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ABSTRACT

This paper addresses the problem of solving a cooperative distributed planning (CDP)
task through an argumentation-based model. A CDP task involves building a central plan
amongst a set of agents who will contribute differently to the joint task based on their abili-
ties and knowledge. In our approach, planning agents accomplish the CDP task resolution
through an argumentation-based model that allows them to exchange partial solutions, ex-
press opinions on the adequacy of the agents’ solutions and adapt their own proposals for
the benefit of the overall task. Hence, the construction of the joint plan is coordinated via
a deliberation dialogue to decide what course of action should be adopted at each stage
of the planning process. In this paper, we highlight the role of argumentation for planning
tasks that require a coordinated behaviour for their resolution.

Keywords: Practical Reasoning, Distributed Planning, Conflict Management and Negotia-
tion, Argumentation-based Decision Support Systems.
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1 Introduction

Planning is the art of building control algorithms that synthesize a course of action to achieve a
desired set of goals. The mainstream in practical planning is that of using utility functions, which
are usually called heuristics, to evaluate goals, and choices of action or states on the basis of
their expected utility to the planning agent (Ghallab, Nau and Traverso, 2004). The application
of a fixed heuristic function allows the planning agent to filter out the alternatives that are
not regarded as acceptable by the agent, or, more precisely, to select the most preferable
alternatives.
Distributed planning generalizes the problem of planning in domains where several agents
plan and act together, and have to share resources, activities, and goals. In a Cooperative
Distributed Planning (CDP) approach, where the agents are assumed to be cooperative, the
emphasis is placed on how planning can be extended to a distributed environment. The plan-
ning agents of a CDP task exchange information about their plans, which they iteratively refine



and revise until they fit together (desJardins, Durfee, Ortiz and Wolverton, 1999). Typically,
research in Distributed Planning has been more concerned with the design of distributed plan-
ning architectures, mechanisms for plan coordination, or solutions for merging the resulting
local plans of agents into a global plan (Durfee, 1999; Durfee, 2001; Cox, Durfee and Bar-
told, 2005; de Weerdt, ter Mors and Witteveen, 2005). Unlike these approaches, which em-
phasize the problem of controlling and coordinating a posteriori local plans of independent
agents, our proposal focuses on argumentation mechanisms that allow agents to jointly devise
a global shared plan, i.e., to decide what course of action should be adopted at each stage of
the planning process.
Argumentation-based frameworks have been used for reasoning about what actions are the
best to be executed by an agent in a given situation. Dung’s abstract system for argumenta-
tion (Dung, 1995) has been applied on reasoning about conflicting plans and for generating
consistent sets of intentions from a contradictory set of desires (Amgoud, 2003; Hulstijn and
van der Torre, 2004). The work in (Simari, Garcı́a and Capobianco, 2004) presents a defeasi-
ble argumentation framework for the definition of actions and the combination of these actions
into plans. Other approaches like (Atkinson and Bench-Capon, 2007) propose undertaking
practical reasoning, i.e., reasoning about what to do, through the instantiation of an argument
scheme and associated critical questions (Walton, 1996; Atkinson, Bench-Capon and McBur-
ney, 2006). In all of the aforementioned works, arguments are not about whether some belief
is true, but about whether some action should or should not be performed.
We propose an argumentation model in which agents seek to jointly agree on a course of
action via a deliberation dialogue (McBurney, Hitchcock and Parsons, 2007), and whose final
objective is to form a competent global plan through the composition of the individual plans
proposed by the participants. Following the work in (Atkinson et al., 2006; Atkinson and Bench-
Capon, 2007), we interpret the instantiation of an argument scheme and associated challenges
through the semantics of a partial-order planning paradigm (Barrett and Weld, 1994; Ghallab
et al., 2004). Agents will use an argument scheme as a presumptive justification of the next
best step towards a solution plan. Challenges associated to the argument scheme will allow
the rest of the agents to attack or to defend this justification. The contribution of this paper is
thus to present an argumentation model for cooperatively solving a distributed planning task
through the instantiation of argumentation schemes to partial plans in order to identify how,
when, and with whom agents can contribute to the construction of the final plan. The ultimate
objective is to enhance the role of argumentation in a deliberative process that seeks common
agreement amongst all of the participating planning agents.
The paper is organized as follows. Section 2 presents the formalization of a planning task.
Then, on the basis of this formalization, we define a CDP organization, our working scenario.
Section 3 presents the argumentation model for a CDP task. Following Walton’s account of
practical reasoning, we define the instantiation of an argument scheme in a planning context,
and we provide formal semantics to the critical questions associated to this scheme. Section
4 outlines the interaction protocol followed by the agents to solve a CDP task, and section 5
presents a complete application example. Section 6 outlines some ideas on how our distributed
planning framework can be developed to account for non-cooperative agents. Finally, in section



7 we offer some some concluding remarks.

