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ABSTRACT 

Physico-chemical and mechanical properties of hyaluronic acid (HA)/carbon nanotubes 

(CNTs) nanohybrids have been correlated with the proportion of inorganic nanophase 

and the preparation procedure. The mass fraction of -COOH functionalized CNTs was 

varied from 0 to 0.05. Hyaluronic acid was crosslinked with divinyl sulfone (DVS) to 

improve its stability in aqueous media and allow its handling as a hydrogel. A series of 

samples was dried by lyophilization to obtain porous scaffolds whereas another was 

room dried allowing the collapse of the hybrid structures. The porosity of the former, 

together with the tighter packing of HA chains results in a lower water absorption and 

lower mechanical properties in the swollen state, because of the easier water diffusion. 

The presence of even a small amount of CNTs (mass fraction of 0.05) limits even more 

the swelling of the matrix, owing probably to hybrid interactions. These nanohybrids do 

not seem to degrade significantly during 14 days in water or enzymatic medium. 
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1. Introduction 

 

Hyaluronic acid (HA) is one of the most commonly proposed hydrogels for tissue 

engineering, not only for being present in the organism but also because of its unique 

properties. HA is an abundant glycosaminoglycan distributed throughout the 

extracellular matrix (ECM) of many tissues and organs such as lungs, kidneys or brain 

[1]. HA has a structural function, but it also works as a signaling molecule, and takes 

part in the embryonic development and wound healing processes [2,3]. Furthermore, it 

plays a key role in the hydration balance and provides elasticity to the tissues because of 

its highly hygroscopic character [2], viscosity and high molecular weight. HA has been 

shown to also scavenge free radicals, to cause bacteriostasis, and to assist in tissue 

repair [4]. Moreover, low molecular weight HA has been found to be angiogenic [5]. 

HA is commonly used in medical applications, for example in ophthalmic viscosurgery, 

in osteoarthritic treatments, or as wrinkle filler [6]. Concerning applications in the tissue 

engineering field, HA hydrogels have been modified with laminin and tested in brain 

lesions [7], where they have shown to promote neurite extension. The combination of 

HA with collagen has also been studied with suitable results for brain tissue engineering 

[8,9]. Nonetheless, HA exhibits poor mechanical properties in its natural state, it is 

water-soluble, and thus it is cleared quickly [10]. To overcome these limitations, in 

tissue engineering strategies HA has been for example cross-linked with ethyl esters or 

benzyl esters [4], such as divinyl sulfone (DVS), showing good biocompatibility [11]. 

On the other hand, carbon nanotubes (CNTs) are graphene sheets rolled into continuous 

cylinders with diameters of 1 nm approximately [12]. CNTs exhibit exceptional 

electrical and mechanical properties, and are biostable [13]. Consequently, their 

incorporation into HA hydrogels is expected to improve their mechanical properties, 



stability and conductivity. In addition, the structure and dimensions of CNTs are similar 

to some elements of the neural system, such as ion channels, signaling proteins or 

elements of the neuronal cytoskeleton, being an advantage by enhancing molecular 

interactions and consequently yielding to a better control over physiological activity and 

neural information processing [14]. For these reasons, CNTs have been proposed for 

their use in neural regeneration. For instance, CNTs combined with collagen scaffolds 

[15] enhanced the levels of neuronal markers and neural grown factors expressed by 

mesenchymal cells. In [16], a nanohybrid consisting in chondroitin sulfate and CNTs 

induced the formation of neuronal networks.  

Herein, CNTs functionalized with carboxylic groups (-COOH) have been used in 

combination with HA, due to their good dispersion in polar solvents [17] (better than 

that of non-functionalized CNTs), and their low cytotoxicity [18]. HA/CNTs 

nanohybrid scaffolds have here been obtained by freeze-drying (highly porous, due to 

the sublimation of water contained in the gels), with several proportions of CNTs. The 

spotlight of this work is set on the different role of CNTs in HA-based nanocomposites, 

attained by their processing methodology. Homologous nanohybrids obtained by 

solvent casting (bulk samples) have been produced as controls. Both series have been 

physico-chemically characterized. The effect of the production method and the fraction 

of incorporated nanotubes on the mechanical properties and stability in physiological 

conditions have been assessed. 

