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ON THE BISHOP-PHELPS-BOLLOB AS PROPERTY FOR NUMERICAL
RADIUS IN C(K) SPACES

A. AVIL ES, A. J. GUIRAO, AND J. RODIGUEZ

Dedicated to Irene

ABSTRACT. We study the Bishop-Phelps-Bollobas property for numerical radius within

the framework ofC'(K) spaces. We present several sufficient conditions on a compact
spaceK ensuring thatC'(K) has the Bishop-Phelps-Bollobas property for numerical ra-

dius. In particular, we show th&t(K') has such property whenevaf is metrizable.

1. INTRODUCTION

The Bishop-Phelps-Bollobéas property for numerical radius has been recently introduced
in [14] as a quantitative way of studying the set of operators on a Banach space that attain
their numerical radius (see below for precise definitions). Since Sims [19] raised the ques-
tion of the norm denseness of the set of numerical radius attaining operators, several results
have been obtained in this direction. Acosta initiated a systematic study of this problem in
her Ph.D. Thesis [1], followed by[[2] and joint works with Pay& 4, 5]. Prior to them, Berg
and Sims|[[6] gave a positive answer for uniformly convex spaces and Cardassi obtained
positive answers fot;, ¢y, C(K) (X compact metric spacel; (1) and uniformly smooth
spaces, se€|9, 100,111]. Note that Johnson and Wolle [15] had already shown that the set
of norm attaining operator§: C'(K) — C(L) is norm dense in the space of operators
£(C(K),C(L)), whereK andL are arbitrary compact spaces. Acosla [1] pointed out that
an operatof’: C(K) — C(K) attains its norm if and only if it attains it numerical radius.
This observation together with Johnson and Wolfe’s result led her to conclude that the set
of numerical radius attaining operators©K) is dense in2(C(K)).

Using a renorming ofy, Payal[1¥] provided an example of a Banach spdcich that
the set of numerical radius attaining operators¥is not norm dense i£(X ), answering
in the negative Sims’ question. Acosta, Aguirre and Paya [3] gave another counterexample:
X = {3 ®oo G, WhereG is Gowers’ space. Observe that these examples show that there
exist Banach spaces failing the Bishop-Phelps-Bollobas property for numerical radius.

In [14] it is shown that; andcy have the Bishop-Phelps-Bollobas property for numer-
ical radius. In fact, the proof fary can be reduced to a duality argument from the proof
for ¢1. In this paper we focus on the Banach spété<) and we discuss whether this
space has the Bishop-Phelp-Bollobas property for numerical radius. Trying to transfer the
ideas in[[14] to the” (K) case is clearly not enough.

We now summarize briefly the contents of this paper.
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In Section 2 we introduce the conceptsamimpensatiomf a regular measure and of
compact space admittiigcal compensatiofDefinition[2.1). These notions are essential
tools for our proofs and are applied to obtain a paramettrisioa of the classical Bishop-
Phelps-Bollobas theorem for functionals@k’) (Lemmd2.9). Then we show thai k)
has the Bishop-Phelps-Bollobas property for numericdiuswhenevers admits local
compensation (Theorem 2.2).

In Sectior 8 we show that every compact metric space adntigs tmmpensation. In
fact, a stronger result holds true, namely, that every camptric space admits@m-
pensation functioriDefinition[3.1). We rely on the constructive proof that then@r set
admits a compensation function (Theorem 3.6) and the fattdbmpensation functions
can be transferred to other compacta via regular averagiegators (Lemma_35). As
a consequence of Theorém]2.2, it turns out tH&k) has the Bishop-Phelps-Bollobas
property for numerical radius whenevkris metrizable.

In Sectiorf# we discuss the case of non-metrizable compatth the help of the aux-
iliary concept ofcloseness functignve present two examples of compact spaces admitting
local compensation but no compensation function (Theoefhand 4.111). We also show
that there exist compact spaces that do not admit local cogapien. We finish the paper
with some open problems, see Subsedtioh 4.3.

Terminology. By countable we mean finite or countably infinite. The first aunttable
ordinal is denoted by, . All our Banach space& are real. We write

Bx ={zeX:|z|| <1} and Sx ={ze X:|z|| =1}

The topological dual off is denoted byX* and the weak topology onX* is denoted
by w*. The evaluation of* € X* atz € X is denoted by*(x) = (z*,z) = (x,z*). We
write TI(X) = {(z,2*) € Sx x Sx«: 2*(x) = 1}. We write

mo(x) = {2* € Bx«: 2*(x) =1} and my(z,d) = {z* € Bx+: z*(z) > 1 -5}

for everyz € Bx andd > 0. By an operator otX we mean a linear continuous mapping
T: X — X. Its numerical radius is defined by

v(T) = sup{[(z”, T(2))]: (z,27) € TI(X)}.

The Banach space of all operators &nis denoted by(X). It is well known thaty(-)
is a continuous seminorm of(X). In general, there exists a constaritX) > 0 (the
numerical indeof X)) such that

n(X)||IT|| < v(T) <||T|| forall T € £(X).

For background in numerical radius (resp. index) we refefi7td8] (resp. [16]). The
Bishop-Phelps-Bollobas property we are concerned alsalgfined as:

Definition 1.1. We say that a Banach spaéé has theBishop-Phelps-Bollcds (BPB)
property for numerical radiu#f there is a functior: (0,1) — (0, 1) such that: for every
0<e<1,Te &X)withp(T) =1and(z,z*) € II(X) with (z*,T(z)) > 1 — d(e),
there existly € £(X) with v(Ty) = 1 and(zo, z) € II(X) with (x§, To(xo)) = 1 such
thatv(T — Tp) < e, ||z — zo]| < e and||z* — x| < e.

Let K be a compact space (i.e. compact Hausdorff topologicaledpad/e denote
by C(K) the Banach space of all continuous real-valued function& dlequipped with
the supremum norm). It is known tha{C(K)) = 1 and therefore/(T") = ||T| for
everyT € £(C(K)). Given anyf € C(K) andr € R, we freely use notations like
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{f<r}={te K: f(t) <r}. The dualC(K)* is identified (via Riesz’s theorem) with
the Banach spac#1(K) of all regular Borel (signed) measures Anh(equipped with the
total variation norm). We write\{*(K) = { € M(K): p > 0}. For everyt € K we
denote by, € M(K) the Dirac measure &t As usual, given any. € M(K), we write
|u|, pT andp~ to denote, respectively, the variation, positive part aegative part of:.
By a Hahn decomposition @f we mean a partitioqP, N) of K into Borel sets such that
u(B) > 0 (resp.u(B) < 0) for every Borel seB C P (resp.B C N). The support of:
is denoted byupp(u). Givenpy, ps € M(K), we writepu; < g (resp.uy L po) if gy
is absolutely continuous with respectiig (resp.u; andus are mutually singular).

2. BPBPROPERTY FOR NUMERICAL RADIUS INC'(K)

Throughout this sectioik’ is a fixed compact space. Our aim is to give a sufficient
condition ensuring thaf’(K) has the BPB property for numerical radius, namely, that
K admitslocal compensatiofsee the following definition). In Sectioh$ 3 dnd 4 we shalll
prove that’ admits local compensation whenever it is metrizable, akageéh other cases.

Definition 2.1. Let W (k) be the set of alb*-continuous function$™: K — B (k).

(i) We say thatr € M(K) is acompensatioof 1, € M(K) provided that:
e 0<v<yutandv(K) = u(K)if u(K) > 0;
o v=0If u(K) <0.
(i) We say that? € W(K) is acompensatioof F' € W(K) if G(t) is a compensa-
tion of F'(t) for everyt € K.
(i) We say thatK admitslocal compensatioif every element oV (K) admits a
compensation.

Theorem 2.2. If K admits local compensation, theti(K) has the BPB property for
numerical radius.

In order to prove Theorein 2.2 we need several lemmas. Let stspfint out that
compensations of single measures always exist:

Remark2.3. If u € M(K) satisfiesu(K) > 0 and we set\ := ;ﬁ*((ji()) € (0,1], then
v := \ut is a compensation of.