2 Formalization of a planning task

Recently, a number of attempts have been made to use argumentation to capture practical
reasoning, that is, reasoning about which actions are the best for a particular agent to do in
a given situation. These logic-based argumentation frameworks require capturing arguments
for generating consistent desires and plans in order to achieve the agent’s desires (Hulstijn
and van der Torre, 2004; Bench-Capon and Prakken, 2006). Desires are adopted if the world
state justifies the appropriate conditions for the desire and the agent has an executable plan
to achieve the desire (Rahwan and Amgoud, 2006). In contrast, reasoning in planning is con-
ducted by a goal-driven logic of action where goals are desires combined with commitments,
and the agent’s task is to find a world state and a course of action that is executable in this
state that achieves the goals. Thus, our work focuses exclusively on the generation of plans of
action to achieve the goals allocated to the agents.
Our system takes as input an action domain description in which actions are described by
their precondition axioms and direct effect axioms. In particular, we consider the STRIPS
language (Fikes and Nilsson, 1971), where an action is described by a first-order formula that
describes the conditions under which the action is executable (the action’s preconditions), and
also describes an add list and a delete list that enumerate the propositions that the action
will make true and false, respectively, when the action is successfully executed in a situation.
Although the STRIPS assumption imposes some limitations for describing actions in the real
world, it is still a valid formalism for expressing the consequences of actions and the conditions
under which a goal is achievable.
The base entities in STRIPS planning are facts, i.e., predicates whose arguments are constants
or variables. A ground fact, or proposition, is a fact where all its arguments are constants. We
will denote the set of all propositions by P. A planning state s is defined as a finite set of
true propositions s ⊆ P. An action a is a tuple a = (pre(a), add(a), del(a), cost(a)), where
pre(a) ⊆ P is the set of propositions that represents the action’s preconditions, add(a) ⊆ P
and del(a) ⊆ P are the sets of propositions that represent the positive and negative effects,
respectively, and cost(a) is the action cost.
A planning agent is assigned a (grounded) planning task as a triple T = 〈Ω, I,G〉, where Ω
is the set of deterministic actions of the agent’s model that describes the state changes, and
I ⊆ P (the initial state) and G ⊆ P (the goals) are sets of propositions. A solution plan for a
planning task T is a plan or set of actions Π = {a1, . . . , an} ∈ Ω∗ such that when applied to I,
it leads to a final state in which G holds. A planning task T is solvable if there exists at least
one plan for it.
In distributed planning, agents will contribute to the global plan being developed in the form of
partially ordered networks of actions and subgoals (desJardins and Wolverton, 1999). In the
Partial-Order Planning (POP) approach (Penberthy and Weld, 1992; Barrett and Weld, 1994),
search is done in the space of incomplete partially ordered plans rather than in a state-based
space. In the following, we define a partial-order plan and all the elements that are involved,



as this will be the core of our argumentation model.

Definition 1. A partial order plan is a triple Π = 〈A,OR, CL〉, whereA ⊆ Ω is the set of ground
actions1, OR is a set of ordering constraints (≺) over A, and CL is a set of causal links over A.
A causal link is of the form (ai, p, aj), and denotes that the precondition p of action aj will be
supported by an add effect of action ai.

This structural definition of a partial order plan actually represents a mapping of a plan into
a directed acyclic graph, where A represents the nodes of the graph and OR ⊆ A × A and
CL ⊆ A×A are sets of directed edges representing the required precedences of these actions
and the causal links among them, respectively.

Definition 2. A partial order plan Π = 〈A,OR, CL〉 is conflict-free if it has no unsafe causal
links and there exists a total ordering of the actions in A that is consistent with OR (i.e., topo-
logical sort). Let (ai, p, aj) ⊆ CL; (ai, p, aj) is unsafe if there exists an action ak ∈ A such that
p ∈ del(ak) and OR ∪ {ai ≺ ak ≺ aj} is consistent.

An unsafe causal link indicates that an action might possibly interfere with the precondition
being supported by the causal link. In such a case, it is said that ak threatens the causal link
and hence the proposition supported by the causal link. A causal link flaw can be repaired by
either promotion, i.e., adding the ordering constraint ak ≺ ai to OR, or demotion, i.e., adding
aj ≺ ak to OR. In what follows, the function threats(Π) returns the unsafe link flaws of a
given plan Π.

Definition 3. A partial order plan Π = 〈A,OR, CL〉 is incomplete if it has open conditions. Let
ai ∈ A; if ∃p ∈ pre(ai)∧ 6 ∃aj ∈ A/(aj , p, ai) ⊆ CL, then p is said to be an open precondition.
On the contrary, a partial order plan Π is complete if it has no open conditions.

A precondition of an action that has not yet been satisfied is called an open condition. There
are two general mechanisms for solving an open condition p: either an action that is already in
A has a positive effect that unifies with p, or a new action that supports p must necessarily be
inserted in Π. In what follows, the function open cond(Π) returns the open condition flaws of
a given plan Π.

Definition 4. A partial order plan Π = 〈A,OR, CL〉 is a solution plan for a planning task T if Π
is conflict-free and complete.

Given a planning task T = 〈Ω, I,G〉, a POP algorithm starts with an empty partial plan and
keeps refining it until a solution plan is found. The initial empty plan Π0 = 〈A,OR, CL〉 contains
only two dummy actions A = {a0, af}, where pre(af ) = G, add(a0) = I, CL = ∅, {a0 ≺ af} ⊆
OR, threats(Π0) = ∅ and open cond(Π0) = G. The empty plan has no causal links or threat
flaws, but, has open condition flaws corresponding to the preconditions of af (the top-level
goals G).

A POP algorithm works through the application of successive refinement steps at each itera-
tion. A refinement step involves selecting a flaw (threat or open condition) in a partial order

1Partial-order planners are capable of handling partially instantiated action instances and hence, the definition of
a partial order plan typically includes a set of equality constraints on free variables inA (Penberthy and Weld, 1992).
We will, however, restrict our attention to ground action instances without any loss of generality for our purposes.



plan Πi = 〈Ai, CLi,ORi〉 and resolving it by adding a new ordering constraint in ORi, a new
causal link in CLi or a new action in Ai, thus resulting in a new partial plan Πj . A refinement
step can therefore be regarded as a plan structure, and Πj as the result of the composition of
two plans.

Definition 5. A plan Πj = 〈Aj , CLj ,ORj〉 is a refinement of a plan Πi = 〈Ai, CLi,ORi〉 for a
planning task T if and only if Ai ⊆ Aj , ORi ⊆ ORj and CLi ⊆ CLj .

