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Abstract

This paper deals with the determination of the first probability density function of the solution
stochastic process to the homogeneous Riccati differential equation taking advantage of both
linearization and Random Variable Transformation techniques. The study is split in all possible
casuistries regarding the deterministic/random character of the involved input parameters. An
illustrative example is provided for each one of the considered cases.
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1. Introduction and motivation1

Numerous physical and social phenomena involve the study of uncertainty due not only to2

measurement errors required to conduct the analysis of such phenomena but also the inherent3

complexity associated to their own nature. The consideration of randomness leads to two main4

types of differential equations, namely, stochastic differential equations (s.d.e.’s) and random5

differential equations (r.d.e.’s). These two classes of differential equations are different in the6

manner the uncertainty is considered and, as a consequence, completely different approaches for7

solving, analysing and approximating are required. On the one hand, in dealing with s.d.e.’s, un-8

certainty is forced by an irregular stochastic process such as a Brownian motion. When possible,9

s.d.e.’s are solved by taking advantage of a special stochastic calculus usually referred to as Itô-10

Stratonovic calculus, otherwise numerical techniques are developed [1, 2, 3]. On the other hand,11

r.d.e.’s constitute a natural generalization of their deterministic counterpart since random effects12

are directly manifested through input parameters (coefficients, source terms and initial/boundary13

conditions) which are assumed to be random variables (r.v.’s) and/or stochastic processes (s.p.’s).14
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An important advantage of r.d.e.’s with respect to s.d.e.’s is that wider range of probability dis-15

tributions for the inputs are allowed. This includes standard distributions such as beta, gaussian,16

exponential, etc., as well as many other ad hoc distributions like the ones built using copulas [4].17

Solving r.d.e.’s require the application of the so-called Lp-calculus, [5, 6]. A number of numeri-18

cal and analytical methods, which extend their deterministic counterpart, have been proposed to19

deal with r.d.e.’s including numerical schemes [7], spectral methods [8], Fröbenius series [9], etc.20

Throughout this paper only r.d.e.’s will be considered. We point out that a common approach to21

approximate the solutions of s.d.e.’s and r.d.e.’s, is Monte Carlo sampling [10]. Although widely22

used due to easy implementation, the main drawback of Monte Carlo method is its slow conver-23

gence rate, O(1/
√

M) being M the number of simulations. In addition, Monte Carlo technique24

only provides numerical approximations of solution s.p. in spite of an exact representation could25

exist.26

Solving a r.d.e. means not only to compute, exact or approximately, its solution s.p., say27

X(t), but also its main statistical functions such as the mean and variance. However, in order28

to have a full statistical description of the solution in every time instant t, the determination of29

the first probability density function (1-p.d.f.) is required. The Random Variable Transformation30

(R.V.T.) technique constitutes a powerful tool to calculate the p.d.f. of a r.v. which comes from31

the mapping of other r.v. whose p.d.f. is known [11, 12]. In the context of r.d.e.’s, R.V.T.32

technique has been used to compute the 1-p.d.f. of the solution s.p. of both ordinary and partial33

differential equations, see for example [13, 14, 15] and references therein.34

The aim of this paper is to compute the 1-p.d.f. of the solution s.p. of the following random35

initial value problem (i.v.p.) based on an homogeneous Riccati-type differential equation36

Ẋ(t) = CX(t) + D(X(t))2, t ≥ 0 ,
X(0) = X0 ,

}
(1)

where all the input parameters X0, C and D are assumed to be absolutely continuous r.v.’s defined37

on a common probability space, (Ω,F,P). Their p.d.f.’s will be denoted by fX0 (x0), fC(c), and38

fD(d), respectively. Hereinafter,D(X0),D(C) andD(D), will represent their respective domains.39

For the sake of generality, statistical dependence among the input r.v.’s X0, D and C will be also40

considered. In such case, fX0,D(x0, d), fX0,C(x0, c), fD,C(d, c) and fX0,D,C(x0, d, c), will denote the41

joint p.d.f.’s of the random vectors (X0,D), (X0,C), (D,C) and (X0,D,C), respectively. Since42

input parameters can be deterministic or random, in the following we will distinguish them by43

writing deterministic variables by lower cases and r.v.’s by upper cases. In this way, if the non-44

linear coefficient in (1) is deterministic, then it will be denoted as d, whereas D will mean that it45

is a r.v.46

In order to determine the 1-p.d.f. of the solution s.p. of i.v.p. (1), we will take advantage of47

the results recently established by some of the authors in [16], where a comprehensive study to48

compute the 1-p.d.f. of the linear random i.v.p.49

Ż(t) = AZ(t) + B, t ≥ t0 ,
Z(t0) = Z0 ,

}
(2)

is provided. With this aim, notice that making the change of variable50

Z(t) =
1

X(t)
, (3)
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the nonlinear i.v.p. (1) can be transformed into the linear i.v.p. (2), using the following identifi-51

cation of the random inputs52

Z0 =
1
X0

, B = −D , A = −C , (4)

and taking t0 = 0. In this manner, all the results obtained in [16] are available.53

In order to facilitate the comparison regarding the notation as well as the casuistries consid-54

ered in [16] for the i.v.p. (2) with respect to the one to be used for the i.v.p. (1), an identification55

between both problems is shown in Table 1.56

It is important to underline that Cases I.1–I.3, corresponding to the situation where nonlinear57

coefficient D = 0 with probability 1, i.e., P [{ω ∈ Ω : D(ω) = 0}] = 1, will be omitted in our58

subsequent analysis since it was already studied in reference [16]. Specifically, it corresponds to59

the random homogeneous linear differential equation given in the i.v.p. (2) taking B = 0 with60

probability 1, i.e., P [{ω ∈ Ω : B(ω) = 0}] = 1.61

The study of i.v.p. (1) has interest by itself from a mathematical standpoint since it consti-62

tutes the extension of the homogeneous Riccati differential equation to the random scenario. In63

addition, this differential equation arises frequently in important applications to classical control64

problems, as decoupling techniques for both analytic and numerical study of boundary value65

problems [17, 18], and also, for instance, in dealing with SI-type epidemiological models [19].66