Lemma2.4. If v € M(K)is acompensation gf € M(K), then||u —v|| < 2||x~| and
[l < lull-

Proof. This is obvious ifu(K) < 0. Supposg:(K) > 0. Since(u™ — v) L u~, we have

= vl = (" =) = || = ||o" = vl + 7] =
= (" =v)(K) +p~(K) = p*(K) = p(K) + p~ (K) = 2u7 (K) =2 |p~ || -
On the other handjv|| = v(K) = p(K) < ||yl O

Lemma 2.5. Let (f, 1) € Sc(k) X Sm(k) and let(P, N') be a Hahn decomposition pf
Thenu(f) = 1if and only if

u({f=13NP)U{f=-1}NN)) =1.
Proof. Write A := ({f = 1} N P) U ({f = —1} N N). Observe first that
(2.1) [rav=[ raus [ sau=lua
A

{f=1}nP {f=—1}nN
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Therefore, if|u|(A) = 1 thenu(f) = [, f du=1.
Conversely, ifu(f) = 1 then

/fdu+/ f a4 /fdu

and sou|(K \ A) = fK\A f du. Since we have

o= [ sl AnP). 5= [ fausiu((s £ -now)
{f#1}nP {f#-1}NN
and

atB= [ F du=lul(E\A) = |ul({f £ 1)1 P) + lul({F # ~1) 1 N),

K\A
it follows that
(2.2) WP =a= [ fdu
{FA1}nP
and
23) WA -0nN) =s=- [ fdl
{(F£-130N
Clearly, [Z.2) yielddu| ({f # 1} N P) = 0 and [Z3) yieldgu|({f # -1} N N) =0, so
that|u|(K \ A) = 0. Therefordu|(A) = 1. O

Definition 2.6. Let f € C(K) and0 < o < ¢. Sincethe set§f > 1—c}and{f < 1—¢}
are closed and disjoint, Tietze extension theorem ensheesxistence of a non-negative
ul . € Be(k) such that

u£7€|{f2170} =1 and u£1€|{f§1,€} =0.
In the same way, there is a non-negaﬂ)ég € Be(k) such that

£5|{f< 1+o} =1 and ’Ugs|{f2—1+a} =0.
Given anyu € M(K), we deflnw”,um € M(K) by

,ugi( )= /g uf _dp and ;sz( ) f/gmg’edu forall g € C(K).
K

Remark2.7. () Ife<1 thenu 1 pk
(i) The mappingg: — M andu — uf 2 arew*-w*-continuous.

Lemma 2.8. Let f € Bg(k), p € Bupxy and0 < o < e < 1. Then:
() Ik 1|| <1andllu A=
(ii) ||( uas |+ ¢ uas === u()/o
(i) [|(nd:0) H+H pE2) | < (1= p(f)/o;
W) o=t — 2] < (1= u(h)/o.

Proof. Write p1 := M Landps : Mg;g. Let (P, N) be a Hahn decomposition gfand
define

=({f21-anP)U({f < -1+a}NN).
We claim thatu|(C) > 1+ (1 — u(f))/o. Indeed, we have

(2.4) IMI(C)Z/Cfdu=/deu—/K\Cfdu=u(f)—/K\Cfdu-
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Since
/ Jdp= / fdu+ / J[du=
K\C {f<1—0c}nP {f>—140}NN
= [ rau+ [ Epdul=a-ouE\o).
{f<l1—o}InP {f>—140}NN

from (2.4) it follows that

1l(C) = u(f) = (1= o) (|ul(K) = |pl(C) = p(f) = (1 = o) (1 = [ul(C)),

which implies thatu|(C) > 1 — (1 — u(f))/o, as claimed.

(i). Observe that P, N) is also a Hahn decomposition pf andus (bear in mind that
ul . >0andv], > 0)andthatC NP C {f >1—c}andCNN C {f < —-1+0}.
Hence

W@ =m@nP) = [l du=p(CNP)=lulCP),
N

17(0) = =m(@ON) = = [ ol du=—u(CON) = (€N N),
N

and therefore.| (C) + 15 (C) = |u|(C). We deduce that

el Nl T = g + g L= (" + 52 )(C) = [pl(C) 21 = (1 = u(f)) /o
(i) and (iii). Sinced < uf . + v/, <1, we havel|us + p2l| < [|x]|. On the other hand,
the equalityl| ;11 + pi2|| = [|pa|| + ||p2 || holds becausg: L 2. Hence
L= lpll = [lpall + el =

_ 9 _
= [l I+ g L+ Dl 1+ g T = 1= (= p(H)) /o + g |+ 1,

which implies that|i; || + [|3 || < (1 - u(f))/o.
(iv). Write h := 1 —uf . —v] _ € C(K), so that(y — 1 — pi2)(g) = [, gh dp for all
g € C(K). Sinced < h < 1 andh vanishes or”, we get
= p = |l < [pl(KN\C) <1 —ul(C) < (1= pul(f))/o,
which finishes the proof. O

Lemma 2.9. Suppose thak” admits local compensation. L¢tc Bq (k) \ {0} and take
1 —|Ifll < e < 1. Then there exist§ € Sc (k) such that for every” € W(K) there is a
w*-continuous functio®r: F~1(my(f,€2/6)) — m2(fo) such that:

(i) m2(f) € ma(fo) and|[f = foll <&
(i) |Pr(t) — F(t)| < eforeveryt € F~1(ma(f,£2/6)).

Proof. We divide the proof into several steps.
Step 1Fix e < § < 1. Note thatk is the union of the following closed sets:

A={f>1-¢}, B:={f<-1+¢}, C:={-1+6<f<1-0},

D:={1-6<f<1l-cjU{-14e<f<-1+6}

By Tietze extension theorem, there is a continuous fungtto® — [—¢, ] such that

9lip=1-ey =&, Glir=1-5y =0, gl{j=—14e} = &, gl{j=—145y = 0.
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Now, we can defingy € B¢k by declaring

1 if t € A,
-1 if t € B,
folt) := [0 ifteC,

f(t)+g(t) ifteD.

It is straightforward thafl f — fo|| < . Note also thatd U B # @ (becausd| f|| > 1 — )
and sq|| fo|| = 1. To prove thatra (f) C 72 (fo), suppose thatf|| = 1, fixanyu € w2 (f)
and take a Hahn decompositioR, V) of . By Lemmd2.b we have

ul(({f=1nPYU{f=-1}NN)) =1

Since{f =1} C {fo = 1} and{f = -1} C {fo = —1}, another appeal to LemriaP.5

yieldsp € ma(fo).
Step 2Fix F € W(K). Seto := 5¢/6 and considef’ , F; € W(K) defined by

Fi(t) = (F(t))[: and Fy(t) = (F(1))]2.

g,

Define now av*-continuous functio®: K — M (K) by the formula

Q(t) = &i(t) — &2(1),

where;, &, € W(K) are compensations @f and— F», respectively.
For everyt € K we have

supp(&1(t)) C supp(F1(t)) € A, supp(&2(t)) C supp(—Fa(t)) € B,
andA N B =0, henceFy(t) L F»(t) andéy () L & (t), and therefore

12 1 FO1 IR0 + B0 = 1B 0] + | R0 2
(2.5) > & @) + €)= Q@) = &1()(K) + &(t)(K)
>Fi(t)(K) — Fa(t)(K).