These scaffolds are intended to be used to induce neural regeneration in tissues of the 

central or peripheral nervous system, on the one hand because HA resembles them in 

terms of mechanical properties [19,20], and thus has been proposed for this purpose in 

several works [21-23], and on the other hand CNTs electrical conductivity makes them 



ideal for therapeutic applications at the neural tissue interface [24]. It is though beyond 

the scope of this paper to evaluate their biological development.  

 

2. Materials and methods 

 

2.1. Preparation of lyophilized HA/CNTs (L) nanohybrids 

A 5 wt % hyaluronic acid (HA; hyaluronic acid sodium salt, 1.63 MDa, obtained by 

fermentation of streptococcus equi. bacteria, 99%, Sigma) solution was obtained by 

stirring in a 0.2 M sodium hydroxide (NaOH; extrapure, Scharlau) aqueous solution 

during 24 hours. To obtain the nanohybrids, different amounts of carbon nanotubes 

(MWCNT 95 wt% 30-50 nm, 10-20 um long -COOH, Cheap Tubes Inc.) were 

previously dispersed in the NaOH solution by sonication (VWR USC300TH, 

Pennsylvania, USA) during 10 minutes at room temperature (RT) to avoid their 

aggregation. CNTs were added to the basic solutions to obtain a final mass fraction in 

the HA/CNT nanohybrid, ωCNT, of 0, 0.5, 1 and 5 wt %. 

Next, divinyl sulfone (DVS; 97%, Sigma Aldrich) was added to each hybrid solution as 

cross-linker at a ratio of 0.9 mol DVS per mol of HA monomeric units. After stirring for 

10 seconds, 10 grams of each solution were poured into a 8.5 cm-diameter Petri dish. 

The Petri dish was covered by a mesh fabric during 10 minutes, and next frozen 

overnight at -20ºC. Then, the samples were lyophilized (Telstar Lyoquest -85) at -80ºC 

during 24 hours to create porous structures due to the sublimation of water. After 

demolding, the xerogels were swollen in water for 1 hour and punched into 5 mm 

diameter samples, next washed in a 50:50 vol% water:acetone mixture for 2 days with a 

renewal at mid-time, followed by rinses in water for 3 days with renewals every 12 

hours and lyophilized again to dry them. Samples were stored under vacuum protected 



from light until use. Hereafter, this series of samples will be referred to as Lx, where L 

means lyophilized and x refers to the mass fraction of CNTs. 

 

2.2. Preparation of non- lyophilized HA/CNT (NL) nanohybrids 

An analogous procedure to that of the lyophilized hybrids series was followed. In this 

case, though, after the addition of DVS, the mixed solutions were allowed to crosslink 

in Petri dishes during 2 hours, covered with mesh fabrics. Next, they were frozen 

overnight at -20ºC. Then, the samples were thawed to room temperature and swollen 

during one hour. Finally, the nanohybrids were punched into 5 mm diameter samples 

and the previously described washing procedure was followed. Samples were stored 

under vacuum protected from light until use. Hereafter, this series of samples will be 

referred to as NLx, where NL means non-lyophilized and x refers to the mass fraction of 

CNTs. 

 

2.3. Scanning Electron Microscopy (SEM) 

The influence of CNTs at different mass fractions in the materials morphology was 

assessed in a JSM-5410 scanning electron microscope (SEM; JEOL. Ltd., Tokyo, 

Japan), at 15 kW of acceleration voltage and 15 mm of working distance. The samples 

were fractured in liquid nitrogen to obtain cross-section images and sputter-coated with 

gold under vacuum before observation. 

