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Abstract—Recognition of characteristic patterns is proposed 

in this paper in order to diagnose the presence of 
electromechanical faults in induction electrical machines. Two 
common faults in this type of machines are considered; broken 
rotor bars and mixed eccentricities. The presence of these faults 
leads to the appearance of frequency components following a 
very characteristic evolution during the startup transient and 
other transients through which the machine operates. The 
identification and extraction of these characteristic patterns 
through the Discrete Wavelet Transform (DWT) has been proven 
to be a reliable methodology for diagnosing the presence of these 
faults, showing certain advantages in comparison with the 
classical FFT analysis of the steady-state current. In the paper, a 
compilation of healthy and faulty cases are presented; they 
confirm the validity of the approach for the correct diagnosis of a 
wide range of electromechanical faults. 

Keywords—electric machines, fault diagnosis, wavelet 

tramsform, broken bars, eccentricties 

I. INTRODUCTION  
Electrical induction machines are of extensive use in many 

industrial processes. An unexpected fault in these machines 
can lead to high expenses in terms of time and costs, since 
most of the times they are critical elements in those processes 
in which they are involved. Due to this fact, the diagnosis of 
the possible faults taking place in these devices has become a 
topic of special interest and concern in the industrial 
environment [1-2]. The development and optimization of 
techniques being able to detect the possible failures in an 
earlier stage have been the motivation of many works during 
these last few years. 

   Statistical studies [1] on the occurrence of 
electromechanical faults in asynchronous machines show a 
significant percentage of faulty events related to the rotor, 
such as rotor bar breakages and various modalities of 
eccentricities; they have been deeply analyzed in the literature 
due to their particular hazard caused by the progressive 

propagation or the possibility of rotor to stator rub [3-5]. 

   Most of these faults lead to some effects in the different 
electromechanical quantities of the machine (currents, 
vibrations, fluxes, torque…) which may help to diagnose the 
presence of the corresponding failure. Indeed, some studies 
have investigated the effect that each particular fault provokes 
on the different electrical quantities, trying to obtain the most 
suitable for diagnosing the presence of each failure, according 
to its sensitivity, non-invasive nature and other criteria. 

   In the industrial environment, the most common 
approach for the diagnosis of most of the faults (for instance, 
rotor asymmetries or different types of eccentricities) is based 
on the analysis of the current demanded by the machine; this 
is a quantity easy to be measured in a non-invasive way, this 
is, without interference on the usual operation of the machine. 
The equipment required for capturing the current signal is 
very simple and also the software needed for its computation. 

   The classical diagnosis method based on current analysis, is 
focused on applying the Fourier transform to the current of the 
machine during its steady-state operation. Under ideal 
operation and healthy condition, this should be a pure 
sinusoidal signal, so the Fourier analysis would reveal the 
presence of a single frequency component at the supply 
frequency. However, even under healthy condition, this 
spectrum is usually polluted by other frequencies caused by 
the slotting, non-ideal winding distribution, perturbations in 
the operation of the machine, noises, transient oscillations or 
even rotor imperfections due to the manufacturing process [6-
7].  

   In the case of a faulty machine, for instance a machine 
with rotor asymmetries or a machine with certain level of 
eccentricity, some particular frequency components appear in 
the Fourier spectrum of the steady-state current. Many authors 
have studied the frequencies amplified by the presence of 
these faults; these works have led to expressions that have 
become very common in the industrial environment for 
diagnosis purposes; for instance, in the case of rotor bar 
breakages, the main frequencies amplified by the presence of 



the fault are given by (1) (with s=slip and f=supply frequency) 
and they are known as sideband components [4]. These 
components are shown in Figure 1, corresponding to a loaded 
machine with two broken bars. Analogue expressions are 
obtained for the case of static, dynamic or mixed 
eccentricities.   
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Figure 1.  FFT of the steady state current for a loaded machine with two 

broken bars. 
 