Y

(inequality(x) was established in the proof of Lemimal2.8(iii)). It follovist
@)= [ 1)~ [ fodea(t) = &10)(A) + E20)(B) =

— & ()(K) + &(0)(K )@)IIQ()II-

Thew*-continuity of © and [2.6) imply that the map— || Q(¢)|| is continuous.
Step 3Fix t € Ko := F~!(m(f,£2/6)). By Lemma$2}4 and 2.8(iii), we have

(2.6)

(2.7) Q@) — (F ()+F2())II<H§1(t)*F1(t)H+||§2() (—F (1) <
<2([[(EO) [+ [r@) ) = 2@ [+ [FEE) ) <
< PO 1) ez 2
On the other hand, b{/(2.5) and Lemmnal 2.8(ii)-(iii), we get
1) = Fl(t)(K) Fy(t)(K)
= (IE@T [+ [EO)]) = (EE) [+ [EE)T) =

)
LU= (PO e 20

> 2
- o 5
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HenceQ(t) # 0 and

) H 2¢e
— 9| =1- <=
gy - @] =1~ lewi <
(bear in mind thaf| Q(t)|| < 1, as shown in[{2]5)). But Lemnia2.8(iv) also yields
L (F(0), f) <Ko <
o -5

(2.8)

(2.9) [1E(8) = (F1(8) + F2($))]| <

Using [2.7),[(2.B) and(2.9) we conclude that

e 7] <

Q(t)

SHm ()H+||Q( — (Fi(t) + B2() || + | (Fa(t) + Fa(t)) — F(1)]| <

Step 4.The previous step makes clear that the function

Q@)
[EIOIK
is well-defined and satisfigsPr(t) — F'(t)|| < ¢ for everyt € K. Note that[(2.b) says

thatPr(t) € m2(fo) for everyt € Ky. SinceQ is w*-continuous and the map— || Q(t)||
is continuous $tep 3, Pr is w*-continuous as well. The proofis over. O

Pr: Ko — M(K), Pr(t):=

The following particular case of the classical Bishop-PeeBollobas theorem will be
needed in the proof of TheordmP.2.

Corollary 2.10. Suppose thak” admits local compensation. Lef, 1) € Be (k) X Ba(x)
such thatu(f) > 1 — £2/6, where0 < e < 1. Then there i fo, o) € 1I(C(K)) such
that[|f — fol| < e and||u — poll <e.

Proof. Apply Lemma&2.9 tof and the constant functiofl € W (K) given by F'(¢) :=
forall t € K, so thatF'~!(m2(f,€2/6)) = K. Then we can take any, € Pr(K). O

Remark2.11 In the situation of Lemma2.9, letc F~1(ma(f,e%/6)). Then:

(i) Every Hahn decomposition df(¢) is also a Hahn decomposition % (¢).
(i) Pr(t) < F(t).

Proof. (i) Let (P, N') be a Hahn decomposition &f(t). As we pointed out in the proof of
Lemmd2.8(ii),( P, N) is a Hahn decomposition of boffA (¢) and F»(¢). We claim that for
every Borel sef3 C P we havelz(t)(B) = 0. Indeed, this is obvious i (¢)(K) > 0,
while if F5(¢)(K) < 0then

0<&()(B) < (—F(t)7(B) = (F2(t))”(B) = F2(t)(BNN) =0.

HenceQ(t)(B) = & (t)(B) > 0 for every Borel seB C P. In the same way, we have
Q(t)(B) = =& (t)(B) < 0 for every Borel seB C N.

(i) Obviously, F1 (t) < F(t) andF»(t) < F(t). By the very definition of compensa-
tion, we also havé; (t) < Fi(t) andés(t) < Fa(t). ThereforeQ(t) < F(t). O

We are now ready to prove the main result of this section.
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Proof of Theorerh 212We shall check that it admits local compensation, théi K)
fulfills the requirements of Definition 1.1 with(c) = (¢/6)*. LetT € £(C(K)) with
v(T) = 1and(f, ) € II(C(K)) such thatu, T(f)) > 1 — (¢/6)*, where0 < ¢ < 1.

Step 1By Corollary{2.10 applied t¢T'(f), 1) € Be (k) X Sa(x) andd := /7 (note
that(u, T'(f)) > 1 — 62/6), there is(g, uo) € II(C(K)) such that|T'(f) — g|| < é and
[l — po]] < 0 < e. Let(P,N) be a Hahn decomposition @f, which in turn is also a
Hahn decomposition gf, (see Remark2.11(i)). Singg f) = 1, an appeal to Lemnia2.5
yields

(KN {f=1}nP)u({f=-1}nNN)) =0.
The fact thajug < p (see Remark2.11(ii)) implies
ol (K\ ({f =1} nP)U({f=-1}nN)) =0
and souo(f) = 1 (again, by LemmB215). Writing
Dy = {T(f)>1-6} and D,:={T(f) < —1+3},
the proof of Lemm&2]9 shows thatipp(ue) € Dy U Dy and thatug(B) > 0 (resp.
1o(B) < 0) for every Borel seB C D, (resp.B C Ds). Hence
(2.10) pio(D1) — po(D2) = [po| (D1 U D2) = |[poll = 1.
Step 2.Let us consider the closed sets
Ay = {T(f)>1-¢£*/6} 2 Dy,
Ay = {T(f) < —1+£?/6} D Do,
C:={-1+%/6<T(f) <1-¢%/6}.
SinceD; N (C U Ay) =0 = Dy N (CU A;) = 0, we can apply Tietze extension theorem
to find two continuous functiong, : K — [0,1] andg.: K — [—1,0] such that
gilp, =1, gilcua, =0, g2lp, = -1, g2lcua, =0.

Step 3Let F,G € W(K) be defined byF'(¢) := T*(6;) = §; o T andG(t) := —F (t).
Itis clear thatF"(A;) U G(Az) C ma(f,e%/6). By Lemmd 2D there igy € Sc(x) such
thatms(f) € m2(fo), ||f — foll < e and there exist twa*-continuous mappings

Pr: Al — 7T2(f0) and Pa: Ay — 7T2(f0)
satisfying

(2.11) sup ||Pr(t) — F(t)|| <e and sup |Pa(t) + F@)| <e.
teA, teEAs

Now, we can define a*-continuous mappin@“: K — M(K) as follows:

F(t)+ g1 (t)(Pr(t) — F(1) ift e A,
F(t) == F(t) + g2(t) (Pa(t) + F(t)) if t € A,
F(t) if t € C.

DefineT, € £(C(K)) by To(h)(t) := (F(t),h) for everyh € C(K) andt € K. We
shall check thafy satisfies the required properties.

Step 4. Note thatF(t) (resp. —F(t)) is a convex combination of(£) and Py (t)
(resp. —F(t) andPq(t)) for everyt € A; (resp.t € Ap). SinceF(K) C Bk and
Pr(A1) UPg(A2) C ma(fo) € Bk, we deduce”(K) C Bk, which implies that

ITol = sup | To(h)|| = sup sup|(F(t), >|§1-
hEBC(K) hEBc(K) teK
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On the other hand,
~ ~ 1)
ITo—T| = sup sup|(E(t) — F(t), k)] < sup||F(t) — F()]| < .
hGBC(K) teK teK
Since(f, po) € II(C(K)) (as shown irStep } andms(f) € m2(fo), we deduce that
(fo, o) € II(C(K)). Sinceg:|p, = 1, g2|p, = —1 andPr (A1) U Pg(Az2) C m2(fo),
we have
(Pr(t), fo) =1 if t € Dy,
—(Pa(t), foy =—1 ift € Da.

Bearing in mind thatupp(uo) € D1 U D- (as pointed out irStep 3, it follows that

To(fo)(t) = {

(10, To(fo)) = / To(fo) dpo =

D1UD5
= / To(fo) dpo +/ To(fo) dpo = po(D1) — po(Do) el
Dy Dy

In particular, this implies that(7,) = 1. The proof is over. O

3. EXISTENCE OF COMPENSATION FUNCTIONS FOR METRIC COMPACTA

This section is devoted to proving that every compact mespigce/s’ admits local
compensation. Actually, we shall show that a stronger ptgg®lds true, namely, that
everyF € W(K) admits a compensation of the fognw F, where¢: M(K) - M(K)
is a function (depending only oR) as in the following definition:

Definition 3.1. Let K be a compact space and C M(K). We say that: M — M(K)
is anM -compensation functioifiit is w*-w*-continuous and () is a compensation gf
for everyu € M; if in addition M = M(K), we say that is acompensation function

Thus, in this section our goal is to prove the following:
Theorem 3.2. Every compact metric space admits a compensation function.

Corollary 3.3. If K is a compact metric space, then(K) has the BPB property for
numerical radius.

Proof. Combine Theorenis 2.2 ahdB.2. O

Corollary 3.4. LetT be a topological spacelk’ a compact space anfl: T — M(K)
a w*-continuous function. Suppose there is a compact metezsdl, C K such that
supp(F(t)) C L foreveryt € T. Then there is ar*-continuous functiod’: T — M (K)
such thatG(t) is a compensation of (¢) for everyt € T.