A refinement plan Πj is actually a composite plan resulting from the composition of Πi, the base
plan, and a refinement step Π′, where Π′ = 〈A′, CL′,OR′〉 and Aj = Ai ∪ A′, CLj = CLi ∪ CL′
and ORj = ORi ∪ OR′. We will denote the plan composition as Πj = Πi ◦Π′.
Since POP algorithms monotonically increase the set of causal links and actions, each iteration
returns a refinement of the initial plan Π0 (Penberthy and Weld, 1992). It is important to note
that a larger number of actions, causal links or orderings of a composite plan Πj may embody
a step ahead towards a solution, but it does not necessarily imply a net gain over Πi in terms
of open conditions or unsafe causal links. Heuristics are specifically used at this point to
estimate the difficulty of reaching a solution from a given plan, and POP approaches usually
apply heuristics that consider the number of pending open conditions and threats (Gerevini
and Schubert, 1996).

2.1 Cooperative Distributed Planning

A Cooperative Distributed Planning (CDP) organization, as defined in this paper, is formed by
a group of non-self-interested planning agents who join together to achieve the goals G of a
planning task T = 〈Ω, I,G〉. A planning agent is an entity with planning capabilities and as
such can be assigned a planning task and solve it. However, in our CDP organization, there is
no specific assignation of (sub)planning tasks to agents because there is no specific allocation
of a subset of goals from G to each agent. In our approach to CDP, G is a joint goal set that
exists in all agents by design. Agents cooperate either because they do not have a complete
view of the world or simply because solving a problem that requires collective effort, like the
construction of a plan, is better accomplished when working with other agents (Durfee, 2001).

Definition 6. A CDP task is defined as a tuple 〈AG,Ω, I,G〉 where AG = {ag1, ag2, . . . , agn} is
a finite, non-empty set of agents such that I =

⋃

∀agi∈AG

Ii, and Ω =
⋃

∀agi∈AG

Ωi.

This definition states that the initial state of the problem is the union of the initial agent’s beliefs,
and the actions of the CDP task is the union of the individual actions of all agents. Distributed
information, expertise, or resources are common characteristics in inherently distributed do-
mains although they are not mandatory requirements for a CDP organization. We want to
highlight that in our CDP conception, distribution is related to a dynamic allocation of goals
among the agents in AG, i.e., there is not an a priori static allocation of individual goals to
each agent involved in the problem.
Goal or task allocation is one of the activities that has received much attention in distributed
planning, typically being undertaken through a resource allocation process. There are, how-
ever, other methods to establish such a task assignment in a more distributed way, e.g., via



agent coalition formation (Shehory and Kraus, 1998), market mechanisms to analyze eco-
nomic efficiency in decentralized task allocation (Walsh and Wellman, 1999), or via contracting
mechanisms (Lesser, Decker, Wagner, Carver, Garvey, Horling, Neiman, Podorozhny, Nagen-
draPrasad, Raja, Vincent, Xuan and Zhang, 2004). In our approach, the problem of deter-
mining which agent is more competent to solve a particular goal is dynamically solved during
the argumentation process. At this stage, agents analyze how a particular choice of action,
and the order in which the actions are executed will affect the overall performance and ensure
the long-term effectiveness of the plan under construction. The objective of the argumentation
process is thus to optimize the agents’ combined efforts.
The core elements in our CDP organization are the partial order plans proposed and ex-
changed by the agents, which they iteratively refine and revise until they fit together. Given
a CDP task T = 〈AG,Ω, I,G〉, the starting base plan for solving T is the initial empty plan
Π0. Next, an agent in AG makes a refinement step proposal to solve any open conditions in
Π0. An argumentation process is then initiated by the agents to attack or support this agent
proposal. Once a refinement step proposal Πi, that is argued by agent agi is approved, a com-
posite plan Π0 ◦ Πi is created as the new base plan. The process is subsequently repeated
until T is solved. Therefore, a solution plan for T is a joint plan that is formed by a collection
of partial plans argued by the agents in the society such that the composition of these partial
plans solves T .

Definition 7. Given a CDP task T = 〈AG, Ω, I,G〉, a joint solution plan ΠT for T is a sequence
of pairs ΠT = 〈(Π0, agi), . . . , (Πl, agk)〉 where:

1. A pair (Πi, agj) ⊆ ΠT indicates that the plan Πi is a refinement step that is argued by
some agj , and finally accepted by all agents in AG

2. Given two pairs (Πi, agj) and (Πk, agl) in ΠT , agj = agl or agj 6= agl

3. The result of Π0 ◦Π1 ◦ . . . ◦Πl is a conflict-free and complete plan that achieves G

A coordinated behaviour in a CDP organization is achieved through cooperation. In our case,
cooperation is implicitly encoded in the composition function; the contribution of an agent must
fit the previously approved plan as well as conduct the composite plan towards a joint solution
plan. We identify three different modes of cooperation:

• Assistance. Overcome the limitations of an agent to achieve a particular goal by dele-
gating the task to other agents. This is the case of having an agent achieve the open
conditions of the refinement step of another agent.

• Synchronization. Agents agree on some coordination to synchronize their actions so as
to avoid negative interactions (threats) in their respective contribution plans.

• Improvement. Agents may offer an alternative choice of action to achieve the goal at-
tained by another agent when the proposed alternative turns out to be a more efficient
solution than the original plan proposal (in terms of optimization criteria).



Assistance is likely to be the cooperation mode that best defines coordinated behaviour. In our
CDP organization, assistance is implicitly encoded in the agent’s behaviour without the need of
an explicit request for help to others. Synchronization is a common coordination mechanism in
planning systems to avoid conflicting goals or conflicting situations, particularly, in plan merging
methods aimed at the construction of a joint plan, given the individual plans of each of the
participants. Finally, improvement is subject to internal agent modeling, which typically follows
a specific optimization metric such as time cost, resource cost, or net-benefit.
The refinement steps contributed by the agents to the joint plan must be compliant with the
cooperation modes besides ensuring that the construction of the joint plan progresses suc-
cessfully towards a solution plan. Let (Π′, agk) be the refinement step contributed by agent agk

to a base plan Πi:

• Π′ may be an incomplete plan, i.e., it may contain open conditions that, hopefully, will be
solved by other agents through assistance during the argumentation process.