     This classical approach based on the steady-state 
analysis of the current, has some drawbacks reported by 
several authors [6-7]; for instance, when the machine is 
unloaded or lightly loaded, the diagnosis of rotor asymmetries 
or even eccentricities can become specially difficult due to the 
low value of the slip [6-7], causing that the frequency 
components used for the diagnosis overlap the frequency of 
supply (Figure 2(a)). Moreover, other common phenomena 
such as load fluctuations or voltage oscillations can introduce 
frequencies very close to those amplified by the previous 
faults, leading to confusion or even to a wrong diagnosis 
(Figure 2(b)). 

 

 

 

 

 

 

 

                   (a)                                              (b) 

Figure 2.  FFT of the steady state current fo: (a) unloaded machine with two 

broken bars (b) healthy machine with fluctuating load torque . 
 

   Due to all these facts, some authors have proposed the 
study of the transient processes of the machine as an 
alternative way to obtain additional information which could 
complement that provided by the steady-state methods. In this 
context, the study of the current during the connection process 
of the machine (startup transient) has drawn most of the 
attention [7-12]. The implicit common basis of these methods 
is the detection of the evolution during that transient of certain 
characteristic components created by the corresponding fault. 

   In this context, a new methodology based on the 
application of the Discrete Wavelet Transform (DWT) to the 
startup current, and the subsequent study of the wavelet 
signals resulting from the transform was proposed recently [8-
12]; these signals enable not only the mere detection, but also 
the extraction of the evolution during the transient of the 
components created by each fault, arising characteristic 
patterns that could be used for the reliable diagnosis of the 
fault. The further automatic recognition of these patterns, 
using modern image recognition algorithms would enable the 
on-line diagnosis of the corresponding fault as well as the 
quantification of the degree of severity.  

   The aim of this paper is to review the proposed diagnosis 
methodology, presenting a compilation of different cases. 
These experimental cases are referred to a 1.1 kW machine 
operating under various conditions and with different faults. In 
some of the presented cases, the classical diagnosis method, 
currently used in the industrial environment and based on the 
application of the FFT to the steady-state current, is not 
suitable or leads to a confusing diagnostic. The results show 
the validity of the method for the reliable diagnosis of the 
failure. This might lead to the possible future implementation 
of portable condition monitoring devices based on this 
methodology.  

II. ELECTROMECHANICAL FAULTS DURING THE 

STARTUP 
Two main faults are considered in the paper; broken rotor 

bars and dynamic eccentricities: 
 
A. Broken Rotor Bars 
 The presence of broken rotor bars introduces, in the 

steady-state current spectrum, two sideband components 
around the supply frequency, with frequencies given by (1). 
During the startup transient, the slip s changes from 1 to a 
value very close to 0. As the slip varies, the frequency of the 
component with negative sign in (1) (left sideband 
component) also changes; it decreases firstly from a value 
equal to the supply frequency to 0 Hz and it increases again up 
to reaching a value very close to the supply frequency [7]. Its 
amplitude also evolves in a very characteristic way [8]. The 
extraction of that characteristic transient waveform has 
revealed as a reliable way for diagnosing the presence of the 
asymmetry in the machine. 

 
B. Dynamic eccentricities 

  Some authors [3] have provided a general expression for 
the frequencies amplified by mixed eccentricities:  

                          ecc 1

1
(1 ( )

s
f f m

p
� �−= ±� �
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                            (2) 

where p= number of pole pairs and m=1,2,3… 
     As it was proven in previous works [9], the slip variation 
during the startup leads to a particular evolution of the 
frequency components created by the eccentricity. For m=p/2, 
considering f=50Hz, two frequency components with very 
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characteristic evolutions appear; one of them evolving during 
the transient from 50 Hz to 25 Hz and the second  changing 
from 50 Hz to 75 Hz [9]. This variation, totally different from 
that of the broken bars, can be also used for the diagnosis of 
the eccentricity. 
 

III. DISCRETE WAVELET TRANSFORM 
The main idea that underlies the application of the DWT is 

the dyadic band pass filtering process carried out by this 
transform. Provided a certain sampled signal s= (i1, i2, …iN) , 
the DWT decomposes it onto several wavelet signals (an 
approximation signal an and n detail signals dj) [7, 13]. A 
certain frequency band is associated with each wavelet signal; 
the wavelet signal reflects the time evolution of the frequency 
components of the original signal s which are contained within 
its associated frequency band [7, 14]. 