Proof. According to Theorefn3l1Z, admits a compensation functign M (L) — M(L).
LetU: M(K) - M(L) andV: C(K) — C(L) be the restriction operators. Since
supp(F(t)) C L for everyt € T, the compositiol/ o F is w*-continuous. It is now clear
thatG := V* o £ o U o F satisfies the required properties. O

In order to prove Theorem 3.2 we need some previous work.mGiveontinuous onto
mappingy: K — L between compact spaces, &t: C'(L) — C(K) be the operator
defined byC,(f) := f oy foreveryf € C(L). An operatoru: C(K) — C(L) is
called aregular averaging operatofor ¢ provided thatu is positive,u(1x) = 1, and
u o C@ = idC(L)-
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Lemma 3.5. Let K and L be compact spaces for which there is a continuous onto mgppin
¢: K — L with a regular averaging operator. IK admits a compensation function, then
L admits a compensation function as well.

Proof. Let ¢: M(K) — M(K) be a compensation function and C(K) — C(L) a
regular averaging operator for Define

& ML) —» M(L), €:= Cyo&ou”.

Clearly,gis w*-w*-continuous. Fix: € M(L). SinceC,, is a positive operator, so &7

and thereforé(p) > 0. Since

u (p)(K) = (u”(p), 1) = (p, u(lk)) = (u, 1) = p(L)

and

E)(L) = (€, 1) = (€(u" (), Cy(11)) = (£(u" (1)), Li) = &(u™ (1)) (K),

we deduce thaf(p) = 0 if w(L) < 0 and&(u)(L) = w(L) if w(L) > 0. For every
non-negativel € C'(K') we have

(E(n), £) = (@ (1), Co () < {(w ()T, Co(f)) < (u (1), Co(f)) =
= (u,u(Ce(f)) = (T, f),

because”, andu* are positive operators ando C, = id¢ (). Henceé(u) < p*. It
follows thatgis a compensation function. O

From now on we writeC := 2V = {0,1}" to denote the Cantor set. Pelczynski
proved that a compact spadeis metrizable if, and only if, there is a continuous onto
mappingy: C — L with a regular averaging operatar, [18, Theorem 5.6]. Téslt and
Lemmd3.b show that Theordm B.2 can be deduced from the folipwarticular case:

Theorem 3.6. The Cantor sef€ admits a compensation function.

Such compensation function will be defined explicitly (Défon [3.13 and Proposi-
tion[3.14). The rest of this section is devoted to provingdreel3.6. We divide the proof
into three subsections for the convenience of the readeffirgfeneed to introduce some
notation.

Definition 3.7. We define a continuous functiah R x R — R by

sign(sz) - min{|s1|, |s2|} if s1-s2 <0,
d(Sl, 82) =

ifSl-SQZO.

Remark3.8. The functiond satisfies the following properties:
(l) d(Sl, 52) = 7d(82, 51).
(ll) 0§1+d(81,82)/81§1if 81#0.
(lll) 0§81+d(51752) S S1 if S1 ZO
(lV) s1 < 81+ d(Sl,SQ) <0if sy <0.
(V) If s1-s9 < 0then eithers; + d(Sl, 82) =00rsy — d(Sl, 82) =0.

As usual, we writ2<N to denote the set of all finite (maybe empty) sequencess of
andls. Giveno = (¢(1),...,0(n)) € 2<N, we writelength(c) = n and

ok = (0(1),...,0(k)) € 2<N foreveryk € {1,...,n};
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we use the conventian|y = . We denote
o~0:=(co(1),...,0(n),0) and o ~1:=(c(1),...,0(n),1).
More generally, ifr = (7(1),...,7(m)) € 2<F, we write
o~T:=(c(1),...,0(n),7(1),...,7(m)).

Given anyo’ € 2<N, the notatioro C o’ means thatength(o’) > n ando’(k) = o(k)
for everyk € {1,...,n}. Analogously, given any = (¢(k))ken in the Cantor sef, the
notations C ¢ means that(k) = o(k) for everyk € {1,...,n}. Thus, the standard
clopen basis for the topology 6fconsists of the sets

N,:={tecC: 0 Ct}, oec2<N

For everyn € NU {0} we writeC,, := {0 € 2<V: length(c) = n}.

3.1. Construction. Fix u € M(C) and letm, := u(N,) for everyo € 2<N. We next
define a collection of real numbefsn,: ¢ € 2<N} satisfying some special properties
which shall be discussed in Subsecfiod 3.2.

Fix n € NU {0}. In order to define the collectiopn, : o € C,,}, we construct certain
real numbergm®: o € C,} for everyk € {0,...,n}. This is done inductively:

e Casek = 0. Setrn'” := m,, for everyo € C,,.
e Casek = 1. Foreachr € C,,_1 we set

e Assumethak € {2,...,n} and that the collectiofim*~V: o € C,} is already
constructed. Note that, is the disjoint union of the sets

Chr={0c€C,: TCo}, 7€ECh_p

Fix 7 € C,,_x. We define

Snor0 = g m&* Y and s, = E mE

0€Cn,r,0 0€Cn,r1

whereC,, ro:={0 €Cphr:0c(n —k+1)=0}andC, 1 :=Cpr \ Cpn,ro. We
now distinguish two cases:
— If sp.7.0 - sn,71 = 0, then we set

m®* :=m’*" foreveryo € C, ;.

—If $p.r0- 801 # 0, then we set

~ . d(s Sn,7,1

mg)@) _ mgkfl) . (1 + M) for everyo € Cn,r,0,
Sn,T,0

_ _ d(s Sn,r.1

m;k) — m;k—l) . (1 _ M) for everyo € Cn,T,l-
Sn,1,1

In this way, the collectiodm®: o € C,} is constructed.

Finally, we definen, := m™ for everyo € C,, andn € NU {0}.
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3.2. Properties. Fix p € M(C). We follow the notations introduced in Subsecfiod 3.1.
Lemma 3.9. 1, = Mg~o + My~ fOr everyo € 2<N.
Proof. Fix n € NU {0}. We shall prove that
m® = m*D 1 m*D  foreveryo € C, andk € {0,1,...,n}
by induction onk. Note that fork = 0 we have
R = m, = p(Ny) = #(Non0) + i(Nont) = Mg+ Moy = 2, + 10

for everyo € C,,, by the very definition ofn', andm'" ;. Suppose that € {1,...,n}
and that the inductive hypothesis holds:
(3.1) m =m +m% | foreveryo' €C,.

't

Fix o € C,, and letr := o|,,_, so that

_ m® = (k) k) _
Sn+1,7,0 = g o= g m,, , + E m,,

0'€Cnt1,7,0 0'€Cn 0 0’'€Cn,r,0
_ } : (®) ® \ ED } : = (k—1) _
- (m 7o T ma‘ Al) - m, = Sn,7,0-
0'€Cn,r0 0'€Cn,r0

In the same way, we havg 11,71 = sp,71-

(k+1) ~ (k ~ (k+1) ~ (k) ~ 5 (k—
If Snt1.7.0° Snt1..1 = 0, thenmltD = ml  mltY = md, andm® = mk-b,
hence
(k) @) - (k D 5®

(k+1) + m(k+1) — m(k) + m

or\O

q

If Sn+1,7,0 * Sn+1,7,1 7é 0, then

(k+1) +m(k+1) —

o~1

d
= (%, +m®,) - (14 (-1 kD (S”“’“‘)’S”“vﬂ)) -
Sn+1,‘r,o’(n7k+1)

€D 5o (1 4 (—1)otn—nen dsnro Sn_val)) = m®,
’ Sn,r,0(n—k+1) 7

which finishes the proof. O
Lemma 3.10. u(C) = 3_ ¢, M, foreveryn € NU {0}.

