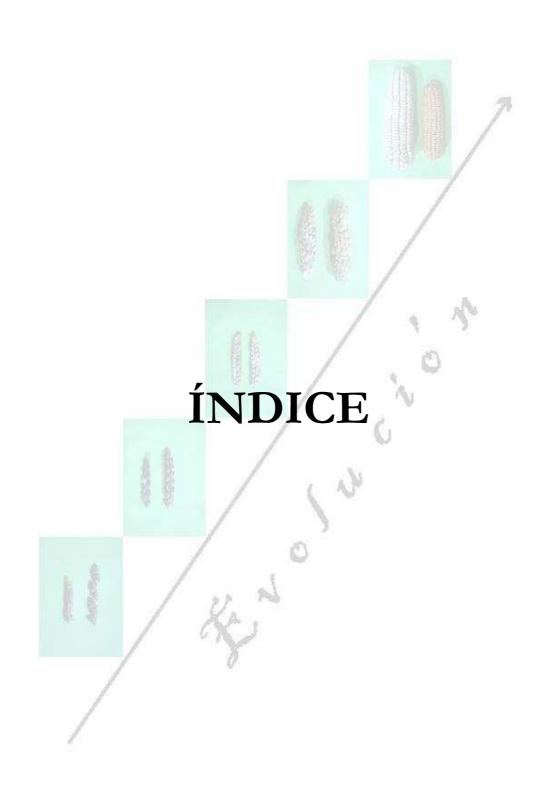
UNIVERSIDAD POLITÉCNICA DE VALENCIA

DEPARTAMENTO DE BIOLOGÍA VEGETAL

ESTUDIOS CITOGENÉTICOS EVOLUTIVOS DEL GÉNERO ZEA


Tesis doctoral presentada por:

Ing. Agr. María del Carmen Molina

Dirigida por:

Dr. Vicente Moreno Ferrero

2011

ÍNDICE GENERAL

ABREVIATURAS	18
RESUMEN	23
RESUM	28
ABSTRACT	33
NTRODUCCIÓN	38
1 Clasificación Científica del Género Zea	39
2 Número básico de las Maydeas	41
3 Distribución geográfica	41
4 Características morfológicas	42
5 Origen del maíz	44
5.1 La teoría del antecesor común	45
5.2 La teoría del anfidiploide	45
5.3 La teoría del maíz papirescente	46
5.4 La teoría del maíz herbáceo	46
5.5 La teoría tripartita	46
5.6 La teoría del teosinte como antecesor del maíz	48
6 Estudios moleculares del origen del maíz	53
7 Estudios genómicos de <i>Zea</i>	56
8 Evidencias citológicas de ploidía en Zea	59
8.1 Apareamiento cromosómicos de haploides de maíz	60
8.2 Apareamiento de cromosomas homeólogos	61
8.3 Asociación secundaria	62
8.4 Distribución tridimensional de los cromosomas en	
metafase mitótica	63
8.5 Genes duplicados	64
9 Homología críptica en <i>Zea</i>	66

HIPÓTESIS DE TRABAJO Y OBJETIVOS	71
1 Hipótesis de trabajo	72
2 Objetivos	72
2.1 Objetivos generales	72
2.2 Objetivos específicos	73
MATERIALES Y MÉTODOS	74
1 Materiales	75
1.1 Especies parentales	75
1.1.1 Sección <i>Zea</i>	75
1.1.2 Sección Luxuriante	75
1.2 Híbridos	76
1.2.1 Dihíbridos	76
1.2.1.1 Con 2n=20	76
1.2.1.2 Con 2n=30	76
1.2.1.3 Con 2n=40	76
1.2.2 Trihíbridos	77
1.2.2.1 Con 2n=20	77
1.2.2.2 Con 2n=40	77
2 Métodos	77
2.1 Experimentos de campo	77
2.1.1 Autofecundaciones y cruzamientos utilizando	
al maíz como progenitor femenino	77
2.1.2 Cruzamientos utilizando como progenitor	
femenino a los teosintes	78
2.2 Fijación de panojas para estudios meióticos	78
2.3 Preservación de la semilla	78
2.4 Fertilidad del polen	78
2.5 Germinación in vitro del tubo polínico	79