   More concretely, if fs  (samples/s) is the sampling rate 
used for capturing s, then the detail dj contains the information 
concerning the signal components with frequencies included 
in the interval: 

 f(dj)∈[2-(j+1)⋅fs , 2
-j⋅fs] Hz.                         (3) 

The approximation signal an includes the low frequency 
components of the signal, belonging to the interval: 

 f(an)∈[ 0, 2-(n+1)⋅fs] Hz                            (4) 

Therefore, the DWT carries out the filtering process shown 
in Figure 1. Note that the filtering is not ideal, a fact leading to 
a certain overlap between adjacent frequency bands [7, 12, 
15]. This causes some distortion if a certain frequency 
component of the signal is close to the limit of a band.   

  

 

 

 

Figure 3.  Filtering process performed by the DWT. 
 

   Due to the automatic filtering performed by the wavelet 
transform, the tool provides a very attractive flexibility for the 
simultaneous analysis of the transient evolution of rather 
different frequency components present in the same signal. At 
the same time, in comparison with other tools, the 
computational requirements are low. In addition, the DWT is 
available in standard commercial software packages, so no 
special or complex algorithm is required for its application.  

IV. EXPERIMENTAL RESULTS 
In this section the presented methodology is applied to the 

diagnosis of several machines under different fault and 
operation conditions. The tests were performed in the 
laboratory, using commercial cage motors with 4 poles, 28 
rotor bars, rated 1.1 kW, 400V, 50 Hz, coupled to two 
different DC machines acting as loads (load 1 (direct 
coupling)  and load 2 (coupling through straps)). Figure 4(a) 
shows the motor under test.  

 
 
 
 
 
 
 
 
                   (a)                                               (b) 
Figure 4.  (a) 1.1 kW motor under test (b) Rotor with one broken bar. 

 
 
A phase current was used as diagnostic signal; this current 

was captured using a 15/5, class 0.5 current transformer and a 
1A, 60 mV shunt; the resulting voltage signal was captured by 
means a digital oscilloscope with a sampling frequency fs = 

5000 samples/s, and finally transferred to a PC for the 
analyses. The standard MATLAB Wavelet Toolbox was used 
for performing the DWT of the signals; Daubechies-44 was 
selected as mother wavelet. Figures in the next sections show 
the wavelet signals resulting from the transform, as well as 
their associated frequency bands. 

A. Unloaded healthy machine 
   Figure 5 shows the DWT of the startup current for the 

healthy motor coupled to load 1. The wavelet signals resulting 
from the analysis (approximation and detail signals) do not 
show any significant oscillations once the electromagnetic 
transient, occuring at the beginning of the startup in every 
machine, is finished. This shows the absence of any fault 
component, confirming the healthy condition of the machine. 

 

 

 

 

 

 

 

Figure 5.  8-level DWT of the startup current for the unloaded healthy 

machine. 

B. Unloaded machine with one broken bar 
   A bar breakage was artificially forced in the laboratory, by 
drilling a hole in the selected rotor bar. Figure 4 (b) shows the 
rotor after the breakage.  Figure 6 shows the application of the 
DWT for the case of a machine with 1 broken bar and coupled 
to load 1. Clear oscillations appear in the wavelet signals 
resulting from the analysis. Moreover, they are arranged in 
such a way that they reflect the evolution of the left sideband 
component created by the breakage (first decreasing from the 
supply frequency towards 0 Hz and later increasing towards 
the supply frequency again).    
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Figure 6.  8-level DWT of the startup current for the unloaded machine with 

one broken bar. 
 
     If the classical diagnosis methodology, based on the FFT of 
the steady-state current, is applied in this case the diagnosis 
conclusion could not be reached. This is due to the fact that 
the machine is unloaded and, therefore, the slip s is very low, 
so the sideband components given by (1) overlap the supply 
frequency. This is shown in Figure 7, where the sidebands are 
not detectable due to this fact. 

 

     

 

 

 

 

Figure 7.  FFT of the steady state current for the unloaded machine with one 

broken bar. 