Proof. By induction onn. The case: = 0 is obvious. Suppose > 0 and the inductive
hypothesis. By applying Lemnia 3.9 we get

Z m; = Z Me~0 + Z Mg~1 = Z (mar-\O + ’I:I"Lo-,-\l) =

T€CH g€Cp_1 c€Cp_1 0€Cp_1
E me = 1(C)

0€Cn—1
as required. O
Lemma 3.11.Letn € N, k € {1,...,n} andr € C,,_. Then the collection
{m 7€ Ch}

has constant sign. In particulaf/n, : o € C,,} has constant sign.
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Proof. We proceed by induction oh. The casek = 1 follows immediately from Re-
markZ.8(v). Suppose thate {2,...,n} and that the inductive hypothesis holds. Define
7 :=7 ~ifori e {0,1}, so thatr; € C,—_+1 and each of the collections

(m* 7 €Cr}

Ti’\T, :
has constant sign, which in turn coincides with the sign of
LX) DI D DI ot
0€Cn,ri T/€Cr—1
If $nr0° Snr1 >0, thenn™ , = m" ) for everyr’ € Cx, and so the collection
~ ~ — ~ (k—
(" ey ={ml " eCayu{m! T T e Chn}

has constant sign, as requiredsjf, o - sp,.1 < 0, then

d(s Snr1)
~ (k ~ (k—1 n,7,0y9n,7,1
N R )
Sn,T,0
(3.2) Y
- (k - d(Sn.r.0,Sn.r1
A (1 _ (Sn,7,0, Sn,7, ))
i~ ri~T Smor

foreveryr’ € C;_1, so each of the collectior{s?zi?LT/: 7' € Cr—1} has constant sign. On
the other hand, by Remdrk 8.8(v) ahd(3.2), we have eiitir , = 0 foreveryr’ € Cy
or miﬁLT, = 0 for everyr’ € Cj_;. It follows that the collection

m® ey ={m"

0)
TA~T TO~T

o7 €eCro1}

T ~T

= Ck71} U {ﬁl(i)
has constant sign and the proof is over. O
Lemma 3.12. Leto € 2<N. The following statements hold:

@) If my, >0, then0d < m, < mg.
(i) If u(C) > 0andm, <0, thenm, = 0.

Proof. Write n := length(o).
(i) We shall prove that
(3.3) 0<m™ <mi < < <my,.

The inequalitie® < m" < m, follow immediately from the very definition oh(" and
Remark3.B (parts (i) and (iii)). Assume that< m&*—» < ... < m® < m, for some

ke{2,....,n}. Write7 := 0|p—k. If Sp.r0 - Sn,r1 > 0, thenm® = m~; otherwise
we have
~ (k) mD - {1+ d(sn’sr’ms:’r’l) ifo(n—k+1)=0
md = 3 nVTYV -
mé=v . (1— dlonr08nr1) ) jf cn—k+1)=1

Sn,r,1
and in either case < m®™ < m®*~ (by RemarK318 —(i) and (ii)— bearing in mind that
m®*=1 > 0). This proves[(3I3) and therefobe< m(™ = m, < m,.

(i) In the same way, the following chain of inequalities tiekrue:

S () 5 (n—1) = (1)
0>me=m]" >m! >---2>2my) > mg.

We now argue by contradiction. Suppose that < 0. Then Lemm&3.11 ensures that
me < 0 foreveryo’ € C,. Bearing in mind Lemmg3.10, we obtain

0<pu(C)= > My <ty <0,
o’eCyp

a contradiction. The proof is over. O
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3.3. Compensation function. We follow the notations introduced in Subsection 3.1 with
some obvious maodifications to denote dependence with regpga M (C).

Definition 3.13. Let u € M(C). We defineg(u) € M(C) as follows:
(i) If u(C) <0,thent(n) ==
(i) If u(C) > 0, thené(n) is the unigue element 0¥1(C) such that
() (N,) = mg(n) foreveryo € 2<N,

The existence of(1:) is ensured by Lemnia 3.9 via a standard argument.
Proposition 3.14. ¢: M(C) — M(C) is a compensation function.

Proof. Given anyu € M(C) with u(C) > 0, we have) < &(u)(Ny) < pt(N,) for every
o € 2<N (thanks to Lemm&=3.12) and, by the very definitiofg;)(C) = u(C). Hence
&(p) is a compensation gf for everyu € M(C).

To prove thatt is a compensation function, it only remains to show that itisw*-
continuous. Of course, it suffices to check the continuity oh

Hi={pe M(C): u(lC) =0},
which is equivalent to saying that, for everyc 2<V, the real-valued function

[ s g(lu)(No) = mo(ﬂ)
isw*-continuous or{. Fixn € NU {0}. We shall prove that
p— m(p) isw*-continuous or¥ for everyo € C,, andk € {0,1,...,n}

by induction onk. The caseé = 0 andk = 1 are obvious. Supposec {2,...,n} and
that the inductive hypothesis holds. kixc C,, and writer := o|,,_;. Then the mappings
Smro()= > WGV and syoa()= Y w0
0'€Cn 0 0'€Cn r1
arew*-continuous or. Suppose that(n — k + 1) = 0 (the other case is analogous).
Then for every, € ‘H we have

~ (k o mk,l . d(sn,T,O(u)7sn,T,1(u))
(3.4) W () =l () - (1+ Ty )

if sp,ro0(p) # 0, while m® (p) = M= (u) if sp-0(w) = 0. From [3.4) it follows at
once thatn®(-) is w*-continuous at every € H with s,, - o(u) # 0.

Take anyuo € H with s, - o(uo) = 0. Since{m" " (uo): o’ € Cn o} has con-
stant sign (by Lemm@a3.11 appliedto~ 0 andk — 1), we getrn*~"(ug) = 0 and so
m® (o) = m® Y (up) = 0. Bearing in mind[(3}4) and Remdrk3.8(ii), we obtain

[ (1) = (o) | = | ()] < [ ()| = g (1) — " (o)

for everyu € H. This inequality and the inductive hypothesis imply that thapping
m® (-) isw*-continuous afiy. The proofis finished. O

4. BEYOND THE METRIZABLE CASE

In this section we discuss the existence of compensatioatifurs in certain non-
metrizable compacta. Specifically, we deal with one-poompactifications of discrete
sets (Subsectidn 4.1) and ordinal intervals (SubseEii@Zn 4Ve shall provide examples
of compact space&” which admit local compensation but ), x-compensation func-
tion. Those examples and Proposifion 4.1 below make cleathire exist compact spaces
which do not admit local compensation.
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Proposition 4.1. Let K be a compact space. B k) (equipped with the,*-topology)
admits local compensation, thén admits aB v x)-compensation function.

Proof. Write L := B,y k) and let¢: K — L be defined by(t) := d;, so thatp is a
homeomorphism ontg(K). Let F': L — B, (1, be the function defined by

(F(p), fy={u,fog) foreveryfe C(L)andu € L.

Observe that”(u)(D) = u(¢~(D)) for everyu € L and every Borel seD C L.
SinceF isw*-continuous and. admits local compensation, there is‘acontinuous func-
tion G: L — Bz such thatG(p) is a compensation of () for everyu € L. Let
S: M(L) - M(¢(K)) be the restriction operator aitd: C(K) — C(¢(K)) the iso-
metric isomorphism given b¥/ (g) := go ¢~ 1. Define¢: L — Lby¢ :=U* 0 SoG.

We shall check thaf is a B (x)-compensation function. Note first thato G is
w*-w*-continuous, thanks to the*-continuity of G and the fact that

(4.1) supp(G(pt)) C supp(F(u)) € ¢(K) foreveryu € L.

Hencet is w*-w*-continuous as well. On the other hand, take any L. SinceG(p) is
a compensation of () and the inclusion$(41.1) hold, it follows at once tS4G (1)) is a
compensation of (F'(u)) Thereforef(n) is a compensation df *(S(F(u))) = p. O

To go a bit further when studying the existence of compeosdtinctions, we introduce
the following definition.

Definition 4.2. Let K be a compact space. @oseness functiofor K is a continuous
function

c:{(z,y,2) € K3 y# 2} = [-1,1]
such that:
() c(z,y,2) = —c(x, z,y) whenevery # z;
(i) e(x,x,z) =1 whenever: # z.
Remarkd.3. If (K, p) is a compact metric space, then the formula

p(z,z) — p(z,y)
max{p(z,y), p(z,z)}

C(x7 y) Z) =
provides a closeness function far.
Next lemma gives a connection between closeness and coatmenfsinctions:

Lemma 4.4. Let K be a compact space. K admits aB ,x)-compensation function,
then K admits a closeness function.