Therefore, its generalization to the random framework can be very useful in order to develop67

more accurate models that consider the uncertainty usually involved in real phenomena. We68

want to point out that in the stochastic context, some of the authors have dealt with random69

Riccati differential equations [20]. In that paper, coefficients are assumed to be analytic s.p.’s70

and taking advantage of Lp-calculus approximate solutions for the mean and the variance of the71

solution s.p. are constructed. However, in that contribution none information about the 1-p.d.f.72

of the solution s.p. is provided.73

This paper is organized as follows. In Section 2 a number of results coming from specializa-74

tions of the Random Variable Transformation method that will be required throughout the paper75

are established. Sections 3 and 4 are devoted to compute explicit expressions for the 1-p.d.f. of76

the solution s.p. of i.v.p. (1) in the Cases II.1–II.3 and Cases III.1–III.7, respectively. Examples77

in each one of these cases are included to illustrate the theoretical results. Conclusions are drawn78

in Section 5.79

2. Auxiliary results80

In this section we will establish several results that will be required throughout this paper.81

They are specializations of scalar and multi-dimensional versions of R.V.T. technique which can82

be found in [16, Eq. (3)] and [16, Theorem 4], respectively.83

Proposition 1 (R.V.T. technique: inverse transformation). Let U be an absolutely continuous84

real r.v. defined on a probability space (Ω,F,P), with p.d.f. fU(u). Assume that U(ω) , 0 for all85

ω ∈ Ω and, let us denote byD(U) the domain of r.v. U, where86

D(U) = I−u ∪ I+
u ,

 I−u = {u = U(ω) ∈ R : u < 0 , ω ∈ Ω} ,

I+
u = {u = U(ω) ∈ R : 0 < u , ω ∈ Ω} .
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Table 1: List of different cases in which i.v.p. (1) is split to conduct the study and identification for the notation used
regarding the involved deterministic/random inputs in i.v.p.’s (2) and (1).
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Then, the p.d.f. fV (v) of the inverse transformation V = 1
U is given by87

fV (v) =
1
v2 fU

(
1
v

)
, v ∈ D(V) = I−v ∪ I+

v ,

 I−v = {v = V(ω) ∈ R : v < 0 , ω ∈ Ω} ,

I+
v = {v = V(ω) ∈ R : v > 0 , ω ∈ Ω} .

(5)

Proof. Let us consider the mapping v = r(u) = 1
u . Notice that r is strictly monotone over88

the intervals −∞ < u < 0 and 0 < u < +∞. Hence, its inverse mapping exists and is given89

by u = s(v) = 1
v , being its derivative s′(v) = − 1

v2 . Then, by applying [16, Eq.(3)] with the90

identification X = U and Y = V in each subinterval, the expression (5) is straightforwardly91

obtained. The determination of the domain D(V) follows easily since the transformation r(u) is92

decreasing monotone in each subinterval. �93

Proposition 2 (R.V.T. technique: opposite transformation). Let U be an absolutely continu-94

ous real r.v. defined on a probability space (Ω,F,P), with p.d.f. fU(u). Let us denote by95

D(U) = {u = U(ω) ∈ R : u1 < u < u2} the domain of r.v. U. Then, the p.d.f. fV (v) of the op-96

posite transformation V = −U is given by97

fV (v) = fU (−v) , D(V) = {v = V(ω) ∈ R : −u2 < v < −u1} . (6)

Proof. Let us consider the mapping v = r(u) = −u. Notice that r is strictly monotone over R.98

Hence, its inverse mapping exists and is given by u = s(v) = −v, being its derivative s′(v) = −1.99

Then, by applying [16, Eq.(3)] with the identification X = U and Y = V , the expression (6)100

is straightforwardly obtained. The determination of the domain D(V) follows easily since the101

transformation r(u) is decreasing monotone in R. �102

Proposition 3 (R.V.T. technique: inverse-opposite transformation). Let U = (U1,U2) be an103

absolutely continuous real random vector defined on a probability space (Ω,F,P), with joint104

p.d.f. fU(u1, u2). Assume that U1(ω) , 0 for all ω ∈ Ω and, let us denote by D(U1) the domain105

of r.v. U1, where106

D(U1) = I−u1
∪ I+

u1
,

 I−u1
= {u1 = U1(ω) ∈ R : u1 < 0 , ω ∈ Ω} ,

I+
u1

= {u1 = U1(ω) ∈ R : 0 < u1 , ω ∈ Ω} .

Let us denote byD(U2) =
{
u2 = U2(ω) ∈ R : u2,1 < u2 < u2,2

}
the domain of r.v. U2. Notice that107

the domainD(U) of the random vector U is given byD(U) = D(U1) ×D(U2).108

Then, the joint p.d.f. fV(v1, v2) of the inverse-opposite transformation V = (V1,V2) =109

( 1
U1
,−U2) is given by110

fV(v1, v2) =
1

(v1)2 fU

(
1
v1
,−v2

)
, (v1, v2) ∈ D(V) = D(V1) ×D(V2) , (7)

where

D(V1) = I−v1
∪ I+

v1
,

 I−v1
= {v1 = V1(ω) ∈ R : v1 < 0 , ω ∈ Ω} ,

I+
v1

= {v1 = V1(ω) ∈ R : v1 > 0 , ω ∈ Ω} ,

D(V2) =
{
v2 = V2(ω) ∈ R : −u2,2 < v2 < −u2,1

}
.
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Proof. Let us consider the two-dimensional transformation (v1, v2) = r(u1, u2) = (1/u1,−u2).
Notice that its inverse mapping is given by (u1, u2) = s(v1, v2) = (1/v1,−v2), being its Jacobian

J2 = det
(
− 1

(v1)2 0
0 −1

)
=

1
(v1)2 , 0 .