 

2.4. Determination of Equilibrium Water Content (EWC) 

Swelling of the nanohybrid materials was quantified at equilibrium, by weighing the dry 

samples, m, and after equilibration at 37ºC in two different ambients: at 97% relative 



humidity (RH), and immersed in water. The first swelling medium was prepared with a 

potassium nitrate (Scharlab) supersaturated solution in a closed moisture chamber [25]. 

The samples were withdrawn from the moisture chamber after different times and 

immediately weighed, until no weight change was further observed; this value was 

taken for each nanohybrid as the equilibrium value, mw. The equilibrium water content, 

EWC, was calculated as:  𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑚𝑚𝑤𝑤−𝑚𝑚
𝑚𝑚

. Three replicates per composition were 

measured. A Mettler-Toledo XS105DU balance (Columbus, OH, USA) was used for 

this purpose. 

 

2.5. Determination of the density and porosity of the nanohybrid materials 

A Mettler AX205 (Mettler Toledo Inc., Columbus, OH, USA) balance, equipped with a 

Mettler ME 33360 density accessory kit was used to determine the density and porosity 

of dry samples and analogous series previously equilibrated in water. N-octane (Sigma 

Aldrich, 98% purity, n-octane= 0.703 gcm-3), which does not swell the nanohybrids, 

was used to make these quantifications. Three replicates per composition and 

conditioning were measured. The samples were weighed in air, m, after injection of n-

octane in their pores with the help of vacuum, mi, and finally with their pores previously 

filled and the scaffold immersed in the liquid, ml. The density, ρ, was calculated as the 

mass of the sample in air divided by the volume occupied by the nanohybrid, V, 

obtained by substracting the pores volume, Vpores, from the apparent volume 

(geometrical volume of the sample), Vap: 

 

The porosity, π, was next obtained as the pores volume fraction: 

 

ρ =
m
V
=

m
Vap −Vpores

=
m

mi − ml

ρl

−
mi − m
ρl

=
m

m− ml

ρl



 

 

2.5. Compressive tests 

Compressive mechanical tests were performed in a Seiko TMA/SS6600 dilatometer 

(Seiko Instruments Inc, Chiba, Japan) in water at 37ºC, with the samples previously 

swollen in water, to simulate physiological conditions. A steel rod of 3 mm of diameter 

was used for this purpose. Five replicates per composition were tested, from 0 to 1500 

mN at 100 mN/min. The compressive elastic modulus, E, was obtained as the slope of 

the stress-strain curves in the initial linear region. 

 

2.6. Degradation/stability assays 

In order to investigate the enzymatic degradation process of HA, as well as the effect of 

CNTs on it, HA lyophilized (L) and non-lyophilized samples (NL) and nanohybrids 

with 0.5 wt % in carbon nanotubes (L0.5 and NL0.5) were subjected to degradation, 8 

replicates per time point. For that purpose, the samples were immersed in an aqueous 

solution of bovine testicular hyaluronidase (BTH, Type IV-S, 750-3000 units/mg, 

Sigma-Aldrich) 10 u/ml at 37ºC, for 24, 72, 168 and 336 hours. The solution was not 

changed throughout the experiment. 

HA degrades naturally in human body by hyaluronidase enzymes and reactive oxygen 

species (ROS) [26]. As degradation products, hexa and tetrasaccharides are mainly 

obtained. The BTH enzyme was selected for having the same action mechanism as 

human hyaluronidase and for having been used in other works [27-30]. The 

concentration used mimics that of physiological environment.  

 
π =

Vpores

Vap

=
mi − m
mi − ml



Degradation assays are usually carried out in PBS (ionic strength of 0.165 M) because 

at its ionic strength the enzyme activity is optimized [31,32]. However, distilled water 

was used here in its place to dissolve the enzyme as a compromise choice, to avoid the 

presence of salts that gives false positives in terms of weight loss.  

In parallel, stability in mili-Q water was assessed by introducing a second set of samples 

in the same volume (2 ml/sample) of water at 37ºC (non-enzymatic degradation). 