• Π′ is a conflict-free plan such that |threats(Πi ◦ Π′)| = 0, that is, the composite plan
Πi◦Π′ must be a conflict-free plan as well. The possible synchronization interactions with
other agents’ proposals will also be revealed during the argumentation process.

• Πi◦Π′ must improve the current base plan, i.e., promote progress towards a joint solution
plan. Therefore, Π′ must solve at least one open condition in Πi.

Definition 8. A plan Πj = Πi ◦ Π′ is a valid refinement of a plan Πi for a planning task T iff
Πj is a refinement of Πi, Πj is conflict-free, and there exists a set of propositions P such that
P ⊆ open cond(Πi) ∧ P 6⊆ open cond(Πj). Note that open cond(Πj) = (open cond(Πi) \
P ) ∪ open cond(Π′).

3 Argumentation-based model for CDP

In this section, we propose an adaptation of the computational representation of practical argu-
mentation presented in (Atkinson et al., 2006; Atkinson and Bench-Capon, 2007) for solving a
CDP task. These works, which present an extension to the explanation of presumptive reason-
ing in terms of an argument scheme and associated critical questions popularized by Walton
(Walton, 1996), are very suitable for representing the central piece of our argumentation-based
model, a partial-order plan. Nevertheless, we will point out some different interpretations and
the necessary adaptations to fit a CDP task.
This section is divided into two subsections. The first one presents the instantiation of argument
schemes to partial-order plans. The second subsection details the challenges that agents will
pose to a given argument.

3.1 Instantiation of argument schemes

Our argumentation framework is aimed at deciding whether the refinement step contributed by
an agent to a base plan is a good alternative at each choice point. Given a current base plan,



which is initially the empty plan Π0, an agent can suggest a refinement over the base plan
that, according to its beliefs and capabilities, represents a good step toward the goals. In most
cases, this is a presumptive argument since agents do not usually have complete knowledge of
the world and the capabilities of the other agents. Formally, we define a partial plan argument
as follows:

Definition 9. Given a CDP planning task T = 〈AG, Ω, I,G〉, a partial plan argument is a pair
PPA = 〈Πi,Π′〉, where plan Πi is a valid refinement of the initial plan Π0 for T and Πi ◦Π′ is a
valid refinement of Πi.

Basically, this definition states an argument as the presumptive partial plan put forward by an
agent, Π′, as a contribution to the joint plan under construction, Πi. Similarly to the argument
scheme developed in (Atkinson et al., 2006), we define an argumentation scheme (AS) that
responds to our definition of argument. Thus, we have:

AS In the current circumstances and considering the current base plan Πi

Agent agi should perform the refinement step Π′

Which will result in a new partial plan Πj

Which will realise some subgoals G

Which will promote some values V

The argument scheme is interpreted as follows:

• The current circumstances are given by, I, the initial state of the problem. Even though
agents may have only a partial knowledge of the world, their beliefs are always true
and the only mechanism for changing their view of the world is through the execution of
planning actions. On the other hand, Πi is the last base plan approved by all the agents
over which they will articulate their arguments to continue the construction of the joint
plan. The current circumstances along with the base plan make up the support of the
partial plan argument.

• Π′ represents the refinement step argued by agent agi, i.e., the presumptive contribution
of agi.

• Πj = Πi ◦ Π′ is a valid refinement, the plan that results from the composition of the
plan base and the refinement suggested by agi. Contrary to the action-based alternating
system (van der Hoek, Roberts and Wooldridge, 2007) that is used in (Atkinson and
Bench-Capon, 2007), states are not explicitly represented in plan-based approaches.
However, Πj represents itself the new current planning situation, and, hence, it maintains
valuable information such as the open conditions or side-effects of the new planning
snapshot.

• G is the set of goals achieved by Π′, i.e., G = open cond(Πi) \ open cond(Πj); it
contains the solved open preconditions of Πi, some of which can be top-level goals from
G. Note we admit a set of goals rather than a single goal because a planning action may
achieve more than one goal, which in terms of planning optimization is always preferable.



• V is a set of two function values, cost and progress:

– cost : Πj → R+
0 represents the cost of the plan Πj . The utility function defined in

the agent planning model is to minimize the cost of the final plan, where cost is
defined as a generic numeric function whose semantics depends on the planning
problem. For instance, if cost represents the fuel consumption in a transporta-
tion problem, the cost of a plan Πj = 〈Aj ,ORj , CLj〉 is calculated as cost(Πj) =∑
∀a∈Aj

cost(a). However, if cost is the plan duration, the plan cost is computed
as the duration of the longest sequence of actions in Πj . It is important to note that,
in case Πj is an incomplete plan, this function does not account for the cost of the
potential actions which will be further inserted to solve the pending open conditions
in Πj . Therefore, accurate heuristic functions to estimate the cost of the further
refinements of Πj would be desirable, but this is out of the scope of the paper.

– progress : Πi × Π′ → R+
0 represents the progress brought by the refinement step

Π′ to the base plan Πi. Assuming Πj = Πi ◦ Π′, progress(Πi, Π′) represents a
progression step of Πi towards a solution, i.e. the improvement of Πj with respect
to Πi. More particularly, progress(Πi, Π′) measures the number of pending open
conditions in Πi (top-level goals or subgoals) which are solved with the composite
plan Πj . Given two refinement steps, Π′ and Π′′, over Πi, such that Πj = Πi ◦ Π′

and Πk = Πi ◦Π′′, progress(Πi, Π′) > progress(Πi,Π′′) if the composite plan Πj

solves more open conditions of Πi than Πk. In case that both Πj and Πk solve the
same number of goals in Πi, we will consider that the composite plan that leaves
fewer open conditions progresses more than the other one towards a solution. In
other words, the fewer pending open conditions of a composite plan, the closer will
be the plan to a solution and, therefore, the greater the progress of the plan.