Then, by applying [16, Theorem 4] for n = 2 and the identification Xi = Ui, Yi = Vi, i = 1, 2,111

the expression (7) is straightforwardly obtained. The determination of the domainD(V) follows112

easily from Propositions 1 and 2. �113

Proposition 4 (R.V.T. technique: opposite-opposite transformation). Let U = (U1,U2) be an114

absolutely continuous real random vector defined on a probability space (Ω,F,P), with joint115

p.d.f. fU(u1, u2). Let us denote by D(Ui) =
{
ui = Ui(ω) ∈ R : ui,1 < ui < ui,2

}
the domain of116

r.v. Ui, i = 1, 2. Notice that the domain D(U) of the random vector U is given by D(U) =117

D(U1) ×D(U2).118

Then, the joint p.d.f. fV(v1, v2) of the opposite-opposite transformation V = (V1,V2) =119

(−U1,−U2) is given by120

fV(v1, v2) = fU (−v1,−v2) , (v1, v2) ∈ D(V) = D(V1) ×D(V2) , (8)

where
D(Vi) =

{
vi = Vi(ω) ∈ R : −ui,2 < vi < −ui,1

}
, i = 1, 2 .

Proof. Let us consider the two-dimensional transformation (v1, v2) = r(u1, u2) = (−u1,−u2).
Notice that its inverse mapping is given by (u1, u2) = s(v1, v2) = (−v1,−v2), being its Jacobian

J2 = det
(
−1 0
0 −1

)
= 1 , 0 .

Then, by applying [16, Theorem 4] for n = 2 and the identification Xi = Ui, Yi = Vi, i = 1, 2,121

the expression (8) follows straightforwardly. The determination of the domain D(V) is directly122

obtained from Proposition 2. �123

Proposition 5 (R.V.T. technique: inverse-opposite-opposite transformation). Let U = (U1,U2,U3)124

be an absolutely continuous real random vector defined on a probability space (Ω,F,P), with125

joint p.d.f. fU(u1, u2, u3). Assume that U1(ω) , 0 for all ω ∈ Ω, and let us denote by D(U1) the126

domain of r.v. U1, where127

D(U1) = I−u1
∪ I+

u1
,

 I−u1
= {u1 = U1(ω) ∈ R : u1 < 0 , ω ∈ Ω} ,

I+
u1

= {u1 = U1(ω) ∈ R : 0 < u1 , ω ∈ Ω} ,

and by D(Ui) =
{
ui = Ui(ω) ∈ R : ui,1 < ui < ui,2

}
the domain of r.v. Ui, i = 2, 3. Notice that the128

domainD(U) of the random vector U is given byD(U) = D(U1) ×D(U2) ×D(U3).129

Then, the joint p.d.f. fV(v1, v2, v3) of the inverse-opposite-opposite transformation V =130

(V1,V2,V3) = (1/U1,−U2,−U3) is given by131

fV(v1, v2, v3) =
1

(v1)2 fU (1/v1,−v2,−v3) , (v1, v2, v3) ∈ D(V) = D(V1) ×D(V2) ×D(V3) ,

(9)
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where

D(V1) = I−v1
∪ I+

v1
,

 I−v1
= {v1 = V1(ω) ∈ R : v1 < 0 , ω ∈ Ω} ,

I+
v1

= {v1 = V1(ω) ∈ R : v1 > 0 , ω ∈ Ω} ,

D(Vi) =
{
vi = Vi(ω) ∈ R : −ui,2 < vi < −ui,1

}
, i = 2, 3 .

Proof. Let us consider the three-dimensional transformation (v1, v2, v3) = r(u1, u2, u3) = (1/u1,−u2,−u3).
Notice that its inverse mapping is given by (u1, u2, u3) = s(v1, v2, v3) = (1/v1,−v2,−v3), being its
Jacobian

J3 = det


− 1

(v1)2 0 0
0 −1 0
0 0 −1

 = −
1

(v1)2 , 0 .

Then, by applying [16, Theorem 4] for n = 3 and the identification Xi = Ui, Yi = Vi, i = 1, 2, 3,132

the expression (9) follows straightforwardly. The determination of the domain D(V) is directly133

obtained from Propositions 1 and 2. �134

3. Solving the Cases II.1–II.3135

This section is addressed to compute the 1-p.d.f., f1(x, t), of the solution s.p. of i.v.p. (1)136

in each one of the Cases II.1-II.3 collected in Table 1. Thus, throughout this section the deter-137

ministic parameter c that appears into the problem (1) is assumed to be null, c = 0. As it was138

pointed out in Section 1, to conduct our analysis we will take advantage of results obtained in139

Cases II.1-II.3 studied in [16] (see i.v.p. (2) in Table 1).140

3.1. Case II.1: X0 is a random variable141

Notice that regarding problem (1), we are assuming implicitly that d ∈ R − {0} and X0 is142

a r.v. with p.d.f. fX0 (x0). In accordance with Table 1 and (4), this situation corresponds to the143

following particular case of linear i.v.p. (2)144

Ż(t) = b ,
Z(0) = Z0 ,

}
Z0 =

1
X0
, b = −d. (10)

Now, we fix t ≥ 0 and apply [16, Eq. (59)] in order to compute the p.d.f. of the solution s.p. of145

i.v.p. (10) evaluated at that t, since the randomness character of X0 is transferred to Z0146

fZ(z) = fZ0 (z − b t) . (11)

Note that for the sake of clarity, we have used the notation fZ(z) instead of f1(z, t) since the time147

variable t has been fixed, so Z = Z(t) is a r.v. rather than a s.p.148

In order to express (11) in terms of the data, we take into account (10) and apply Proposition
1 to U = X0, V = Z0. This yields

fZ(z) = fZ0 (z + d t) =
1

(z + d t)2 fX0

(
1

z + d t

)
.