Samples were conditioned in water before any assay. After withdrawal, the enzyme in 

each vial was thermally inactivated at 100ºC for 90 seconds (the same procedure was 

applied to those samples immersed in a non-enzymatic medium, for comparison) and 

vials were stored at 4-8ºC until use. 

The variation of the materials properties over time was evaluated by mass loss 

determination, morphology observation under SEM and compressive tests; for the first 

two experiments, samples were previously lyophilized, whereas for the latter, samples 

were conditioned in water. Mass loss was calculated at time t as , 

where m0 and mt were the initial and at time t weight of the sample, respectively.  

 

2.7. Statistics 

All the experimental data are given as mean±standard deviation. Statistical assessment 

of significant variance was performed through a one-way ANOVA with the 

Statgraphics Centurion XVI.II software (Statistical Graphics Corp., Princeton, NJ). 

Statistical tests were performed at 95% significance level (p-value < 0.05). Differences 

are statistically significant unless otherwise stated. 

  

  
mass losst =

m0 − mt

m0



 

3. Results and discussion 

 

3.1. Morphology of the nanohybrids 

The samples acquired an increasingly darker blackish tone (Figure 1) as the fraction of 

CNTs increased. After drying, the gels became rigid (vitreous), and pure HA, which 

was transparent as a gel, became white.  

Figure 1 also shows the surface and section SEM images of the lyophilized HA/CNTs 

nanohybrids series. The L-samples show a microporous honeycomb structure, attributed 

to the formation of water crystals upon freezing and their subsequent sublimation during 

the lyophilization step. On the L0 surface and transversal section (images A and E), 

uniform pore sizes were observed, with diameter of 152.1±22.1 µm. Evidence of CNTs 

aggregates was not found in any case; in all nanohybrids an interconnected honeycomb-

type porous structure (typical of lyophilized hydrogels) was observed. This structure, 

though, seems to be slightly modified by the presence of CNTs: the average size of the 

pores increases up to around 340 µm and their number decreases, especially in the 

L0.05 nanohybrids (pore diameters are 259.9±157.4 for L0.005, 285.7±63.2 for L0.01 

and 341.5±46.1 for L0.05). This could be due to the difficulty in obtaining completely 

homogeneous aqueous solutions with this CNTs fraction, and partial phase separation, 

yielding to larger water domains that sublimate resulting in pores. These results are in 

good agreement with those obtained in [33] where a low CNTs concentration (2 wt%) 

opens the structure giving rise to large pores.  

As for the non-lyophilized samples (images I-P), the SEM micrographies show non-

porous surfaces, wrinkled and folded due to the collapse of highly hydrated structures. 

For the highest concentration of CNTs, randomly dispersed bulges with an average size 



of 30 µm were observed (highlighted by a dotted line), which might be aggregations of 

CNTs. A similar finding was reported in [34]: HA nanohybrids with mass fractions of 

silica up to 0.05 display a particulate-HA matrix morphology, with silica aggregates 

more or less homogeneously distributed throughout the organic matrix, that 

progressively disappear at higher silica mass fractions to give a fine continuous 

interpenetrated silica network. 

The dependence of the density of L and NL nanohybrids on the mass fraction of CNTs 

is shown in Figure 2 (A). This Figure sheds some light on the interaction between HA 

and CNTs at varying concentrations. In the dry state, the density of L samples was 

expected to be higher than those of NL samples, according to the hypothesis that 

lyophilization yields a denser HA network, with intra and intermolecular interactions, 

and pores of larger sizes. However, the density was somewhat lower at low CNTs 

concentrations (up to 1%) and non-statistically significant differences could be found. 

This could be attributed to the discrepancy in the crosslinking times: NL samples were 

allowed to crosslink for 2 h instead of 10 min and it seems that at low ωCNT the 

crosslinking through DVS that occurs as the solution dries during this extra time is more 

effective than the hydrogen bonds between HA units (inter and intramolecular ones) 

promoted by lyophilization. This does not happen at higher ωCNT, because CNTs impede 

such drying and molecules are less likely to meet and crosslink, and so the L 

homologous hybrids get denser. Lyophilization allows a more effective elimination of 

water and vitrification of HA, and are thus the data for the L samples those that reveal 

the effect of CNTs increasing its density. 