2.6 Análisis citogenéticos	79
2.6.1 Preparaciones citológicas para estudios	
mitóticos	79
2.6.2 Preparaciones citológicas para estudios	
meióticos	80
2.6.3 Tratamiento con solución diluida de colchicina	80
2.6.4 Realización de cariotipo, idiograma y láminas.	80
2.7 Rescate de embriones maduros e inmaduros	81
2.7.1 Organogénesis	81
2.7.2 Embriogénesis somática	82
2.7.3 Iniciación del cultivo	82
RESULTADOS	83
1 Análisis comparativo de los cromosomas	84
2 Análisis de las afinidades cromosómicas de especies e	
híbridos del Género Zea	87
2.1 Especies parentales	87
2.1.1 Sección Zea	87
2.1.2 Sección Luzuriante	90
2.2 Híbridos	94
2.2.1 Dihíbridos	94
2.2.1.1 Dihíbridos con 2n=20	94
2.2.1.2 Dihíbridos con 2n=20-30	100
2.2.1.3 Dihíbridos con 2n=30	102
2.2.1.4 Dihíbridos con 2n=30-40	106
2.2.1.5 Dihíbridos con 2n=40	110
2.2.2 Trihíbridos	111
2.2.2.1 Trihíbridos con 2n=20	111
2.2.2.2 Trihíbridos con 2n=40	114

3 Comportamiento meiótico de las especies e híbridos del	
Género Zea de acuerdo a su nivel de ploídia	115
4 Efecto de la solución diluida de la colchicina en el	
apareamiento críptico de los cromosomas del complejo Zea	118
4.1 En especies de <i>Zea</i> con 2n=20	118
4.2 En híbridos de Zea con 2n=20	118
4.3 En híbridos de Zea con 2n=30	119
4.4 En especies e híbridos de Zea con 2n=40	120
DISCUSIÓN	123
1 Longitud, relación entre los brazos y posición de los knobs	
en los cromosomas del Género Zea	124
2 Apareamiento cromosómico en especies e híbridos del	
Género Zea	130
3 Efecto del número cromosómico en las características	
fenotípicas de los híbridos	134
4 Apareamiento críptico de los cromosomas homeólogos en	
el Género Zea	137
TABLAS Y FIGURA	143
1 Tablas	144
2 Figuras	162
CONCLUSIONES	188
BIBLIOGRAFÍA	193
ANEXO	216
1 Técnicas citogenéticas	217
	217
1.2 Carmín acético	217
	217
	217
1.5 Solución enzimática de celulasa y pectinasa	218

1.6 Buffer Mc Ilvaine pH 7	218
1.7 Solución saturada de Paradiclorobenceno	218
1.8 Solución de 0,45 mM de 2,4-D	218
1.9 Solución de 0,5x10 ⁻⁴ M de colchicina	218
2 Medio de cultivo para la germinación <i>in vitro</i> del grano del	
grano de polen	219
3 Medio de cultivo para la regeneración de embriones	
inmaduros	219
3.1 Composición del medio de cultivo	219
3.2 Procedimiento	220
3.2.1 Preparación de las soluciones madres	220
3.2.2 Preparación y esterilización del medio de	
cultivo	221
4 Rescate y cultivo <i>in vitro</i> de embriones inmaduros de maíz	
e híbridos	222
4.1 materiales	222
4.2 Procedimiento	223
4.2.1 Preparación del material vegetal	223
4.2.2 Desinfección	223
4.2.3 Preparación del explanto	223
4.2.4 Siembra	223
4.2.5 Incubación	224
4.2.6 Aclimatación y transplante	224

ÍNDICE DE TABLAS

Tabla 1. Soluciones madres del medio N6, utilizadas para el	
cultivo de embriones inmaduros de híbridos de Zea	219
Tabla 2: Volumen de las soluciones madres a agregar para	
preparar 1000 ml del medio de cultivo para embriones	
inmaduros de <i>Zea</i>	221
Tabla 3. Composición del medio de mantenimiento de callos de	
maíz	222
Tabla 4. Composición del medio de enraizamiento de plantas de	
maíz	223
Tabla 5: Longitud relativa de los cromosomas de las especies	
del Género <i>Zea</i>	223
Tabla 6: Relación entre los brazos de los cromosomas del	
Género Zea	144
Tabla 7: Posición de los knobs en los cromosomas del Género	
Zea	145
Tabla 8: Configuraciones meióticas de Zea mays ssp mays	
con 2n=20	146
Tabla 9: Configuraciones meióticas de Zea mays ssp mays	
con 2n=40	147
Tabla 10: Configuraciones meióticas de Zea mays ssp mexicana	
observadas en diacinesis-metafase I	147
Tabla 11: Configuraciones meióticas observadas en Zea	
mays ssp parviglumis con 2n=20	147
Tabla 12: Configuraciones meióticas observadas en diacinesis -	
metafase I en Zea luxurians	148
Tabla 13: Configuraciones meióticas observadas en diacinesis-	
metafase I en Zea diploperennis	148
Tabla 14: Configuraciones meióticas observadas en diacinesis-	