Proof. Fix a By (x)-compensation functiof : By x) — Ba(xk)- Define
c:{(z,y,2) € K3: y#2} =R, clx,y,2):=1—6-&(f(x,y,2){y}),
wheref (z,y,z) := (6, + 6. — 6.). We will check that: is a closeness function fdt .

Fix (z,y,2) € K3 with y # 2. Thenf(z,y,z)(K) = £ > 0, hence

(@, 2)(K) =5 and 0= E(f(r,y,2)) < (29, 2) = 56, +02),
In particularc(z, y, z) € [-1, 1]. On one hand, i = y then

clx,x,2) =1-6-&(f(r,z,2)){z}) =1-2-6,({z}) =1-0=1.
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On the other hand, sineapp(f(z,y, z)) C {y, 2z}, we have

1

3 = 8(f (@9, 2))(K) = &(f (2,9, 2) ({y}) + £(f (2,9, 2))({2}),

therefore
C($,y,2’) =6- f(f(x,y,z))({z}) -1= 7C($,Z,y).

We finally check that is continuous atz, y, z). Sincey # z, there exist disjoint open
setsV, W C K withy € V, z € W, and a continuous functiop: K — [0, 1] such that
¢lv = 1andg|w = 0. Then forevery(z',y’,z') € K x V x W we have

(4.2) U@y, 2 EY' Y = €@y, 2), ),

becauseupp(&(f (2,4, 2")) C {v,2'}. Equality [42) and thes*-w*-continuity of
imply that ¢ coincides with a continuous function di x V' x W, which is an open
neighborhood ofz, y, z). This shows that is a closeness function fdt. O

Part (i) of the following proposition was pointed out to us@yKalenda and is included
here with his kind permission.

Proposition 4.5. Let K be a compact space admitting a closeness function.

(i) K isfirst countable.
(ii) If K is separable, then itis metrizable.

Proof. Let ¢ be a closeness function féf. We begin by proving the following:

CLAIM. If 2y € K belongs to the closure of a countable g&tC K \ {x0}, thenz is
a gs-point.

Indeed, for every € D we havec(zo, 2o, 2) = 1, hence we can take an open neigh-
borhoodV, of xy such thatz ¢ V. andc¢(xzg,z,2z) > 0 for all z € V,. We claim
that(),., V> = {zo}. By contradiction, suppose thereasc (.., Vz \ {zo}. Then
¢(xo,x,2z) > 0forall z € D. Sincexy € D andc is continuous, we get(zg, z, z) > 0,
which contradicts that(xg, x, z9) = —1. This proves the claim.

(i) Our proof is by contradiction. Suppose theresis K which is not aGs-point. Then
we constructa sequente,,) in K \ {z} and a decreasing sequer{¢g, ) of closedgs-sets
containingz as follows:

e Pick an arbitraryr; € K\ {z}.
e Givenn € N, setH,, := (\;_,{y € K : c(y,z,z;) = 1}. ThenH,, is a closed
Gs-set containing:. Sincex is not aGs-point, we can take,, 1 € H, \ {z}.
Now let & be a cluster point ofz,,). By the CLAIM abovez # x. Sincez € H, for
everyn € N, we have:(z, z, z,,) = 1 for everyn € N. From the continuity of: it follows
thate(z, x, ) = 1, which contradicts that(z, z, £) = —1.
(i) It is enough to find a countable subset®@f{K ) that separates the points &f. Let

C be a countable dense subsetfof For everyt, s € C' with ¢ # s, let f, s € C(K) be
defined byf; s(z) := ¢(x, t, s). Let us check that the countable family

{frs: t,s€C, t# s}

separates the points &f. Fix y # z in K. Sincec(y,y, z) = 1, there are disjoint open
setsVy, W, C K such thaty € V4, z € Wy and

c(z’,y',2") >0 forevery(a',y' 2') € Vi x Vi x Wy.
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On the other hand, sincgz, y, z) = —1, there are disjoint open sets, W, C K such
thaty € V5, z € W5 and
clx',y',2") <0 forevery(z',y,2") € Wy x Vo x Ws.
Pickt e i1 NnVonC ands € Wi N W, N C. Thenf,s(y) = c(y,t,s) > 0 while
fr.s(2) = c(z,t,s) < 0. The proof is over. O
By combining Lemm&4]4, Propositién #.5(ii) and Theofen8e2get:

Corollary 4.6. Let K be a compact space. The following statements are equivalent

() K is separable and admits B (x)-compensation function;
(i) K is metrizable.

4.1. One-point compactifications of discrete setsThroughout this subsectiohi is a
non-empty set and we denote By := A(T") = T" U {co} the one-point compactifica-
tion of I' equipped with the discrete topology. Sin&eis scattered, every element of
M(K) is of the formy_, _ ;- a:d; for some(as)iex € ¢*(K), [13, Theorem 14.24]. Itis
well-known that a bounded nét,, ) in M(K) isw*-convergenttq: € M(K) if and only

if po(K) — p(K) andu({v}) — n({~}) forall v € T. Note that ifT" is uncountable,
thenco is not ags-point of K and so Propositidn 4.5(i) yields:

Corollary 4.7. If T' is uncountable set, theA(T") does not admit a closeness function.
Hence, it neither admits & ,(( 4 (r))-compensation function.

However, we have the following:

Theorem 4.8. A(T") admits local compensation and thereféréA(T")) has the BPB prop-
erty for numerical radius.

Proof. The second statement will follow from Theoréml2.2 once wevgtthe first one.
LetF € W(K). If F(0)(K) < 0, thenthereis afinite s&; C I" such that'(¢)(K) < 0
forallt € K\ Ty (because the functioR(-)(K): K — R is continuous). Fix an arbitrary
compensatiom; of F(t) for everyt € T'; (apply RemarkZl3). Defingr € W (K) by

{Mt if t €Ty,

U= ek

Clearly,&r is a compensation df'.
Suppose now thaf'(oco)(K) > 0. Since the functiorF(-)(K) is continuous, there is a
countable sefl C I" such that

(4.3) F(t)(K) = F(o0)(K) foreveryte K\ A.
For everyt € K the setd, := supp(F(t)) is countable. Write
Ip:=AcNT = Ay \ {00}

For eachs € Ty, the functionF'(-)({s}): K — R is continuous (becaude} is a clopen
subset of) and so there is a countable gt C K such that

(4.4) F(t)({s}) = F(c0)({s}) foreveryt e K\ B;.

The setB := (| Bs) U AU {co} is countable, hence solig,. ; A; and therefore

N::UAt

teB

sel’y
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is a compact metrizable (countable) subsefof Observe that for everyy € B we have
supp(F'(t)) € N. An appeal to Corollarf 34 ensures the existence of @ontinuous
functionG: B — M(K) such thatG(t) is a compensation df (¢) for everyt € B. Write
& = G(o0). Let us define

(4.5) C:={te K\B: F(t)(T'\ Ay) <0}

and the mappingr: K — M(K) by

Gt)({s}) if t € Bands € K,
) &sh) if t e Cands € K,
(“6)  &rB{s)) = &o({s}) if t ¢ BUC ands e I'y,

Foleel S R()+({s}) ift¢ BUCands € K \Tb.

Observe thal \ Ty D '\ Ao, henceF ()T (K \ Tg) > F(¢)(T'\ Aw) > 0 whenever
te K\ (BUCQC), sor is well-defined. Let us show thgf is a compensation df'.

STEP 1£r(t) is a compensation of (¢) for everyt € K.

This is obvious fort € B by the choice of7. In particularéy(K) = F(oc0)(K) > 0
and0 < & < F(co0)™. Let us analyze what happens for K \ B.

Case 1:Assumet € C. Thent ¢ B D A, so

@39 @3
Er(t)(K) "="&o(K) = F(o0)(K) =" F(t)(K).

On the other hand, take ary= K. Then

0 < &r(t)({s)) D ol{s}h) < F(oo)* ({s)).