These results can be compared with those obtained in [34] for non-lyophilized HA 

hybrids with SiO2 nanoparticles, where the density of HA increased from 1.43 g/ml to 

1.52 g/ml with 5% SiO2. Herein, the density increases provided that samples are dried 



by lyophilization, but not the other way. Maybe the drying process, which consisted 

there in a long curing not disturbed by freezing, is behind such tighter packing.  

The scaffolds’ porosity is a key parameter in determining their suitability for the 

intended application, as it affects different processes such as nutrients diffusion, 

vascularization or cells colonization. The porosity of dry and swollen samples is 

presented in Figure 2B and C. It is high for lyophilized materials (~ 95%) when dry, and 

decreases as the samples swell, mainly for those with low ωCNT, which have less 

impediments to swell or those with high ωCNT (0.05), which lodge more water because 

of greater availability of -COOH groups from CNTs. Upon swelling, the diameter of 

pores is reduced by water opening and stretching the polymeric network. For non-

lyophilized ones, the porosity does not reach 0 (~ 20%) in either state, probably due to 

the folds observed in the SEM micrographies (Figure 1 I-P), which play as voids and 

hold water.  

 

3.2. Modulation of HA swelling by the inclusion of CNTs 

The influence of CNTs on the HA-network’s capacity to swell was followed by 

equilibrating the weight of nanohybrids immersed in liquid water and in a water vapor 

ambient of 97% relative humidity. Figure 3 represents the equilibrium water content 

(EWC) of the samples swollen in both media. To better analyze the effect of the 

inclusion of inorganic particles, the incorporated water was also referred to the HA mass 

(in place of the nanohybrid mass), assuming that only HA contributed to the sorption, 

independently of the CNTs content, , ωHA being the HA mass 

fraction in each nanohybrid. The values obtained can also be compared with an ideal 

EWC calculated as , where EWCHA is the EWC of pure HA. 

 
EWC' =

mw − m
mHA

=
EWC
ωHA

 EWCid = EWCHA ⋅ωHA



As expected, EWC in a vapor ambient was much lower (0.1 to 0.55 times its dry weight 

depending on the CNTs mass fraction) than in liquid water (35 to 55-fold) because only 

water molecules establishing hydrogen bonds with the polymer chains are computed in 

the former, whereas in the latter large volumes of free water can also be lodged in the 

HA matrix as it expands, in addition to the water lodged in the scaffold’s pores of 

lyophilized samples. Water can indeed be found in hydrogels as one of three types: 

bound water, i.e., that ascribed to those water molecules strongly interacting through 

hydrophilic groups of the polymer, free water, which refers to bulk domains lodged in 

the gel network (and in large pores obtained by lyophilization) that do not take part in 

hydrogen bonds with polymer molecules, and semi-bound water, with intermediate 

properties between those of bound and free water [35]. Free water can be found when 

samples are immersed in water but not equilibrated in a humid atmosphere. 

As for the drying effect, lyophilized materials swelled less than non-lyophilized ones in 

a humid ambient (B and D). This result was expected since freeze-drying packs the HA 

polymer chains, favoring irreversible hydrogen bonds between them, thus hindering the 

water diffusion through the material. In contrast, the absence of such extra interactions 

in non-lyophilized materials allows the easier diffusion of water, and hence a greater 

EWC. As far as the role of CNTs is concerned, for 97% RH one can compare their 

influence on the EWC depending on the drying process: the presence of even a small 

fraction of CNTs elicits a decrease on the swelling capacity. The EWC’ values changed 

with the CNTs fraction similarly as EWC, being always slightly above them, but below 

the EWCid linear behavior. This trend suggests that the presence of CNTs within the 

polymeric network modifies the hydrophilicity of HA molecules: even at very small 

amounts they constrain the swelling of the organic network. This regulation is though 

more pronounced in non-lyophilized materials: in lyophilized ones HA chains are 



packed in the drying process itself that leaves less polar groups exposed, whereas in 

non-lyophilized ones, this regulation plausibly occurs as long as CNTs carboxyl groups 

interact with HA chains through hydrogen bonds.  