Now, we have all necessary ingredients to initiate the debates among agents in order to select
the most appropriate partial plan at each particular choice point.

3.2 Argument evaluation

The specific situation that we consider is the following: given a CDP task T and a partial plan
argument PPA = 〈Πi, Π′〉 proposed by agent agi, agents will try to persuade or convince each
other of the convenience of proceeding through Πj = Πi ◦ Π′ to solve T . We will see how to
adapt the critical questions or attacks defined in (Atkinson et al., 2006) to our argumentation
framework as well as the necessity of defining a defence relationship.
Let us first analyze the nature of the possible attacks. As mentioned above, the lack of un-
certainty and the use of deterministic planning actions in our model allow us to rule out the
consideration of critical questions concerned with the problem of formulating or denying of
premises. This leads us to affirm there are neither discrepancies about the current circum-
stances or base plan nor disputes about the truth of the goals, side-effects, open conditions,
or values achieved by Π′. Therefore, we only have to consider the critical questions concerned
with the choice of action, as is the case in a classical planning formalism.



The first point to note is that our argument scheme accounts for all the goals achieved by Π′

as well as for all the consequences raised by such a plan. Hence, since all possible effects
are covered and encoded in Π′, there is no need to attack a proposal for some unconsidered
consequence. In short, our framework specifically deals with disputes on the alternatives used
by Π′ to achieve the elements of the argument and with the conflicting situations that prevent
Πj from progressing.
When an argument receives a negative evaluation, this comes together with a justification. It
is important to note that, in a CDP organization, we must promote progress towards a minimal
cost solution plan. Hence, a negative evaluation is articulated in case the attacking agent
provides a reasonable justification of its attack. In other words, an attack is only put forward by
an agent if it can justify that the attack presumptively represents an advantage over the original
proposal. More specifically, given the argument scheme AS described above, we can define
the following negative evaluations:

Negative Evaluation 1: alternative way of achieving G (NE1)

• Attack: There is another refinement step Π′′ such that Πi ◦Π′′ is a valid refinement of Πi

and open cond(Πi) \ open cond(Πi ◦Π′′) is the same set as G.

• Justification: Π′′ promotes cost, i.e., cost(Πi ◦Π′′) < cost(Πi ◦Π′)

Negative Evaluation 2: alternative way of achieving G (NE2)

• Attack: There is another refinement step Π′′ such that Πi ◦Π′′ is a valid refinement of Πi

and open cond(Πi) \ open cond(Πi ◦Π′′) is the same set as G.

• Justification: Π′′ promotes progress, i.e., progress(Πi, Π′′) > progress(Πi, Π′)

NE1 and NE2 denote the presumptive existence of an alternative plan that achieves the same
G but promoting any of the two values. Note that the two evaluations can be regarded as a
direct combination of CQ5 and CQ6 in (Atkinson et al., 2006), and they are indirectly related to
CQ8 and CQ9 because, if the presumptive justification is right then it means Π′ demotes the
cost or the progress.

Negative Evaluation 3: alternative way of promoting V (NE3)

• Attack: There is another refinement step Π′′ such that Πi ◦Π′′ is a valid refinement of Πi,
where G′ is the set of goals solved by Πi◦Π′′, i.e., G′ = open cond(Πi)\open cond(Πi◦
Π′′), and G and G′ are two different sets of goals.

• Justification: Π′′ promotes cost, i.e., cost(Πi ◦Π′′) < cost(Πi ◦Π′)

Negative Evaluation 4: alternative way of promoting V (NE4)

• Attack: There is another refinement step Π′′ such that Πi ◦Π′′ is a valid refinement of Πi,
where G′ is the set of goals solved by Πi◦Π′′, i.e., G′ = open cond(Πi)\open cond(Πi◦
Π′′), and G and G′ are two different sets of goals.

• Justification: Π′′ promotes progress, i.e., progress(Πi, Π′′) > progress(Πi, Π′)



NE3 and NE4 can be indirectly regarded as a combination of CQ7-CQ8-CQ9. However, none
of the critical questions in (Atkinson et al., 2006) fit our alternative ways of promoting V . Ob-
serve that, the concrete critical question here should be ”Is there any alternative way of pro-
ceeding towards a solution?” and, we might add, ”rather than solving G”. This critical question
deserves a special consideration, when solving a CDP task, for two reasons:

1. In planning, it is necessary not only to handle the choice of action but also the choice
of goal because the order in which goals are selected for solving is decisive in the com-
pleteness and soundness of the resolution process.

2. Solving a CDP task involves an incremental construction of a solution. The agents’ oppor-
tunism to recognize and respond to potential partial plans will depend on the composite
plan, and, more particularly, on when this plan appears, which is dependent on the choice
of goal.

Finally, we define the negative evaluation concerned with the conflicts between plans.

Negative Evaluation 5: conflicts in the promotion of progress (NE5)

• Attack: There is no refinement step Π′ such that Πi ◦Π′ is a valid refinement of Πi

• Justification: Given S, a non-empty set of open preconditions of Πi (S ⊆ open cond(Πi),
there is no refinement step that achieves S, thus not promoting the progress of Πi with
respect to the set S.