C. Unloaded machine with two broken bars 
   Figure 8 shows the application of the diagnosis methodology 
to an unloaded machine with two broken bars and coupled to 
load 1. The conclusion is similar to that of the previous case; 
the characteristic pattern caused by the evolution of the left 
sideband is clear in the wavelet signals resulting from the 
DWT. Moreover, the oscillations within the signals a8, d8 and 
d7 have higher amplitudes, due to the higher degree of 
severity of the fault, in comparison with the previous case. 
This indicates the possibility of introducing parameters for 
quantifying the degree of severity of the fault based on the 
energy of the wavelet signals. 

 

 

 

 

 

 

Figure 8.  8-level DWT of the startup current for the unloaded machine with 

two broken bars. 

D. Unloaded machine started through soft-starter. 
 
   This test was carried out using the unloaded machine with 
one broken bar, coupled to load 2 and started by means of a 
soft starter. The soft starter controls the voltage supplied to the 
motor during the startup, increasing it progressively during the 
transient. This starting method is also common in the 
industrial environment. Figure 9 shows schematically the test-
bed for the experiment.  

 

 

 

Figure 9.  Simplified scheme for the test. 
 

    Figure 10 shows the DWT analysis of the startup current for 
this case. The characteristic pattern caused by the evolution of 
the left sideband appears clearly, confirming also the validity 
of the approach in this situation. 

 

 

 

 

 

 

 

Figure 10.  8-level DWT of the startup current for the unloaded machine with 

one broken bar started through soft-starter. 
 

E.   Machine with mixed eccentricity 

Figure 11 shows the application of the methodology for a 
machine with mixed eccentricity, considering now 6 
decomposition levels. The evolution of the aforementioned 
fault components is clearly noticed; there is one component 
whose frequency evolves from 50 Hz to 25 Hz during the 
transient and a second one evolving from 50 Hz to 75 Hz. 
Therefore, a characteristic pattern really different from that 
associated with the bar breakage arises. 

 

 

 

 

 

 

Figure 11.  6-level DWT of the startup current for the machine with mixed 

eccentricity. 
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V. INTRODUCTION OF QUANTIFICATION 

PARAMETERS 
 
Once the condition of the machine has been preliminarily 

diagnosed, using the qualitative identification of characteristic 
patterns, it is necessary to compute the quantification 
parameter defined for the corresponding fault, in order to 
quantify the degree of failure in the machine. 

In the case of rotor asymmetries, a quantification 
parameter γasym was defined in previous works [16]. It was 
based on the energy of the wavelet signal with the next level 
higher than the signal containing the fundamental. This 
parameter is given by (5). 

 
  
                                                                                         (5) 
 
 
where ij is the value of the jth sample of the startup current 

signal i(t); dnf+1(j) is the j element of the detail with level nf+1 
(nf=level of the signal containing the fundamental); Ns is the 
number of samples of the signal, until reaching the steady-
state and Nb is the number of samples between the origin of 
the signals and the extinction of the oscillations due to border 
effect. 

 According to the experience achieved by tests carried out 
in motors with this range of powers (few kW), a value for γasym 
higher than 40 dB is indicative of a healthy condition in the 
machine. Values between 30 dB and 40 dB mean that a partial 
breakage or one broken bar is present in the machine. Values 
around 30 dB or lower are usually obtained when at least two 
bars are broken.  

Table I shows the results obtained when computing this 
indicator for different cases tested, as well as the deviations 
with respect the healthy condition for each machine. The 
values obtained confirm the ranges commented above. 

In the case of mixed eccentricities, a quantification 
parameter γmecc could be also defined, based on the energy of 
the approximation signal with the next level higher than that 
containing the fundamental component. This parameter would 
be according to (6). 

 

 

                                                                                         (6) 

 

  

  where ij is the value of the j sample of the current signal; 
an(j) is the j element of the order n approximation signal; Ns is 
the number of samples of the signal, after finishing the first 10 
cycles in the steady-state regime and Nb is the number of 
samples between the origin of the signals and the extinction of 
the oscillations due to border effect. 

 

 

VI. ADDITIONAL CONSIDERATIONS FOR THE APPLICATION 

OF THE METHOD 
The different experiments performed showed the 

suitability of the method for the diagnosis of 
electromechanical faults introducing slip-dependant 
components. Nevertheless, additional considerations need to 
be done regarding the different parameters of the DWT 
decomposition, such as the type of mother wavelet, the order 
of the mother wavelet or the number of decomposition levels. 