When samples were immersed in liquid water those non-lyophilized showed, though, a 

different pattern: the inclusion of CNTs enabled the materials to swell more. This effect 

was previously observed in [34] for non-lyophilized nanohybrids with SiO2 particles, 

and was attributed to a changing hydrophilicity of the HA network when in interaction 

with inorganic ‘defects’, together with a plausible contribution of the inorganic species 

to the overall hydrophilicity. Lyophilization forces the packaging and interaction of HA 

chains in spite of the presence of CNTs, which will end up entrapped, so both will be 

less available to interact with water and differences between samples are not herein 

statistically significant. 

 

3.5. Improvement of mechanical properties 

Figure 4 (A and B) shows the stress-strain curves from the compression tests of some 

samples as examples and the elastic modulus obtained from the initial linear region of 

such curves for each CNTs content and treatment. For lyophilized plasticized 

(equilibrated in water) samples, an elastic modulus around 30 kPa was obtained and no 

influence of the CNTs was observed. Nonetheless, non-lyophilized materials reached 

higher values, between 135 and 235 kPa. These differences are due to the porous 

structure of the L-samples, so they have less water retained within the matrix than NL 

ones. Moreover, the porous structure allows the water extrusion more easily through the 

pores than from the bulk material of the NL-samples, i.e., because of its 

incompressibility, water retained in the material plays an important role on the resulting 

elastic modulus.  



 
In contrast, the presence of CNTs seemed to slightly affect the elastic modulus in NL-

samples, probably due to the fact that CNTs, disconnected at low concentrations, are 

only able to reinforce the polymeric network once their concentration is high enough.  

To better analyze the effect of entrapped water on the mechanical properties, the elastic 

modulus of the samples is depicted in Figure 4C against their EWC, which had been 

quantified before the compression tests. L-samples did not show a significant variation 

of the elastic modulus with EWC, probably due to the easy extrusion of water from their 

pores, as mentioned before. The porosity is the parameter that governs the mechanical 

properties of these scaffolds. On the contrary, in NL-samples, the higher EWC the 

greater their elastic modulus; this is because of poroelasticity [36,37], which arises from 

the combination of the incompressibility of water and its hindered extrusion from the 

gelly matrix. In this series, the role of CNTs is linked to that of water: at low 

concentrations they hinder the expansion and swelling of the HA matrix and thus 

reinforce it, and at higher mass fractions they contribute to swelling and it is water 

which improves indeed mechanical properties. 

 

3.6. Improvement of stability in aqueous media 

Macroscopically, after two weeks, samples submitted to degradation tests exhibited the 

same appearance and consistence as non-degraded ones. Nonetheless, holes of some 

microns were observed for the hyaluronidase-degraded samples under SEM (Figure 5); 

these holes were more abundant in pure samples than in those with 0.5% CNTs, and 

their number and size increased with time. NL-samples did not show any evidence of 

degradation (Sup. Figure 1). 

 



In order to better analyze the evolution of properties with the degradation time, the 

weight loss (Figure 6) was also quantified. Lyophilized materials slightly lost more 

weight than non-lyophilized ones: for the lyophilized series the mass loss reached 5% in 

bare samples and 4% in those with 0.05% CNTs, whereas the non-lyophilized 

homologous samples had losses of 1.7% and 1.6%, respectively. This difference could 

be attributed to the hindered diffusion of HA fragments from the gelly non-lyophilized 

samples, in comparison with that from scaffolds with sizable pores. Weight loss occurs 

mainly during the first 150 days, and smoothes later on. Carbon nanotubes seem to 

confer more stability to the lyophilized samples against degradation; results are, though, 

not statistically significant. Non-enzymatic degradation did not result in a significant 

weight loss during the 300 days of experiment.  