NE5 states the impossibility of an agent to solve a particular combination of open conditions,
S, in Πi. In contrast with the impossibility for the agent to achieve a particular goal due to its
own capabilities, the articulation of NE5 is exclusively referred to the plan Πi. In consequence,
we need to distinguish between these two incompatibilities of preventing Πi from progressing
towards a solution plan. If an agent is not endowed with the appropriate capabilities for achiev-
ing a goal, it will never be able to achieve such a goal, no matter what the planning argument
under discussion is. However, an agent might dispose of the necessary resources and capabil-
ities to achieve the goal and not be capable to successfully attain it because of the information
comprised in Πi. If we assume that NE5 is always concerned with the structural composition
of Πi, then the absence of NE5 could mean a permanent incapacity of the agents to achieve a
goal or viceversa.
One way to make such a distinction is by including positive evaluations to an argument in
our framework. A positive evaluation is made by an agent when it can solve a set, S, of open
conditions of Πi, thus promoting its progress:

Positive Evaluation 1: no conflicts in the promotion of progress (PE1)

• Attack: There is a refinement step Π′ such that Πi ◦Π′ is a valid refinement of Πi

• Justification: Given S, a non-empty set S of open preconditions of Πi (S ⊆ open cond(Πi)),
there is a refinement step Π′ such that S ⊆ open cond(Πi) \ open cond(Πi ◦ Π′) ∧
|threats(Πi◦Π′)| = 0, thus promoting the progress of Πi, i.e., ∃Π′/progress(Πi,Π′) >

0 with respect to the set S.



4 CDP protocol

In this section, we present a basic interaction protocol for solving a CDP task. The goal of this
protocol is to show how the proposed argumentation model can be used to cooperatively solve
the problem. We assume that agents are ordered according to their indexes: 1, 2, ..., n. This
protocol follows a rotating shift approach in which an agent can only participate during its turn.
Initially, the turn is on the first agent ag1, and the current base plan, Πi, is the empty plan
Π0, which only contains the two fictitious actions a0 and af . The protocol is divided into the
following stages:

1. Proposal of a partial plan argument PPA = 〈Πi,Π′〉. On the agent’s turn, it can make
a proposal on the current base plan if it knows a valid refinement Πj = Πi ◦ Π′ to Πi. If
the agent cannot contribute to the joint plan under construction, then it passes the turn
to the following agent. After a complete round without any proposal, a backtracking step
is carried out.

2. Backtracking step. This step occurs when the current base plan cannot make progress
towards a plan solution. Then, Πi is rejected, and the current base plan is replaced by
the corresponding base plan of Πi. If the initial base plan Π0 is rejected, then there is no
solution for the CDP task. Otherwise, the protocol continues with the following stage.

3. Argument evaluation. The current proposal 〈Πi,Π′〉 is evaluated at this stage. On the
agents’ turn, they can present alternative ways to refine Πi (NE1-NE4). They can also
attack (NE5) and/or defend (PE1) the current proposal, Π′, or any of the alternative refine-
ment steps presented. This stage ends after a complete round without any evaluation.
After this stage, we have a set of refinement steps for the current base plan: Π′ and the
set of proposed alternatives. Then, agents analyze the negative and positive evaluations
for each refinement step to figure out which refinement steps are unfeasible. A refine-
ment step Π′′ is considered unfeasible when Πi◦Π′′ has open preconditions that no agent
can achieve, which can be deduced from the NE5 and PE1 evaluations. If there is no
feasible refinement step for Πi, then a backtracking step is carried out.

4. Voting. At this stage, agents vote for the feasible refinement step they consider to be
more advisable according to their own preferences and beliefs. The next current base
plan will be Πi concatenated with the refinement step with the highest number of votes
and, in case of tie-breaking, the agent who has the turn will make the final decision. If the
new current base plan Π is a solution plan for the CDP task, then the process ends with
successfully. Otherwise, the process continues with a new PPA proposal (first stage).

The following section illustrates how this protocol is applied to an example scenario to obtain a
solution to a CDP task.

5 Example of application

Figure 1 shows the planning scenario where we will put our argumentation-based model to
work. This example is inspired by the one proposed in (Parsons, Sierra and Jennings, 1998).



The planning task is to hang the two pictures, p1 and p2, within 50 time units, hence, the
problem has two top-level goals: g1 = hung(p1, l1) and g2 = hung(p2, l2). The utility function
to minimize is the plan duration, so the cost of an action corresponds to its duration in this
example.

Figure 1: Scenario of the application example

There are two agents to undertake this mission: AG = {ag1, ag2}. Agent ag1 can hang the
pictures by making use of one of two resources, the hand drill d or the hammer h. Agent ag2

is only able to use the hammer to hang a picture. There are seven different locations in this
scenario l1, . . . , l7. Agents can walk from one location to an adjacent one. Adjacent locations
are linked with a line in Figure 1. Walk actions take 10 time units whereas the duration of the
rest of the actions is one time unit.
The actions the agents can perform are the following ones:

• walk(agi, lj , lk): agent agi walks from location lj to lk, which must be adjacent locations.

• pickup(agi, rj , lk): agent agi picks up a resource, which can be the hammer or the hand
drill, in lk. Both the agent and the resource must be in lk.

• pass(agi, agj , ln, rk): agent agi passes the resource rk, which can be the hammer or
the hand drill, to agj in location ln. Both agents must be in ln, and agi must have the
resource.

• hang(agi, pj , lk, rn): agent agi hangs the picture pj with the resource rn in location lk.

The argumentation process starts with an empty base plan Π0. Agent ag1 proposes the first
partial plan argument:

Arg1 [ag1]: ag1 proposes 〈Π0, Π0.1〉, where Π0.1 is a partial plan to hang p1 with the hand drill.
Π0.1 = 〈walk(ag1, l7, l6), pickup(ag1, d, l6), walk(ag1, l6, l4), walk(ag1, l4, l3), walk(ag1, l3,

l1), hang(ag1, p1, l1, d)〉,
which promotes the value of progress(Π0, Π0.1) because Π0◦Π0.1 realizes the open goal

g1 of Π0.