metafase I de un clon de Zea perennis	148
Tabla 15: Configuraciones meióticas en diacinesis-metafase I del	
híbrido entre Zea mays y Zea mexicana	149
Tabla 16: Configuraciones meióticas del híbrido entre <i>Zea mays</i>	
por <i>Zea luxurians</i> con 2n=20	149
Tabla 17: Configuraciones meióticas en diacinesis-metafase I del	
híbrido de Zea mays x Zea diploperennis con 2n=20	150
Tabla 18: Configuraciones meióticas en diacinesis-metafase I del	
híbrido entre Zea diploperennis por Zea luxurians	150
Tabla 19: Configuraciones meióticas en diacinesis-metafase I del	
híbrido entre Zea mays por Zea parviglumis con 2n=20	150
Tabla 20: Configuraciones meióticas en diacinesis-metafase I del	
híbrido entre Zea mays (2n=40) por Zea parviglumis	
con 2n=20 teniendo el híbrido (ZmxZpar30) un número	
cromosómico de 2n=30	151
Tabla 21: Configuraciones meióticas en diacinesis-Metafase I del	
híbrido entre Zea mays (2n=40) por Zea mays (2n=20)	151
Tabla 22: Configuraciones meióticas del híbrido entre Zea	
perennis por Zea mexicana con 2n=30	152
Tabla 23: Configuraciones meióticas en diacinesis-Metafase I del	
híbrido Zea luxurians por Zea perennis	152
Tabla 24: Resultados del cruzamiento de diferentes líneas de	
maíz con 2n=40 (progenitor femenino) por Zea	
perennis	153
Tabla 25: Características fenotípicas y fertilidad del polen en	
híbridos de Zea mays y Zea perennis con diferente	
nivel de ploidía	153
Tabla 26: Configuraciones meióticas del híbrido entre Zea mays	
ssp. <i>may</i> s por <i>Zea perenni</i> s con 2n=30	154

Tabla 27 : Configuraciones meióticas del híbrido entre <i>Zea mays</i>	
(2n=40) por Zea perennis con 2n=40	154
Tabla 28: Configuraciones meióticas del híbrido entre Zea	
diploperennis x Zea perennis con 2n=30	155
Tabla 29: Configuraciones meióticas del híbrido entre Zea	
diploperennis por Zea perennis con 2n=40	155
Tabla 30: Configuraciones meióticas del híbrido entre Zea	
parviglumis por Zea diploperennis con 2n=40	156
Tabla 31: Configuraciones meióticas del híbrido (<i>Zea mays</i> x <i>Zea</i>	
diploperennis) x Zea luxurians (MDL) con 2n=20	157
Tabla 32: Configuraciones meióticas del trihíbrido Zea mays con	
2n=40 por Zea diploperennis x Zea perennis con	
2n=40 (MDP) teniendo el trihíbrido un número	
cromosómico de 2n=40	157
Tabla 33: Promedio de univalentes (I), bivalentes (II), trivalentes	
(III), tetravalentes (IV), quiasmas, fertilidad del polen y	
de la semilla en especies e híbridos del Género Zea	158
Tabla 34: Configuraciones meióticas más frecuentes en	
especies e híbridos del Género Zea	159
Tabla 35: Comparación del tamaño de los cromosomas de las	
especies de Zea con 2n=20 y los de Zea perennis,	
considerando en esta última especie como si fuese un	
solo cromosoma a los pares cromosómico 1-2; 3-4;	
7-8; 9-10 y 15-16 por tener igual tamaño y relación	
entre los brazos	160
Tabla 36: Comparación de la relación entre los brazos de los	
cromosomas de especies de Zea con 2n=20 y los de	
Zea nerennis	161