 
The elastic moduli of the samples did not show significant changes with the degradation 

time up to 14 days; they kept the initial values independently of their drying process. 

The presence of hyaluronidase in the medium did not affect significantly, either, the 

mechanical properties of the samples (Sup. Figure 2).  

 

4. Conclusions 

 

The two-steps freeze-drying procedure followed herein, with a swelling in water and an 

acetone/water rinsing in between, allowed the fabrication of porous materials based on 

HA, with CNTs mass fractions up to 0.05. These scaffolds showed a highly porous 

network with interconnected pores of 100 to 300 µm in diameter, suitable for tissue 

engineering applications. Lyophilization itself forces the packing and interaction of HA 

molecules, modulating their swelling. The presence of even a small amount of CNTs 

acts in the same direction, leading to equilibrium water contents between 35 and 55 



fold. The porosity governs the mechanical properties of these scaffolds (135-235 kPa), 

whereas in non-lyophilized nanohybrids the water sorption, regulated by CNTs, 

explains the higher elastic moduli because of a poroelasticity effect. None of the 

samples showed a significant degradation after 336 hours, either in water or 

hyaluronidase-containing medium. 
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Figures  

 

Figure 1. Macroscopic image showing the nanohybrids with different CNTs mass 

fraction (above row) and SEM images of the surface (A-D; I-L) and section (E-H; M-P) 

of the lyophilized (A-H) and non-lyophilized (I-P) series. Scale bar: 300 μm. 

 

  



Figure 2. Density of lyophilized and non-lyophilized nanohybrids (A), and porosity of 

dry (B) and swollen (97% RH atmosphere) samples (C) as a function of the CNTs mass 

fraction. Differences in densities (A) are not statistically significant neither with the 

drying process nor with the composition of the samples. Variations in (B) attributed to 

the CNTs variation for samples dried likewise are not statistically significant. 

 



 

Figure 3. Water content after equilibration (EWC) of L- (A, B) and NL-samples (C, D) 

in liquid water (A, C) and in a 97% RH vapor ambient (B, D), as a function of the CNTs 

mass fraction content: referred to the dry mass of each nanohybrid (EWC) and to the 

HA mass in it (EWC’), and predicted from the EWC of HA (EWCid). Differences 

between L- samples with different CNTs mass fractions are not statistically significant 

when swollen in water (A). 

 

  



Figure 4. Stress-strain curves for L0, L0.05, NL0 and NL0.05 as example, showing the 

zone where data were fitted to a linear regression to get the elastic moduli (A). 

Compressive elastic moduli of lyophilized and non-lyophilized samples as a function of 

the CNTs mass fraction (B) and EWC (C). Differences due to variations in the CNTs 

mass fraction are not statistically significant. 

 

Figure 5. SEM surface images of HA-based lyophilized materials (A-D) without CNTs 

and (E-H) with a CNTs mass fraction of 0.005, degraded in water during 168 (A, E) and 

336 hours (B, F), and in the presence of hyaluronidase during 168 (C, G) and 336 hours 

(D, H). The dotted circles show possible areas of hydrolysis. 

 

  



Figure 6. Weight loss of lyophilized (A) and non-lyophilized (B) bare samples and 

nanohybrids with 0.05% CNTs in medium containing hyaluronidase. Pure HA samples 

degraded non-enzymatically are used as control. Non-statistically significant differences 

were found between samples prepared following the same drying procedure. 

 

 

Sup. Figure 1. SEM surface images of HA-based non-lyophilized materials (A-C) 

without CNTs and (D-F) with a CNTs mass fraction of 0.005, degraded in water during 

168 (A, D), and in the presence of hyaluronidase during 168 (B, E) and 336 hours (C, 

F). 

 

 



Sup. Figure 2. Elastic modulus for L0 and L0.005 samples at different degradation time 

points (24, 72, 168 and 336 hours) in water or hyaluronidase-containing medium.  

 

 