Then, agent ag2 articulates its evaluations to Arg1:



Ev1. [ag2] PE1: ag2 has a valid plan refinement Π0.1.1 to solve g2, thus promoting the value of
progress(Π0 ◦Π0.1,Π0.1.1)

Π0.1.1 = 〈pass(ag1,ag2,h,l5),walk(ag2, l5, l2), hang(ag2, p2, l2, h)〉
Ev2. [ag2] NE3: ag2 proposes Π0.2 as an alternative plan to Π0.1 because it solves g2 and
cost(Π0 ◦Π0.2) < cost(Π0 ◦Π0.1)

Π0.2 = 〈pass(ag1,ag2,h,l5),walk(ag2, l5, l2), hang(ag2, p2, l2, h)〉

With evaluation Ev1, ag2 states that it can hang picture p2, i.e., the top-level goal g2. However,
as can be observed in plan Π0.1.1, ag2 needs to receive the hammer from ag1 in location l5 be-
cause going to l7 to pick up the hammer, and then hang p2, takes 72 time units, which exceeds
the imposed time limit. This means that the effect has(ag2, h, l5) of the action pass(ag1,ag2,h,l5)
in plan Π0.1.1 depends on the previous achievement of the open condition has(ag1, h, l5).
The second evaluation, Ev2, argues that it is preferable to hang p2 first because ag2 believes
it is preferable to start with a less costly plan. Note that plan Π0.2 also has the same open
condition as Π0.1.1 (has(ag1, h, l5)) because, in this proposal, ag2 expects likewise that ag1

passes it the hammer at location l5.
After these two evaluations, ag2 passes the turn to ag1:

Ev3. [ag1] PE1: ag1 has a valid plan refinement Π0.2.1, which promotes the progress of Π0◦Π0.2

because it solves the open condition has(ag1, h, l5), and, consequently, it achieves the fact
has(ag2, h, l5)

Π0.2.1 = 〈pickup(ag1, h, l7), walk(ag1, l7, l6), walk(ag1, l6, l4), walk(ag1, l4, l5), pass(ag1,
ag2, l5, h)〉.
Ev4. [ag1] NE5: ag1 cannot refine Π0 ◦ Π0.2 to solve both has(ag1, h, l5) and g1; that is, there
is no refinement step Π′ that solves S = {has(ag1, h, l5), g1}; so every attempt to solve S does
not promote the progress of Π0 ◦Π0.2 with respect to the set S.

Agent ag1 evaluates the alternative plan Π0.2 proposed by ag2 in Ev2. As can be observed, the
plan Π0 ◦ Π0.2 has two open conditions: has(ag1, h, l5) and g1, which is the pending top-level
goal in this composite plan. The positive evaluation Ev3 shows that ag1 can pass the hammer
to ag2, thus solving has(ag1, h, l5). However, in Ev4, ag1 argues that it cannot solve both open
conditions within the time limit; i.e., going to l5 to pass the hammer to ag2, and hanging the
picture p1 takes 64 time units. The overall argumentative process about Arg1 is depicted on
the left side of Figure 2.

Next, agent ag1 passes the turn to ag2:

Ev5. [ag2] NE5: ag2 cannot refine Π0 ◦ Π0.2 because it cannot solve either the open condition
has(ag1, h, l5) or the top-level goal g1, so it cannot promote the progress of Π0 ◦Π0.2 towards a
solution plan.

Now, it is clear that Π0 ◦ Π0.2 is unfeasible because there is no way for agent ag2 to have the
hammer at l5 to hang the picture p2 at l2, and have the picture p1 hung at l1 within the deadline.
In other words, it is not possible to satisfy both g1 and g2 via plan Π0 ◦ Π0.2 because the open
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Figure 2: Evaluations of the argumentation process carried out by the agents

conditions in Π0 ◦Π0.2 cannot be solved within the deadline by either of the two agents, or any
cooperation between them. This conclusion is reported through evaluations Ev4 and Ev5 so
both agents are aware of the impracticability of this refinement.

Since the agents do not make more evaluations, they vote for the following base plan. The only
feasible refinement is Π0 ◦ Π0.1, so it becomes the new base plan. Agent ag2 then proposes a
partial plan argument for this new base plan:

Arg2 [ag2]: ag2 proposes 〈Π0 ◦Π0.1,Π0.1.1〉, where Π0.1.1 is a partial plan to hang the picture p2
with the hammer.

Π0.1.1 = 〈pass(ag1,ag2,h,l5),walk(ag2, l5, l2), hang(ag2, p2, l2, h)〉,
which promotes the value of progress(Π0 ◦ Π0.1, Π0.1.1) because it achieves the open

condition g2 of Π0 ◦Π0.1.

Then, agent ag1 starts the evaluation of Arg2, which can be seen on the right side of Figure 2:

Ev1. [ag1] NE5: ag1 cannot refine Π0 ◦ Π0.1 ◦ Π0.1.1 to solve has(ag1, h, l5), so there is no valid
refinement step Π′ that increases the value of progress(Π0 ◦Π0.1 ◦Π0.1.1, Π′)

Agent ag1 argues that it cannot pass the hammer to ag2 in l5 because approaching to l5 will
prevent ag1 from hanging p1 within the specified deadline. Following, agent ag2 confirms that
Π0 ◦Π0.1 ◦Π0.1.1 is unfeasible and proposes an alternative refinement step for Π0 ◦Π0.1:

Ev2. [ag2] NE5: ag2 cannot refine Π0 ◦ Π0.1 ◦ Π0.1.1 to solve the open condition has(ag1, h, l5),
thus not promoting the progress of this plan
Ev3. [ag2] NE2: ag2 proposes a new plan, Π0.1.2, that also solves g2 and progress(Π0 ◦
Π0.1,Π0.1.2) > progress(Π0 ◦Π0.1,Π0.1.1)