We now distinguish several cases.

o If s € Ty, then [4#) implies thak'(co) T ({s}) = F(¢) T ({s}).

o If s¢ Ax,thenF(c0)T({s}) =0 < F(t)T({s}).

o If oo € Ay, then
(4.7)

F(00)({o0}) = F(o0)(K) = Y F(oo)({r}) LD p (1) (k) - > F)({r)) =
= F(t)({oc}) + F(O)(T'\ Axc) 2 F(t)({oc}).
It follows that
0<&r(t)({s}) < F(oo)"({s}) < F(t)"({s}) foralls € K,
hence) < ¢p(t) < F(oco)t < F(t)*. Thereforeér(t) is a compensation af (¢).
Case 2:Assumet € K \ (BUC). Then

Er(t)(K) = Z Er(t)({s}) a9 Z &o({s)) + - €o({o0})

& 2 9O Fny 2y MO

s€eK\TI'g
=80(To) + &o({oc}) = & (o U {oo}) = &o(K) = F(o0)(K) @)F(t)(K)-

To prove that r(¢) is a compensation df (¢) it remains to check that < £x(t) < F(¢)T,
which is equivalent to saying that< £z(t)({s}) < F(t)T({s}) for all s € K. To this
end, we distinguish two cases:

o If s €Ty, then
0 < &r®)({s}) B & ({s}) < F(oo)* ({s}) =22 F(t)* ({s}).
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o If s € K\ Ty, then

@8 0seOs) P NS O sh < FO (o)),
because
F(o0)({o0}) = F(o0)(K) = 3 F(oo)({r}) 289 p() (K \ Tp)
relo

yields the inequalitie§y ({oo}) < F(co) T ({oo}) < F(t)T (K \ To).

STEP 2. ¢r is w*-continuous. It suffices to check tha§r is w*-continuous when
restricted to each of the closed séts C and K \ (B UC). We already know that the
restriction{r|p = G is w*-continuous. On the other hand, note thaft) = {r(00) = &o
for everyt € C, hencet |5 is w*-continuous.

Finally, let us show thafﬂm is alsow*-continuous. To this end, it suffices to
show that, if(t,) is a net inK \ (B U C) converging taxo, thenép(t,) — &r(00) = &
with respect to thes*-topology of M (K), which is equivalent to saying that

§p(ta)(K) = &(K) and &p(ta)({s}) = So({s}) foralls e T

(note that(¢{r(t.)) is bounded, becausg-(t) is a compensation of (t) € Bk for
everyt € K). We know that»(¢)(K) = F(t)(K) forallt € K \ (B U C) (see the proof
of Step 1), hencey (ta)(K) = F(ta)(K) = F(00)(K) = &(K).
Fixanys € T. If s € Ty, thenép(ta)({s}) = &o({s}) = &r(o0)({s}) for all a. If
s € '\ T'g, then by [4.8) we have
0<&p(ta){s}) < F(ta)t({s}) foralla.

SinceF (to) " ({s}) — F(c0)T({s}) = 0 (because ¢ A.), it follows that

§r(ta)({s}) = 0=2¢&({s})
This proves thafr is w*-continuous and sgr is a compensation of'. O
4.2. Ordinal intervals. Throughout this subsection we work with the ordinal intérva
K := [0,w], which becomes &-dimensional scattered compact space when equipped
with its order topology. Sincés is scattered, every element 8f((K) is of the form

Y ack Gada fOr some(aq)acx € (1(K), [13, Theorem 14.24]. We shall also need the
following well-known fact, see e.g. [12, 3.1.27].

Lemma 4.9. If h: [0,w;) — Ris a continuous function, then thereds< w; such thath
is constant oo, wy ).

Sincew; is not ags-point of K, an appeal to Propositién 4.5(i) yields:

Corollary 4.10. [0,w;] does not admit a closeness function. Hence, it neither adanit
B pm((0,0,])-COMpenNsation function.

On the other hand, we have:

Theorem 4.11. [0, w;] admits local compensation and therefa@r€[0,w,]) has the BPB
property for numerical radius.

Proof. The second statement will follow from Theoréml2.2 once wevgtthie first one.
Write Clop(K) to denote the algebra of all clopen subsetdiof Let F € W (K). For
everya € K, define

(4.9) s(a) :=sup{y < wi: F(a)({v}) # 0} < wy.
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CLaM 1. There exisb € [—1, 1] andyy < w; such that
(4.10) F(v){w1}) =b whenevery <y < ws.

Proof of Claim 1. By Lemm&4]9, we only have to check that thecfion F'(-) ({w1 })
is continuous 010, w1 ). To this end, itis enough to prove the continuity[6ry) for every
v < wi. Letf :=sup{s(a): a < v} < w;. Notice that for everyx < v we have

F)([+1w)= > F@)({n) D F)({u)).
B<y<w
Since[s + 1,w1] € Clop(K) andF is w*-continuous, the previous equality ensures that
the functionF'(-)({w1 }) is continuous o1f0, ). This finishes the proof of Claim 1. O

CLAIM 2. For everyy < ws there isar < 8(a) < wy such thatF'(y)(A) = F(w1)(A)
for every5(a) < v < wy and everyd € Clop(K) suchthatd C [0,a] or A = [0, w;].

Proof of Claim 2. Note that the set

Ao :={A € Clop(K): AC[0,a]} U{[0,w:]}

is countable (becaus$@, o is a compact metric space and so it has countably many clopen

subsets). For everyt € Clop(K) the functionF'(-)(A): [0,w1] — R is continuous, hence

it is constant orj3.4, w;] for somea < 84 < wy (apply Lemma4l9). Now, the proof of

Claim 2 finishes by taking(«) := sup{8a: A € A,} < w;. O
DEFINITION. We next define by transfinite induction a strictly incregsin-sequence

of ordinals{)\;: i < w1} C [0,w;). For convenience, we consider

Ao := max{s(w1), 70, 5(0)} < wy
as the starting point of the induction.ilk w; is a limit ordinal, then we set
i =sup{A;: j < i}
In the successor cask,,; is defined as
Ais1 = sup{an: n € N} = sup{B,: n € N}

where\; =: ap < fp < a1 < 1 < ... < Ay are defined as

(4.11) Brn = B(a,) (given by Claim 2)
and
(4.12) = max { B 1 + Lsup{s(y): v < Bn_1}}-

DEFINITION. We set
pi= F(w1) = F(w)({w1})dw, € M(K),
(4.13)  po :=F(a) — p—0bdy, = F(a) — F(w1) + ad,, € M(K), «€[0,w],

where we writer := F(wq)({w1}) — b.
CLaM 3. If i < wy anda € (A, Ait1), theny,, is concentrated of\;, A;11] with

ta(K) = a.
Proof of Claim 3. By[(4.10) (bear in mind that> Xy > 7¢) we have
(4.14) F(a){w1}) =0.

Let\; = ag < By < a1 < B1 < ... < A\41 be the sequence of ordinals that defines
Aitr1 = sup{ay,: n € N} = sup{8,: n € N}. Pickn € Nsuchthatx < §,_;. By (412)
we haves(a) < «, < Ai+1, and so

(4.15) F(a)({y}) =0 foreveryl i <~v < ws.
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Note that we also have
(4.16) F(wi)({y}) =0 foreveryl ;1 <v < wi,
because\;;1 > Ao > s(w1). We next prove that

(4.17) F(a)({v}) = F(w1)({y}) foreveryy < \;.
To this end, it suffices to check the equality for every. \;;; and every ordinaj < i.
Let\; = o < By < o) < B < ... < Ajq1 be the sequence of ordinals that defines
Aj+1 = sup{aj,: n € N} = sup{f,,: n € N}. Theny < «, for somen € N and
so we can writg{y} = (1, Ax for some decreasing sequer(c;) in Clop(K) with
A C [0, ] for everyk € N. Indeed, this is obvious i = 0, while for~ # 0 we have
v} =N{[n +1,7%]: 1 <7 <72 < al,}. By the choice of3(«/,) (Claim 2) and
Bles) B8, < A < N <o,
we haveF(«)(Ax) = F(w1)(Ag) for everyk € N and so
F(a)({y}) = lim F(a)(4x) = lim F(wi)(Ax) = F(w1)({7})-
c— 00 k— o0
This proves[(4.17). Since > Xy > 5(0), we haveF(«)(K) = F(w;)(K) (Claim 2) and
thereforeu, (K) = a (by (413)). Finally, from[(4.74)[{4.15) and (4]117) we get

pa({7}) = F(@)({7}) = Flw)({7}) + ade, ({7}) = 0 foreveryy € K\ [Ai, Aiya]-

The proof of Claim 3 is over. O
CLAIM 4. For everyl < i < w; we haveuy, = ady, and so
(4.18) F(\) = p+ady, + bdy, -

Proof of Claim 4. We proceed by transfinite inductiononThe limit ordinal case
follows from thew*-continuity of . Now, supposd_(4.18) holds for sorme< i < w; and
let us prove it fori + 1. Consider again the chalt) = ag < fg < a1 < 51 < ... < Ait1
that defines\;; as its supremum. By the*-continuity of F', the sequencé€F'(5,,)) is
w*-convergent taF' (), 11 ), which (by [4.18)) is equivalent to saying that

1i_>m ps, (A) = pa,, (A) foreveryA e Clop(K).