 With regards to the type of mother wavelet, the 
Daubechies family was well suited for the application of this 
method, due to its inherent properties, although other families 
(symlet, biorthogonal, Gaussian, and specially dmeyer) also 
enable a clear detection of the patterns, despite their different 
mathematical characteristics. As an example, Figures 12 (a) 
and (b) show the application of the method for the case of 
unloaded machine with one broken bar and coupled to load 2, 
using symlet-30 and dmeyer, respectively. The similarities 
between both figures are obvious, appearing the characteristic 
pattern caused by the sideband. 

Machine Condition γγγγasym ∆∆∆∆γγγγasym 

1.1 kW motor coupled to 
load 1 

Healthy 47.1       - 

1.1 kW motor coupled to 
load 1 

1 broken bar, 
unloaded 

37   -10.1 

1.1 kW motor coupled to 
load 1 

1 broken bar, 80% 
load 

36.2   -10.9 

1.1 kW motor coupled to 
load 1 

1 broken bar, full-
load 

35.2   -11.9 

1.1 kW motor coupled to 
load 1 

2 broken bars, 
unloaded 

30.6   -16.5 

1.1 kW motor coupled to 
load 1 

2 broken bars, 60% 
load 

30.0   -17.1 

1.1 kW motor coupled to 
load 1 

2 broken bars, full 
load 

30.1     -17 

1.1 kW motor coupled to 
load 2 

Healthy 44.4 - 

1.1 kW motor coupled to 
load 2 

1 broken bar, 
unloaded 

35.6    -8.8 

1.1 kW motor coupled to 
load 2 

1 broken bar, 80% 
load 

35.4       -9 

1.1 kW motor coupled to 
load 2 

1 broken bar, full-
load 

35.1     -9.3 

1.1 kW motor coupled to 
load 2 

2 broken bars, 
unloaded 

30.7   -13.7 

1.1 kW motor coupled to 
load 2 

2 broken bars, full 
load 

31.8   -12.6 
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                                   (b) 

Figure 12.  8-level DWT of the startup current for the unloaded machine with 

one broken bar using: (a) symlet-30, (b) dmeyer. 
 

 When using the Daubechies family, an important fact 
observed was the overlapping between the frequency bands 
associated with successive wavelet signals resulting from the 
DWT of the current. This is due to the fact that the wavelet 
signals act as non-ideal filters, extracting the components of 
the signal included within a certain frequency band that can 
overlap partially with the adjacent band [7, 15]. In this sense, 
it was observed that, when using a high-order Daubechies 
wavelet for signal decomposition, the overlapping was smaller 
than when using a low-order one. In other words, high-order 
wavelets behave as more ideal filters, a fact that helps to avoid 
partially the overlapping between frequency bands.  

   Finally, the number of decomposition levels (nd) is 
related to the sampling frequency of the signal being analysed 
(fs). This parameter has to be chosen in such a way that the 
DWT supplies at least three high-level signals (two details and 
an approximation) with frequency bands below the supply 
frequency f; this condition implies: 

                                2+≥ fd nn      ,                           (7) 

   being nf the level of the detail which contains the supply 
frequency, that can be calculated using (8). 

                                ff s
n d <⋅+− )1(2                             (8) 

   This condition means that the lower limit of the 
frequency band of the nf level detail is lower than the supply 
frequency. 

   Thus: 

                                                               (integer)            (9) 

  

VII. CONCLUSIONS 
   A diagnosis methodology is presented in this paper to 

diagnose the presence of electromechanical faults in electrical 
machines. It is based on the application of the DWT to the 
stator startup current and the further recognition of 
characteristic patterns created by each fault. 

Several faulty cases are presented in the paper, all them 
confirming the validity of the approach, even in some cases in 
which the classical methodology, currently used in the 
industrial environment, might not lead to correct results. 

The method admits the quantification of the degree of 
failure using parameters based on the energy of the wavelet 
signals resulting from the analysis. 

Further step would be the application of image recognition 
algorithms for the automatic identification of these 
characteristic patterns, which could be the basis of the 
implementation of portable diagnosis devices. 
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