7



Considering (3) which establishes the relationship between the solutions of i.v.p.’s (1) and (2),
X(t) = 1/Z(t), and applying Proposition 1 to U = Z and V = X, with Z = Z(t) and X = X(t), for
each t ≥ 0, one gets

fX(x) =
1
x2 fZ

(
1
x

)
=

1
x2

1(
1
x + d t

)2 fX0

 1
1
x + d t

 .
Since t ≥ 0 is arbitrary, this expression represents the 1-p.d.f. of the solution s.p. X(t) of the149

i.v.p. (1)150

f1(x, t) =
1

(1 + d t x)2 fX0

( x
1 + d t x

)
, t ≥ 0. (12)

Although the domains of the 1-p.d.f.’s that will be determined throughout this paper could be151

specified in the same way they were done in [16], now we will omit them because their specifica-152

tion become cumbersome. For instance, in the context of the current Case II.1, ifD(X0) denotes153

the domain of the r.v. X0, then the domain of the 1-p.d.f. (12) can be determined by imposing154

that155 x
1 + d t x

∈ D(X0) . (13)

We illustrate this issue in the following example, where the domain of the 1-p.d.f. will be com-156

pletely determined.157

Example 1. Let us assume that d = −1 and X0 has an exponential distribution of parameter λ =158

1, i.e., X0 ∼ Exp(1). Then, in accordance with (12) the 1-p.d.f. to the solution s.p. X(t) = X(t, ω),159

ω ∈ Ω, of i.v.p. (1) is given by160

f1(x, t) =
1

(1 − tx)2 e−
x

1−tx , t > 0, 0 < x <
1
t
. (14)

For the full specification of the domain, observe that as X0 ∼ Exp(1) and t > 0 then, in accor-161

dance with (13) we impose162

x
1 − tx

> 0⇐⇒ x <
1
t
.

It is easy to check that
∫ 1/t

0 f1(t, x)dx = 1. In Figure 1, f1(x, t) is represented for different values
of t. Important statistical information associated to the solution s.p. X(t) can be determined from
its 1-p.d.f., such as, the mean, E[X(t)], and the variance, V[X(t)]. Taking into account (14), the
expectation is given by

E[X(t)] =

∫ ∞

−∞

x f1(x, t)dx =

∫ 1/t

0

x
(1 − tx)2 e−

x
1−tx dx =

t − e
1
t

∫ ∞
1/t e−ξ/ξ dξ

t2 .

In order to determine V[X(t)], first we need to compute

E
[
(X(t))2

]
=

∫ 1/t

0
x2 f1(x, t)dx =

t(1 + t) − e
1
t (1 + 2t)

∫ ∞
1/t e−ξ/ξ dξ

t4 .

Therefore

V [X(t)] = E
[
(X(t))2

]
− (E [X(t)])2 =

−e2/t
(∫ ∞

1/t e−ξ/ξ dξ
)2
− e1/t

∫ ∞
1/t e−ξ/ξ dξ + t

t4 .

8



Plots for the mean and the variance are shown in Figure 2. Notice that these plots are in agree-163

ment with the plot of the 1-p.d.f. f1(x, t). Indeed, as the mean tends to stabilize as t increases,164

hence the variance goes to zero and the shape of f1(x, t) becomes leptokurtic.

Figure 1: Plot of the 1-p.d.f. f1(x, t) given by (14) in the Example 1 at different values of t = {0, 0.25, 0.5, 0.75, . . . , 2}
(corresponding to the solid lines) with X0 ∼ Exp (λ = 1) and d = −1.

0 1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0
E@XHtLD

0 1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0
V@XHtLD

Figure 2: Plot of the expectation (left) and the variance (right) of the solution s.p. in the Example 1.

165

3.2. Case II.2: D is a random variable166

Let us assume that nonlinear coefficient D is a r.v. with p.d.f. fD(d) and the initial condition167

is a deterministic constant x0. In agreement with Table 1 and (4), it corresponds to i.v.p. (2)168

Ż(t) = B ,
Z(0) = z0 ,

}
z0 =

1
x0
, B = −D . (15)

For t > 0 fixed, according to [16, Eq. (64)] the p.d.f. of the solution s.p. of i.v.p. (15) evaluated
at that t is given by

fZ(z) =
1
t

fB

( z − z0

t

)
.

9



Next, we represent the above expression in terms of the p.d.f. of r.v. D taking into account (15)169

and Proposition 2 to U = D, V = B170

fZ(z) =
1
t

fB

(
z − 1/x0

t

)
=

1
t

fD

(
1 − zx0

x0t

)
. (16)

Finally, taking into account that X(t) = 1/Z(t), applying (16) and Proposition 1 to U = Z and
V = X, with Z = Z(t) and X = X(t), for each t > 0, one follows

fX(x) =
1
x2 fZ

(
1
x

)
=

1
x2

1
t

fD

1 − 1
x x0

x0t

 =
1

x2 t
fD

(
x − x0

xx0t

)
.

Therefore, in this case the 1-p.d.f. of the solution s.p. X(t) of the i.v.p. (1) is given by171

f1(x, t) =
1

x2 t
fD

(
x − x0

xx0t

)
, t > 0 . (17)

If t = 0, X(0) = x0 and then

f1(x, 0) = δ(x − x0), −∞ < x < ∞,

where δ(·) denotes the Dirac delta function.172

Example 2. Let us take x0 = 1 and D a standard gaussian r.v., D ∼ N(0; 1). According to (17)173

the 1-p.d.f. to the solution s.p. X(t), of i.v.p. (1) is given by174

f1(x, t) =
e−

(x−1)2

2t2 x2

√
2πtx2

. (18)

In Figure 3 a plot of f1(x, t) is shown. One observes that the variability of the solution decreases175

as t goes on and the 1-p.d.f. concentrates about x = 0.176

3.3. Case II.3: (X0,D) is a random vector177

In this context, we assume that both, the initial condition X0, and the nonlinear coefficient D,178

are r.v.’s with joint p.d.f. fX0,D(x0, d). As it is listed in Table 1 and considering the identification179

(4), this case corresponds to the following specialization of i.v.p. (2)180

Ż(t) = B ,
Z(0) = Z0 ,

}
Z0 =

1
X0
, B = −D. (19)

Let us fix t > 0, according to [16, Eq. (74)] the p.d.f. of the solution s.p. of i.v.p. (19) evaluated181

at that t is given by182

fZ(z) =
1
t

∫
D(Z0)

fZ0,B

(
ξ,

z − ξ
t

)
dξ , (20)

where D(Z0) denotes the domain of r.v. Z0 = 1/X0. Now, we apply Proposition 3 to U1 = X0,
U2 = D, V1 = Z0 and V2 = B to express (20) in terms of the joint p.d.f. fX0,D(x0, d).

fZ(z) =
1
t

∫
D(1/X0)

1
ξ2 fX0,D

(
1
ξ
,
ξ − z

t

)
dξ .