Π0.1.2 = 〈walk(ag2, l5, l4), pass(ag1,ag2,h,l4), walk(ag2, l4, l5), walk(ag2, l5, l2), hang(ag2,
p2, l2, h)〉

Agent ag2 argues that plan Π0.1.2 is a less costly way for ag1 to pass it the hammer. Through an
examination of plan Π0.1, ag2 knows that ag1 will go through location l4 to hang the picture p1,
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Figure 3: The obtained solution plan, Πsol, for the proposed problem example. Dark ellipses
and white ellipses are actions executed by ag1 and ag2, respectively.

so it proposes a plan in which ag2 moves to l4 so that ag1 can pass it the hammer. In particular,
the plan Π0.1.2 attains the fact at(ag2, l4) so the two agents coincide at the same location,
thus solving two of the preconditions of the action pass(ag1,ag2,h,l4), namely at(ag1, l4) and
at(ag2, l4). In contrast, the plan Π0.1.1 expects ag1 to move to l5 to pass the hammer to ag2,
so the precondition at(ag1, l5) is still an open condition that has to be satisfied for the action
pass(ag1,ag2,h,l5). Therefore, Π0.1.2 leaves fewer open conditions than Π0.1.1 and, therefore,
the progress of Π0.1.2 to the base plan is greater than the progress of Π0.1.1.
Over this proposal, ag1 proposes a positive evaluation to solve the pending open condition
has(ag1, h, l4), for that ag1 can pass the hammer to ag2 at l4. The last refinement step proposed
by ag1 only comprises the action pickup(ag1, h, l7).

Ev4. [ag1] PE1: ag1 has a valid plan refinement Π0.1.2.1 to solve has(ag1, h, l4), which promotes
the value of progress(Π0 ◦Π0.1 ◦Π0.1.2, Π0.1.2.1)

The resulting plan Πsol = Π0 ◦ Π0.1 ◦ Π0.1.2 ◦ Π0.1.2.1 is shown in Figure 3. This plan achieves
all top-level goals and does not have open conditions, so it is a solution plan for the planning
task. The cost of this plan is the duration of the longest sequence of actions, that is, 44 time
units. At this point, agents can finish the argumentation process or they can continue sending
new partial plan arguments to improve the cost of the current solution plan.

6 Extending CDP to non-cooperative agents

Our CDP organization only considers cooperative agents and deliberatively ignores the exis-
tence of self-interested agents with private interests. In this paper, our main purpose was to
present an initial approach for an argumentation model that is specifically devoted to solving
planning tasks that are better solved through cooperation. However, our CDP organization can
be easily extended to a scenario with non-cooperative agents. Typically, in distributed plan-
ning, agents do not have a complete view of the world but, rather a partial visibility, so not all
information is accessible to all agents. Additionally, when dealing with self-interested agents,
the existence of private goals (and perhaps conflicting goals) is commonly assumed. The par-
tial visibility encourages cooperation provided that agents cannot achieve their own goals by
themselves; privacy endangers cooperation as private goals may prevail over global ones. Fol-



lowing, we outline some ideas about how to extend the CDP organization to take into account
these issues:

• Partial visibility or local knowledge of the world is easily represented by limiting the initial
knowledge I and the set of abilities Ω of each agent. Under this new perspective, since
agents do not have a complete knowledge of the world, solving a CDP task will require
cooperation because, otherwise, it could not be solved. At this point, it is also important to
determine the level of communication among agents and which knowledge/data agents
will exchange with each other, while keeping privacy. This is a key aspect in CDP organi-
zations because agents must somehow decide the information they are willing to share in
order to promote cooperation. In this respect, it is necessary for agents to share a com-
mon ontology in order for them to know which information can be exported to/imported
from others and thus how they can help each other.

• Besides the global goals of a CDP task, non-cooperative agents can also have their
private goals which may conflict with others’ private goals, or even with the global goals
of the CDP task. Consequently, agents’ proposals of refinement steps are not always
meant to satisfy a CDP goal but rather their own private goals, or both. If privacy prevails
over cooperation, then agents will be motivated to perform actions that threaten one
or more causal links of the global plan. The acceptance or rejection of these selfish
proposals will depend on the willingness of other agents to accept them, the level of trust
and reputation of the proposer, and the level of complexity that the proposal creates in
the global plan.

7 Conclusions and future work

In this paper, we have presented an approach to practical reasoning in a planning through
an argumentation-based model. This proposal is particularly aimed at solving a cooperative
distributed planning problem where the collective behaviour and cooperation among the agents
play a crucial role. Under this planning view, agents are designed to work together to construct
a joint plan that achieves the goals of a planning task. For this purpose, agents argue plan
refinements and reach an agreement on the presumptively best plan composition.
The argumentation-based model is designed in terms of argument schemes and critical ques-
tions, whose interpretation is given through the semantic structure of a partial-order planning
paradigm. The flexibility of the POP semantic model facilitates reasoning about the compo-
nents of the individual plans, and encapsulate these reasonings in negative or positive evalu-
ations to a plan argument. Evaluations are aimed at promoting a plan improvement, either in
terms of cost or progress, a parameter that measures the agents’ contributions to refine the
plan.
We can enumerate several advantages of our argumentation-based model with respect to
similar approaches: (1) the instantiation of the argumentation scheme to a set of elements
instead of to a single action, goal or value; (2) the specific consideration of choice of goal as
a means to forward the discussion to, presumptively, more promising argumentation lines; and



(3) a sophisticated evaluation of conflicting situations focused to facilitating the future agents’
contributions. The ultimate objective of these contributions is to promote cooperation for a
collective resolution of a planning problem.
As a whole, we can conclude that, to the best of our knowledge, this is the first attempt of
solving a distributed planning problem through argumentative cooperation. The presented
model is particularly suitable for problems that involve an incremental construction of a solution
as, for example, a sequence of successive refinement steps over a given plan.
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