By Claim 3, eachug, is concentrated of\;, \;+1] with g, (K) = a. In particular, we get
px,., (IC) = a. Inorder to prove thaty,,, = ady,,, itonly remains to check thaty,, , is
concentrated ofi\; 1 }. Fixany A € Clop(K) with A C [0, A\;+1). SinceA is compact,
we haveA C [0, ay,) for somen € N. ThenF'(5,,)(A) = F(w1)(A) for everym > n (by
Claim 2 and[(4.11)) and sB(\11)(A) = F(w1)(A), henceuy,, , (A) = 0 (by (4.13)). As
A'is an arbitrary clopen set contained/® \;11), we conclude that,, , is concentrated
on[A;+1,wi]. On the other hand, if we take ady € Clop(K) with A C (A\;41,w1], then
pg, (A) = 0foralln € N and souy,,,(A) = 0. It follows thatyu,,, , is concentrated
on{\;+1}, which finishes the proof of Claim 4. O

CLAaM 5. The restriction of’ to [0, A;] admits a compensation.

Proof of Claim 5. WriteL := [0, A1] U {w1 }. Notice first that

(4.19) supp(F(a)) C L foreverya € [0, \q].

Indeed, this is immediate far = \; (by (4.18), bearing in mind that; > Ay > s(w1)).
Let\g = ap < By < a1 < 1 < ... < A1 bethe chain that defineg as its supremum. If
we take anyy < A1, thena < §,,_; for somen € N and sos(a) < a,, < A1 (by (4.12)),
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hencesupp(F(«)) C L. This proves[(4.19). Sincé is compact metrizable, the claim
now follows from Corollary 3.14. O
CLAIM 6. There exist < o/ < max{a,0},0 < b < max{b,0} andv € M(K) with
0 < v < u™ such that:
(i) v+d'dy, +V4., isacompensation af'(\;) for everyl < i < wy;
(i) v+ (a/ +V')d,, isacompensation df'(wy).
Proof of Claim 6. Writec := a + b = F'(w1)({w1}). Observe that

F(w1) =p+cd,, and F(N\;) @)M + ady, + bd,,, foreveryl <i < wy,

henceF'(\;)(K) = F(w1)(K) (this equality also follows from Claim 2). Thus, the state-
ment of Claim 6 holds trivially ifF'(w;)(K) < 0. We assume thak'(w;)(K) > 0 and
distinguish two cases.

Case 1. Ifc > 0, choosed”,b” € R such thata”§y, + b”4,, is a compensation of
ady, + bdy,,. Then0 < @’ < max{a,0},0 <b” <max{b,0} anda” +b" =a+b=rc.
Setyy := p+ a0, + "4, and note thaty (K) = u(K) +c = F(w1)(K) > 0. Letiy
be a compensation of. Thenv; (K) = v(K) and

0<wv1 <(u+a"dy, +b0"0u,)" =pt +a"6\, +b"5,,,

so we can write,, = v+a’dy, +b'6,,, forsomed <o’ <a”,0 < ¥ <V andv € M(K)
with 0 < v < p*. Itis clear thatv + a’d, + b'd., is a compensation af'()\;) for every
1 <i<w;andthat + (a’ +b')d,, is a compensation af (w1).

Case 2. Ife < 0, then letv be a compensation df(wy), so thatv(K) = F(w1)(K)
and0 < v < (u+ c¢dy,)T = pt. In particular,v is a compensation af' ()\;) for every
1 < < w1, sowe can take’ = b’ = 0 to conclude the proof of Claim 6. O

CLAIM 7. For everyl < i < w; there is av*-continuous function

&t iy 1] = M(K)

such that;(«) is a compensation of,, for all a € [\;, Aiy1].

Proof of Claim 7.[\;, A;+1] is compact metrizable. Sineapp(ia) C [Ai, Ait1] for
everya € [\, Ai+1] (Claims 3 and 4) and the mapping— 1., is w*-continuous (see
(4.13)), the existence @f follows from Corollary3.4. O

Let G: [0,\] — M(K) be a compensation df|( »,; (Claim 5). We now define

G(a) if €0, \],

v+ady, + b0, if o =X\ and2 < i < wq,
v+a&i(a) + 06, ifae (N, e1)andl <i<wi,
v+ (a4 b)dy, if o =wr,

Er(a) =

whered := % if > 0 anda := 0if a < 0.

We next check thagr(«) is a compensation of («) for everya € K. This is clear
for a € [0, A1] (by the choice of7) anda € {)\;: 2 < i < wy} U {oo} (by Claim 6).
Takea € (A, Aiy1) for somel < i < wy. Thenp, is concentrated of\;, A;+1] with
1o (K) = a (Claim 3). Since;(«) is a compensation ¢f, (Claim 7), we have,(«) =0
whenevera < 0, while &;(a)(K) = a and0 < &(a) < ut whenevera > 0. In any
case, we havé¢;(«)(K) = o'. Note also thaF'(«)(K) = F(w1)(K) (by Claim 2, since
a > Ao > 3(0)). We now distinguish two cases.
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o If F(w1)(K) > 0, then
(@) (K) = (v +agi(a) +b'0u,)(K) = v(K) +a' + V' = F(w)(K) = F(a)(K)

(bear in mind thav + (¢’ + b')d.,, is @ compensation af'(w), see Claim 6).
Sincer < put, aé;(a) < &(a) < pt andd’ < max{b,0}, we conclude that

0 < p(a) < pt + pd + max{b,0}6,,, L F(a)*.

This shows thafr(«) is @ compensation df ().
o If F(w)(K) <0, theny = 0 anda’ = b’ = 0 (Claim 6), henc&r(a) = 0 is
the compensation af' («).

Finally, we check thaty is w*-continuous. Observe that the continuity&f on the
open sef0, \1] U U; <, (Ai, Aiv1) follows at once from thev*-continuity of G and
the ¢;s. On the other hand, for any < i < w;, we haveuy,,, = ady,,, (Claim 4),
hence;(A\iy1) = max{a,0}dy,,, and soa;(Ai+1) = a’dy,,,. The last equality and
the w*-continuity of §; at A\;+; ensure thatr is w*-continuous at\;;. To finish the
proof we show thatr is continuous atv;. Fix any A € Clop(K). By Lemmal4.p
applied to the restriction of(-)(A) to [0,w;), there exists some 4 < w; such that
Er(a)(A) = Ep(aa)(A) =i zaforall ay < a < wy. Choose2 < iy < w; such that
Ai > aq foreveryiy <i < wi. Thenzy = Ep(N)(A) = (v + d'dy, + 0., )(A) for
everyia < i <wi, andsary = (v + a’'du, + 00w, )(A) = Er(wi)(A4).

The proof of the theorem is over. O

Remark4.12 Using essentially the same arguments, one can prove bytiodubat the
ordinal intervall0, X,,] admits local compensation for eaghe N. It is not so clear to us
what happens at,,.

4.3. Some open problems.Let K be an arbitrary compact space.

(a) DoesC(K) have the BPB property for numerical radius?

(b) DoesK admit local compensation @' (K ') has the BPB property for numerical
radius?

(c) Is K metrizable if it admits a compensation function?

(d) DoesK admit a compensation function if it admits3, x-compensation func-
tion?

(e) DoesK admit aB (x)-compensation function if it admits a closeness function?
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