10



Figure 3: Plot of the 1-p.d.f. f1(x, t) given by (18) in the Example 2 at different values of t = {0, 0.25, 0.5, 0.75, . . . , 2}
(corresponding to the solid lines) with x0 = 1 and D ∼ N(0; 1).

For each t > 0, by (3) X = 1/Z and, applying Proposition 1 one gets

fX(x) =
1
x2 fZ

(
1
x

)
=

1
x2 t

∫
D(1/X0)

1
ξ2 fX0,D

(
1
ξ
,

x ξ − 1
tx

)
dξ.

Therefore, in this case the 1-p.d.f. of the solution s.p. X(t) of the i.v.p. (1) is given by

f1(x, t) =
1

x2 t

∫
D(1/X0)

1
ξ2 fX0,D

(
1
ξ
,

x ξ − 1
tx

)
dξ , t > 0 .

In accordance with (5), the domain D (1/X0) can be easily computed from D (X0), which is183

assumed to be known.184

If t = 0, as X(0) = X0 the 1-p.d.f. is just the marginal p.d.f. of the joint p.d.f. fX0,D(x0, d),
hence

f1(x, 0) =

∫
D(D)

fX0,D(x0, d) dd.

Example 3. Let us assume that the joint p.d.f. of the random vector (X0,D) is given by185

fX0,D(x0, d) =


1
4

+
1
4

(x0)3d −
1
4

x0d3 if −1 ≤ x0 ≤ 1, −1 ≤ d ≤ 1,

0 otherwise.

(21)

A plot of f1(x, t) is depicted in Figure 4. From it, we see that for each t the probability of the186

solution s.p. X(t) distributes symmetrically about x = 0 becoming leptokurtic as t increases.187

4. Solving the Cases III.1–III.7188

This section is devoted to provide explicit formulas for the 1-p.d.f., f1(x, t), of the solution189

s.p. of i.v.p. (1) in each one of the Cases III.1–III.7 listed in Table 1. Notice that in contrast to190

11



Figure 4: Plot of the 1-p.d.f. f1(x, t) in the Example 3 at different values of t = {0, 0.25, 0.5, 0.75, . . . , 2} (corresponding
to the solid lines) in the case that (X0,D) has the joint p.d.f. given by (21).

what was assumed when analyzing Cases II.1–II.3, throughout this section the linear coefficient191

C can be either deterministic and different from zero, or a r.v. As it was indicated previously, in192

the first case it will be denoted by c and in the latter as C.193

4.1. Case III.1: X0 is a random variable194

Let fX0 (x0) be the p.d.f. of r.v. X0, c ∈ R − {0} and d ∈ R. According to Table 1 and (4), it195

corresponds to the following particular case of i.v.p. (2)196

Ż(t) = aZ(t) + b ,
Z(0) = Z0 ,

}
Z0 =

1
X0
, b = −d, a = −c . (22)

Let us fix t ≥ 0, then by [16, Eq. (84)] the p.d.f. of the solution s.p. of i.v.p. (22) evaluated at
that t is given by

fZ(z) = e−at fZ0

(
e−at

(
z +

b
a

)
−

b
a

)
.

Now, taking into account (22) and Proposition 1 to U = X0, V = Z0 we can express fZ(z) as
follows

fZ(z) =
ect(

ect
(
z + d

c

)
− d

c

)2 fX0

 1

ect
(
z + d

c

)
− d

c

 =
c2ect

(ect(zc + d) − d)2 fX0

(
c

ect(zc + d) − d

)
.

Following the same argument exhibited in the previous cases, for each t ≥ 0, this p.d.f. can be
expressed as a function of the r.v. X = 1/Z by applying Proposition 1, this yields

fX(x) =
1
x2 fZ

(
1
x

)
=

c2ect

(ect(c + dx) − dx)2 fX0

(
cx

ect(c + dx) − dx

)
.

Summarizing, the 1-p.d.f. of the solution s.p. X(t) of the i.v.p. (1) is given by197

f1(x, t) =
c2ect

(ect(c + dx) − dx)2 fX0

(
cx

ect(c + dx) − dx

)
, t ≥ 0 . (23)
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Example 4. Let c = 1/2, d = −1 and X0 a standard gaussian r.v., X0 ∼ N(0; 1) be the input198

parameters of i.v.p. (1). According to (23), the 1-p.d.f. to the solution s.p. X(t) to this i.v.p. is199

given by200

f1(x, t) =
e

t
2−

x2

8(et/2( 1
2 −x)+x)2

4
√

2π
(
et/2

(
1
2 − x

)
+ x

)2 . (24)

Figure 5 shows the plot of f1(x, t). From this representation, one observes that the variability of201

the 1-p.d.f. reduces as t increases.

Figure 5: Plot of the 1-p.d.f. f1(x, t) given by (24) in the Example 4 at different values of t = {0, 0.25, 0.5, 0.75, . . . , 2}
(corresponding to the solid lines) with c = 1/2, d = −1 and X0 ∼ N(0; 1).

202

4.2. Case III.2: D is a random variable203

Let fD(d) be the p.d.f. of r.v. D and let us assume that both the initial condition x0 and the204

linear coefficient c are deterministic constants. Taking into account Table 1 and (4), this case205

corresponds to the following particularization of i.v.p. (2)206

Ż(t) = aZ(t) + B ,
Z(0) = z0 ,

}
z0 =

1
x0
, B = −D, a = −c . (25)

For each t > 0 fixed, by applying [16, Eq. (92)] the following expression for the p.d.f. of the
solution s.p. of i.v.p. (25) evaluated at that t is obtained

fZ(z) =
a

eat − 1
fB

(
a(z − z0eat)

eat − 1

)
.

This p.d.f. can be expressed in terms of the data x0, D and c by considering (25), and applying
Proposition 2 to U = D and V = B, this yields

fZ(z) =
c

1 − e−ct fD

(
−c(1 − zx0ect)

x0(1 − ect)

)
.