ÍNDICE DE FIGURAS

Figura 1: Distribución geográfica de los Teosintes en Méjico	162
Figura 2: a) espiga de maíz, b) espiga dística de teosinte	162
Figura 3: a) grano de maíz, b) cariopse de Teosinte	163
Figura 4: Cromosomas en paquiteno observándose la posición	
de los knobs en especies del Género Zea: A) Knobs	
subterminales en Zea mays; B) Knobs terminales en	
Teosinte	163
Figura 5: Especies del Género Zea: A) Zea mays; B) Zea	
mexicana; C) Zea parviglumis; D) Zea luxurians; E)	
Zea diploperennis; F) Zea perennis	164
Figura 6: Cariotipo de las distintas especies de Zea comparando	
la longitud total de los cromosomas y la relación entre	
sus brazos. Los cromosomas con una marca en el	
brazo corto son los organizadores del	
nucleolo	165
Figura 7: Plantas de maíz con anormalidades en la panoja y la	
espiga; A) Espiga en lugar de la panoja, B) Espiga y	
panoja simultáneas, C) Varias espigas en el mismo	
nudo reproductivo	166
Figura 8: Configuraciones meióticas de Zea mays con 2n=20-40:	
A) Cromosomas separados en dos grupos de 5	
cromosomas cada uno; B) Anafase normal en Z. mays	
con 2n=20; C) Z. mays con 2n=40 se observan 8IV+4II;	
D) Anafase normal en Z. mays con 2n=40	166
Figura 9: Configuraciones meióticas de Zea mexicana:	
A) Cromosomas en paquiteno; B) cromosomas	
separados en dos grupos de 5 cromosomas; C)	
Configuración meiótica de 9II+2I; D) Anafase normal;	

E) Anafase con un puente de inversión; F) Anafase	
con cromosomas retrasados	167
Figura 10: Configuraciones meióticas de Z. diploperennis;	
A) Cromosomas en paquiteno, B) 10II, C) Anafase	
normal, D) Anafase con cromosomas retrasados	168
Figura 11: Célula de Zea perennis en paquiteno observándose	
10II + 5IV con dos cromosomas organizadores del	
nucleolo	168
Figura 12: Plantas de híbridos con 2n=20: A) Z. mays x Z.	
mexicana; B) Z. mays x Z. luxurians; C) Z. mays x Z.	
diploperennis con 2n=20; D) Z. diploperennis x Z.	
luxurians	169
Figura 13: Configuraciones meiótica del híbrido Z. mays x Z.	
mexicana: A) 10II; B) 9II+2I; C) Anafase normal; D)	
Anafase con puente de inversión	170
Figura 14 : Configuraciones meióticas del híbrido <i>Z. mays</i> x	
Z. diploperennis con 2n=20: A) cromosomas mitóticos	
con 2n=20; B)10II; C) anafase normal; D) anafase	
con puente de inversión	171
Figura 15: Configuraciones meióticas en diacinesis-metafase I de	
los híbridos entre <i>Z.mays</i> x <i>Z. parviglumis</i> con 2n=20 y	
Z.mays x Z. parviglumis con 2n=30: A) Z.mays con	
2n=20 (10II), B) Z.mays con 2n=40 (10IV), C) Z.	
parviglumis (10II), D) Z.mays x Z. parviglumis con	
2n=20 (10II), E) Z.mays x Z. parviglumis con 2n=20	
(8II+1IV), F) Anafase con cromosomas retrasados en	
Z.mays x Z. parviglumis con 2n=20, G) Anafase con un	
puente de inversión en Z.mays x Z. parviglumis con	
2n=20, H) Z.mays x Z. parviglumis con 2n=30	
(5III+5II+5I), I) Anafase del híbrido <i>Z.may</i> s x <i>Z.</i>	