Finally, taking into account that X = 1/Z and applying Proposition 1, the 1-p.d.f. of the solution207

s.p. X(t) of the i.v.p. (1) is obtained as follows208

f1(x, t) =
c

x2(1 − e−ct)
fD

(
−c(x − x0ect)
xx0(1 − ect)

)
, t > 0 . (26)
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For t = 0, as X(0) = x0 one gets209

f1(x, 0) = δ(x − x0), −∞ < x < ∞. (27)

Example 5. Let us consider the i.v.p. (1) with x0 = 1, c = −1 and X0 a gamma r.v. of parameters210

α = 4 and β = 2, X0 ∼ Ga(4; 2). In Figure 5, the 1-p.d.f. of the solution s.p. given by (26) is211

plotted. One observes that the probability density concentrates about x = 0 as t increases.

Figure 6: Plot of the 1-p.d.f. f1(x, t) given by (26) in the Example 5 at different values of t = {0, 0.25, 0.5, 0.75, . . . , 2}
(corresponding to the solid lines) with x0 = 1, c = −1 and D ∼ Ga(4; 2).

212

4.3. Case III.3: C is a random variable213

So far the computation of the 1-p.d.f. of the solution s.p. of the nonlinear i.v.p. (1) has relied214

on the application of the results previously established for the linear i.v.p. (2) by some of the215

authors in [16]. In fact, notice that we have taken advantage of the explicit expression of the216

1-p.d.f. of the solution of i.v.p. (2) in each one of the Cases II.1-II.3 and Cases III.1-III.2 to217

obtain a closed expression of the 1-p.d.f. in the corresponding cases to i.v.p. (1). Unfortunately,218

this strategy is not feasible when the single random input in (1) is the coefficient C because of219

the complexity of the approximate expression to the 1-p.d.f. of the underlying linear i.v.p. (2)220

(see Case III.3 of [16]). To overcome this drawback, we will apply the same strategy we used in221

the Case III.3 of [16], but directly on the closed expression of the solution s.p. of the nonlinear222

i.v.p. (1), which in the current case is given by223

X(t) =
Cx0eCt

C + dx0 − dx0eCt . (28)

In order to apply R.V.T. technique, for each t ≥ 0, first from (28) we define the mapping r(C) =224

(Cx0eCt)/(C + dx0 − dx0eCt). As it is not possible to isolate the r.v. C to determine the inverse225

mapping, say s of r, we approximate s using the Lagrange-Bürmann theorem which permits226

to calculate the inverse mapping of an analytic function. This approximation comes from the227

truncation of an infinite series (see [16, Th.19]). As can be checked in detail in the analysis of228
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the Case III.1 studied in [16], the 1-p.d.f. of the solution s.p. (28) can be represented as follows229

f1(x, t) =

k∑
j=1

fC
(
s j,N j

) ∣∣∣∣∣∣ds j,N j (x)
dx

∣∣∣∣∣∣ , (29)

where fC(c) represents the p.d.f. of r.v. C, k denotes the number of subintervals in which the230

domain of r.v. C must be split to guarantee that the mapping r is monotone and s j,N j is the231

approximation of the inverse mapping s on the subinterval j, using truncation of order N j, 1 ≤232

j ≤ k.233

Example 6. Let us assume that x0 = 1, d = 1 and C ∼ Be(α = 2; β = 3). In Figure 7, we have234

plotted the 1-p.d.f. of the solution s.p. of i.v.p. (1) using Lagrange-Bürmann theorem and (29)235

for different values of t. To carry out these computations the domain of the r.v. C has been split236

into k = 1 piece. We observe that the variance of the solution s.p. X(t) increases as t goes on.

2.0 2.5
x

5

10

15

f1(x,t)

t=0.4

t=0.3

t=0.2

t=0.1

Figure 7: Plot of the 1-p.d.f. f1(x, t) in the Example 6 at different values of t = {0.1, 0.2, 0.3, 0.4} with x0 = 1, d = 1 and
C ∼ Be(α = 2; β = 3).

237

4.4. Case III.4: (X0,D) is a random vector238

Now, the initial condition X0 and the nonlinear coefficient D are assumed to be r.v.’s whose239

joint p.d.f. is denoted by fX0,D(x0, d), whereas the parameter c is deterministic. In agreement to240

Table 1 and (4), this corresponds to the following particular case of i.v.p. (2)241

Ż(t) = aZ(t) + B ,
Z(0) = Z0 ,

}
Z0 =

1
X0
, B = −D, a = −c . (30)

Let t > 0 be fixed, then applying [16, Eq. (110)] we obtain the p.d.f. of the solution s.p. of i.v.p.
(30) evaluated at that t

fZ(z) =

∫
D(Z1)

fZ0,B

(
ξe−at,

a(z − ξ)
eat − 1

)
ae−at

eat − 1
dξ =

∫
D(Z1)

fZ0,B

(
ξect,

−c(z − ξ)
e−ct − 1

)
cect

1 − e−ct dξ ,
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where Z1 = eatZ0. We represent fZ(z) in terms of (X0,D) taking into account (30) and applying
Proposition 3 to U1 = X0, U2 = D, V1 = Z0 and V2 = B

fZ(z) =
c

ect − 1

∫
D(Z1)

fX0,D

(
1
ξect ,

c(z − ξ)
e−ct − 1

)
1
ξ2 dξ .

By (3), X(t) = 1/Z(t) for each t > 0, then denoting X = X(t) and Z = Z(t) the application of
Proposition 1 yields

fX(x) =
1
x2 fZ

(
1
x

)
=

1
x2

c
ect − 1

∫
D(Z1)

fX0,D

(
1
ξect ,

c(1 − ξx)
x(e−ct − 1)

)
1
ξ2 dξ .

Finally, taking into account that Z1 = eatZ0 = 1/(ectX0), the 1-p.d.f. of the solution s.p. X(t) of
the i.v.p. (1) is given by

f1(x, t) =
c

x2(ect − 1)

∫
D

(
1

ect X0

) fX0,D

(
1
ξect ,

c(1 − ξx)
x(e−ct − 1)

)
1
ξ2 dξ, t > 0.

If t = 0, as X(0) = X0, the 1-p.d.f. of X(t) is the D-marginal p.d.f. of fX0,D(x0, d)

f1(x, 0) =

∫
D(D)

fX0,D(x0, d) dd.

Example 7. Let us assume that c = −1 and the joint p.d.f. of the random vector (X0,D) is a242

bivariate gaussian distribution with mean vector µ and variance-covariance matrix Σ given by243

µ = (µX0 , µD) = (1, 0), Σ =

(
σ2

X0
ρX0,DσX0σD

ρX0,DσX0σD σ2
D

)
, σX0 = σD = 1/10, ρX0,D = 1/2.

(31)
Figure 8 shows a piece of surface which defines the 1-p.d.f. As in previous cases, f1(x, t) has less244

variability as t increases.245

4.5. Case III.5: (X0,C) is a random vector246

Let us denote by fX0,C(x0, c) the joint p.d.f. of random vector (X0,C) and let us assume that247

the parameter d is a deterministic constant. In this context according to Table 1 and (4), the i.v.p.248

(2) writes249

Ż(t) = AZ(t) + b ,
Z(0) = Z0 ,

}
Z0 =

1
X0
, b = −d, A = −C. (32)

Let us fix t ≥ 0, then applying [16, Eq. (126)] the p.d.f. of the solution s.p. of i.v.p. (32)
evaluated at that t can be written as

fZ(z) =

∫
D(Z2)

|b|
ξ2 e

b
ξ t fZ0,A

(
ze

b
ξ t

+ ξ
(
1 − e

b
ξ t
)
,
−b
ξ

)
dξ =

∫
D(Z2)

d
ξ2 e−

d
ξ t fZ0,A

(
ze−

d
ξ t

+ ξ
(
1 − e−

d
ξ t
)
,

d
ξ

)
dξ,

where Z2 = −b/A. fZ(z) can be represented in terms of (X0,C) by applying Proposition 3 to
U1 = X0, U2 = C, V1 = Z0 and V2 = A as follows

fZ(z) =

∫
D(Z2)

d
ξ2 e−

d
ξ t fX0,C

 1

ze−
d
ξ t

+ ξ
(
1 − e−

d
ξ t
) ,−d

ξ

 1(
ze−

d
ξ t

+ ξ
(
1 − e−

d
ξ t
))2 dξ.
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Figure 8: Plot of the 1-p.d.f. f1(x, t) in the Example 7 at different values of t = {0, 0.25, 0.5, 0.75, . . . , 2} (corresponding
to the solid lines) in the case that c = −1 and X0 and D are correlated r.v.’s according to a bivariate gaussian distribution
with mean vector µ and variance-covariance matrix Σ given by (31).

Taking into account that X(t) = 1/Z(t) for each t ≥ 0, fZ(z) can be represented in terms of X
applying Proposition 1

fX(x) =
1
x2 fZ

(
1
x

)
=

∫
D(Z2)

d
ξ2 e−

d
ξ t fX0,C

 x

e−
d
ξ t

+ ξx
(
1 − e−

d
ξ t
) ,−d

ξ

 1(
e−

d
ξ t

+ ξx
(
1 − e−

d
ξ t
))2 dξ.

As Z2 = −b/A = −d/C, the domain of the above integral can be expressed in terms of the data.250

Hence, the 1-pd.f. of the solution s.p. X(t) of the i.v.p. (1) is given by251

f1(x, t) =

∫
D(−d/C)

d
ξ2 e−

d
ξ t fX0,C

 x

e−
d
ξ t

+ ξx
(
1 − e−

d
ξ t
) ,−d

ξ

 1(
e−

d
ξ t

+ ξx
(
1 − e−

d
ξ t
))2 dξ. (33)

Example 8. Let us take d = 1 and (X0,C) ∼ N(µ;Σ), where µ and Σ are defined by (31). In252

Figure 9 a plot of the 1-p.d.f. f1(x, t) given by (33) is shown. From it, we observe that the variance253

of the solution s.p. of the corresponding i.v.p. (1) increases as t does.254

4.6. Case III.6: (D,C) is a random vector255

Throughout this section, fD,C(d, c) will denote the p.d.f. of random vector (D,C) and the256

initial condition will be assumed to be a deterministic constant x0. Notice that, in accordance257

with Table 1 and (4), now we are dealing with the following specialization of i.v.p. (2)258

Ż(t) = AZ(t) + B ,
Z(0) = z0 ,

}
z0 =

1
x0
, B = −D, A = −C . (34)
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Figure 9: Plot of the 1-p.d.f. f1(x, t) in the Example 8 at different values of t = {0, 0.25, 0.5, 0.75, . . . , 2} (corresponding
to the solid lines) in the case that d = 1 and X0 and C are correlated r.v.’s according to a bivariate gaussian distribution
with mean vector µ and variance-covariance matrix Σ given by (31).

Let t > 0 be fixed, then applying [16, Eq. (140)] the p.d.f. of the solution s.p. of i.v.p. (34)
evaluated at that t is given by

fZ(z) =
z0

t2

∫
D(Z2)

fB,A

(
z0(z − ξ)

t
ln(ξ) − ln(z0)

ξ − z0
,

ln(ξ) − ln(z0)
t

)
1
ξ

∣∣∣∣∣ ln(ξ) − ln(z0)
ξ − z0

∣∣∣∣∣ dξ
=

1
x0t2

∫
D(Z2)

fB,A

(
z − ξ

t
ln(ξ) + ln(x0)
ξx0 − 1

,
ln(ξ) + ln(x0)

t

)
|x0|

ξ

∣∣∣∣∣ ln(ξ) + ln(x0)
ξx0 − 1

∣∣∣∣∣ dξ,
where Z2 = z0eAt. This p.d.f. fZ(t) can be expressed in terms of the random vector (D,C) by
applying Proposition 4 to U1 = D, U2 = C, V1 = B and V2 = A,

fZ(z) =
1

x0t2

∫
D(Z2)

fD,C

(
z − ξ

t
ln(ξ) + ln(x0)

1 − ξx0
,−

ln(ξ) + ln(x0)
t

)
|x0|

ξ

∣∣∣∣∣ ln(ξ) + ln(x0)
ξx0 − 1

∣∣∣∣∣ dξ.
Now, by applying Proposition 1 to X = 1/Z, fZ(z) is represented in terms of X

fX(x) =
1
x2 fZ

(
1
x

)
=

1
x2

1
x0t2

∫
D(Z2)

fD,C

(
1 − ξx

xt
ln(ξ) + ln(x0)