parviglumis con 2n=30 migrando distinto número de	
cromosomas hacia cada polo	172
Figura 16: Configuraciones meióticas de Zea mays ssp mays con	
2n=30: A) Metafase con 10 trivalentes; B) Metafase con	
9 trivalentes 1 bivalente y 1 univalente. Se observa un	
cromosoma que forma un pequeño nucleolo. C)	
metafase con 6 trivalentes, 4 bivalentes y 4	
univalentes. D) metafase con numerosos nucleolitos.	173
Figura 17: Híbridos del Género Zea con 2n=30: A) Z. mays x Z.	
perennis; B) Z. parviglumis x Z. perennis	174
Figura 18: A) Espiga de maíz, B) Cariopses de Z. perennis; C) F1	
de Z. mays x Z. perennis con 2n=30; D) FI de Z. mays	
por Z. perennis con 2n=40	174
Figura 19: Clorantia en F1 de Z. mays x Z. perennis con 2n=30	175
Figura 20: Configuraciones meióticas observadas en diacinesis	
metafase I en: A) Z. mays con 2n=20 (10II); B) Z.	
perennis (51V+10II); C) Z. mays x Z. perennis con	
2n=30 (5III+5II+5I); D) Z. mays x Z. perennis con	
2n=40 (5IV+10II)	175
Figura 21: Híbrido de Zea diploperennis x Zea perennis con	
2n=40: A) cromosomas mitóticos; B) 10II+5IV	176
Figura 22: Híbrido entre Zea parviglumis x Zea diploperennis	
con 2n=40	176
Figura 23: Configuraciones meióticas del híbrido entre Z.	
parviglumis x Z. diploperennis con 2n=40: a)10II+5IV,	
b) 12II+4IV, c) anafase normal, d) anafase con	
cromosomas retrasados, e y f) células en distintos	
estadios de división meiótica permaneciendo unidas	
por los citoplasmas	177

Figura 24: Especies e híbridos de Zea: A) espigas de Z. mays; Z.	
diploperennis y su híbrido, B) Inflorescencias	
femeninas del híbrido Z. mays x Z. diploperennis, Z.	
<i>luxurian</i> s y el trihíbrido MDL (<i>Z. may</i> s x <i>Z.</i>	
diploperennis) x Z. luxurians	178
Figura 25: Trihíbrido MDP [(Z. mays x Z. diploperennis) x Z.	
luxurians]: A) plantas con clorantia en la panoja; B)	
panoja con clorantia, C) panoja con plántulas	
emitiendo raíces, D) plántulas de la panoja con igual	
genotipo que la planta madre	179
Figura 26: Configuraciones meióticas del trihíbrido MDL, [(Z.	
mays x Z. diploperennis) x Z. luxurians]: A) 10 II, tres	
de los bivalentes con diferente tamaño; B) 8II+1IV; C)	
cromosomas con asociación secundaria; D) célula	
con el número cromosómico duplicado; E) anafase	
I con puente de inversión; F) anafase con	
cromosomas retrasados	180
Figura 27: Porcentaje de tetravalentes por células observados	
en especies parentales con 2n=20 tratadas con	
solución diluida de colchicina (0,5 x 10 ⁻⁴ M) y el testigo	
sin tratar	181
Figura 28: Porcentaje de cuadrivalentes por células observados	
en híbridos de Zea con 2n=20 tratadas con solución	
diluida de colchicina (0,5 x 10 ⁻⁴ M) y el testigo sin	
tratar	182
Figura 29: Porcentaje de trivalentes por células observados en	
híbridos de Zea con 2n=30 tratadas con solución	
diluida de colchicina (0,5 x 10 ⁻⁴ M) y el testigo sin	
tratar	183

Figura 30: Porcentaje de tetravalentes por celulas observados	
en especies parentales e híbridos de Zea con 2n=40	
tratados con solución diluida de colchicina (0,5 x	
10⁻⁴M) y el testigo sin tratar	184
Figura 31: Configuraciones meióticas inducidas por el	
tratamiento con colchicina en: A) <i>Z. may</i> s con 2n=20	
(5IV); B) Zea perennis (81V + 4II); C) Z. mays x Zea	
perennis con 2n=30 (10III); D) Z. mays x Zea	
perennis con 2n=40 (9IV + 2II)	185
Figura 32: Configuraciones meióticas del trihíbrido Zea mays,	
Zea diploperennis y Zea perennis: A) Diacinesis con	
5IV+10II; B) Diacinesis tratada con colchicina con	
8IV+4II; C) Anafase I normal; D) Anafase I con	
puentes de inversión	186
Figura 33: Posible mecanismo de diferenciación de los	
cromosomas de Zea. Primera diferenciación:	
Especie poliploide con genomio A se habría	
diferenciado en los genomios A y B. Segunda	
diferenciación: Fundamentalmente los genomios B	
habrían mutado o diferenciado entre si para dar lugar	
a las diferentes especies de Zea con 2n=20. En el	
caso de <i>Zea perennis</i> los cromosomas del genomio B	
a su vez habrían sufrido otra diferenciación dando	
	407
lugar a los cromosomas homeólogos Bp1 y Bp2	187