1 − ξx0
,−

ln(ξ) + ln(x0)
t

)
|x0|

ξ

∣∣∣∣∣ ln(ξ) + ln(x0)
ξx0 − 1

∣∣∣∣∣ dξ.
As Z2 = z0eAt = 1/(x0eCt), the 1-p.d.f. of the solution s.p. X(t) to the i.v.p. (1) is given by259

f1(x, t) =
1

x2x0t2

∫
D(1/(x0eCt))

fD,C

(
1 − ξx

xt
ln(ξ) + ln(x0)

1 − ξx0
,−

ln(ξ) + ln(x0)
t

)
|x0|

ξ

∣∣∣∣∣ ln(ξ) + ln(x0)
ξx0 − 1

∣∣∣∣∣ dξ.
(35)

If t = 0, as X(0) = x0 one gets

f1(x, 0) = δ(x − x0), −∞ < x < ∞ .
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Example 9. Let us assume that x0 = 1 and the joint p.d.f. of the random vector (D,C) is given260

by261

fD,C(d, c) =


2
3

(2 − d − c + 2dc) if 0 ≤ d ≤ 1, 0 ≤ c ≤ 1,

0 otherwise.

(36)

For the sake of clarity in the presentation, in Figure 10 the 1-p.d.f. f1(x, t) given by (35) is shown262

for different values of t. From it, one infers that the variability of the solution s.p. of the i.v.p. (1)263

tends to increases as time t goes on.
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Figure 10: Plot of the 1-p.d.f. f1(x, t) in the Example 9 at different values of t in the case that x0 = 1 and (D,C) has the
joint p.d.f. given by (36).

264

4.7. Case III.7: (X0,D,C) is a random vector265

In this last case, we deal with the i.v.p. (2) assuming that all the inputs (X0,D,C) are r.v.’s266

whose joint p.d.f. is fX0,D,C(x0, d, c). Taking into account Table 1 and (4), this corresponds to267

Ż(t) = AZ(t) + B ,
Z(0) = Z0 ,

}
Z0 =

1
X0
, B = −D, A = −C . (37)

Let t > 0 be fixed, then applying [16, Eq. (157)] the p.d.f. of the solution s.p. of i.v.p. (37)
evaluated at that t is given by

fZ(z) =

∫
D(Z3)

∫
D(Z2)

fZ0,B,A

(
−

(z − ξ − η)η
ξ

,−
η

t
ln

(
−ξ

η

)
,

1
t

ln
(
−ξ

η

))
|η|

ξ2

1
t2

∣∣∣∣∣∣ln
(
−
ξ

η

)∣∣∣∣∣∣ dξ dη ,
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where Z2 = eAtB/A and Z3 = −B/A. Now, we will express fZ(z) as a function of (X0,D,C) by268

applying Proposition 5 to U1 = X0, U2 = D, U3 = C, V1 = Z0, V2 = B and V3 = A,269

fZ(z) =

∫
D(Z3)

∫
D(Z2)

fX0,D,C

(
−

ξ

(z − ξ − η)η
,
η

t
ln

(
−
ξ

η

)
,−

1
t

ln
(
−
ξ

η

))
|η|

η2

1
(z − ξ − η)2t2

∣∣∣∣∣∣ln
(
−
ξ

η

)∣∣∣∣∣∣ dξ dη .

(38)
In order to represent (38) as a function of X, we apply Proposition 1 taking into account that
X = 1/Z

fX(x) = 1
x2 fZ

(
1
x

)
=

∫
D(Z3)

∫
D(Z2)

fX0,D,C

(
−

xξ
(1 − xξ − xη)η

,
η

t
ln

(
−
ξ

η

)
,−

1
t

ln
(
−
ξ

η

))
|η|

η2

1
(1 − xξ − xη)2t2

∣∣∣∣∣∣ln
(
−
ξ

η

)∣∣∣∣∣∣ dξ dη .

As Z2 = eAtB/A = D/(CeCt) and Z3 = −B/A = −D/C, the 1-p.d.f. of the solution s.p. X(t) to270

the i.v.p. (1) is given by271

f1(x, t) =

∫
D(−D/C)

∫
D(D/(CeCt))

fX0,D,C

(
−

xξ
(1 − xξ − xη)η

,
η

t
ln

(
−
ξ

η

)
,−

1
t

ln
(
−
ξ

η

))
|η|

η2

1
(1 − xξ − xη)2t2

∣∣∣∣∣∣ln
(
−
ξ

η

)∣∣∣∣∣∣ dξ dη .

(39)
If t = 0, as X(0) = X0, the 1-p.d.f. of X(t) is the (D,C)-marginal p.d.f. of fX0,D,C(x0, d, c)

f1(x, 0) =

∫
D(C)

∫
D(D)

fX0,D,C(x0, d, c) dd dc .

Example 10. Let us assume that the random vector (X0,D,C) has a multivariate gaussian dis-272

tribution with mean vector µ and variance-covariance matrix Σ defined as follows273

µ = (µX0 , µD, µC) = (1, 1, 1), Σ =
1
10

 4 4 4
1 4 1
1 1 2

 . (40)

Figure 11 shows the 1-p.d.f. f1(x, t) given by (39) at different values of t. From it, one observes274

that the variability of the solution s.p. of the i.v.p. (1) reduces as t increases.275

5. Conclusions276

In this paper we have shown that the Random Variable Transformation method together with277

linearization techniques can be used successfully to obtain explicit formulas for the first probabil-278

ity density function of the solution stochastic process of nonlinear random differential equations.279

The study has been conducted through the homogeneous Riccati differential equation although280

it opens the possibility to be extended to other significant types of nonlinear continuous models.281

The usefulness of applying both techniques to deal with these class of problems has been shown282

through a number of illustrative examples.283
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Figure 11: Plot of the 1-p.d.f. f1(x, t) in the Example 10 at different values of t in the case that (X0,D,C) has a trivariate
gaussian distribution with mean vector µ and variance-covariance matrix Σ given by (40).
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