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Operators with the specification property∗

Salud Bartoll, Félix Mart́ınez-Giménez and Alfredo Peris

Abstract

We study a version of the specification property for linear dynamics. Operators
having the specification property are investigated, and relationships with other well
known dynamical notions such as mixing, Devaney chaos, and frequent hypercyclic-
ity are obtained.

1 Introduction

A continuous map on a metric space is said to be chaotic in the sense of Devaney if
it is topologically transitive and the set of periodic points is dense. Although there is
no common agreement about what a chaotic map is, a notion of chaos stronger than
Devaney’s definition is the so called specification property. It was first introduced by
Bowen [16] and since then, several kinds and degrees of this property have been stated
[38]. We follow the definitions and terminology used in [5]. Some recent works on the
specification property are [34, 35, 31, 21, 26, 30, 4, 3].

Definition 1 ([16]). A continuous map f : X → X on a compact metric space (X, d) has
the specification property (SP) if for any δ > 0 there is a positive integer Nδ such that for
any integer s ≥ 2, any set {y1, . . . , ys} ⊂ X and any integers 0 = j1 ≤ k1 < j2 ≤ k2 <
· · · < js ≤ ks satisfying jr+1 − kr ≥ Nδ for r = 1, . . . , s − 1, there is a point x ∈ X such
that, for each positive integer r ≤ s and any integer i with jr ≤ i ≤ kr, the following
conditions hold:

d(f i(x), f i(yr)) < δ,

fn(x) = x, where n = Nδ + ks.

Although there are weaker versions of this property, we will be using the above version,
which is in fact, the strongest one. Compact dynamical systems with the SP are mixing
and Devaney chaotic, among other basic dynamical properties (see, e.g., [20]).

Devaney chaos and mixing properties have been widely studied for linear operators on
Banach and more general spaces [10, 12, 18, 22, 23, 24, 36]. The recent books [9] and [25]
contain the basic theory, examples, and many results on chaotic linear dynamics.

Our aim is to study the SP in the context of continuous linear operators defined on
separable F -spaces. In this situation, the first crucial problem is that these spaces are
never compact, therefore, our first task should be the adjusting of this property to the
new context. We recall that an F -space is a topological vector space whose topology is
induced by a complete translation-invariant metric. In fact, if X is an F -space, there
exists a complete translation-invariant metric d such that ‖x‖ = d(x, 0) is an F -norm.

∗Supported by MINECO and FEDER, Project MTM2013-47093-P, and by GVA, Project PROME-
TEOII/2013/013 and Project ACOMP/2015/005.
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Definition 2. Let X be a vector space. A map ‖ ·‖ from X to R+ is an F-norm provided
for each x, y ∈ X and λ ∈ K we have

1. ‖x+ y‖ ≤ ‖x‖+ ‖y‖;

2. ‖λx‖ ≤ ‖x‖ if |λ| < 1;

3. limλ→0‖λx‖ = 0;

4. ‖x‖ = 0 implies x = 0.

A consequence from 1 and 2 above is that for any x ∈ X, and λ ∈ K, we have

‖λx‖ ≤ (|λ|+ 1)‖x‖.

The class of F -spaces includes complete metrizable locally convex spaces (i.e., Fréchet
spaces) and hence it also includes Banach spaces. For introductory texts on functional
analysis that cover Fréchet spaces we refer to Rudin [37] and Meise and Vogt [32]. The
notion of an F -norm can be found in Kalton, Peck and Roberts [29].

From now on the space X will a separable (infinite dimensional) F -space with F -norm
‖.‖, and T : X → X will be a continuous linear operator (operator for short).

The following definition can be considered the natural extension of the SP in this
setting.

Definition 3. An operator T : X → X on a separable F -space X has the operator
specification property (OSP) if there exists an increasing sequence (Km)m of T -invariant
sets with 0 ∈ K1 and ∪m∈NKm = X such that for each m ∈ N the map T |Km has the
SP, that is, for any δ > 0 there is a positive integer Nδ,m such that for every s ≥ 2, any
set {y1, . . . , ys} ⊂ Km and any integers 0 = j1 ≤ k1 < j2 ≤ k2 < · · · < js ≤ ks with
jr+1 − kr ≥ Nδ,m for 1 ≤ r ≤ s − 1, there is a point x ∈ Km such that, for each positive
integer r ≤ s and any integer i with jr ≤ i ≤ kr, the following conditions hold:

‖T i(x)− T i(yr)‖ < δ,

T n(x) = x, where n = Nδ,m + ks.

Observation 4. We would like to point out that although we removed compactness of each
Km from our definition, it is hard to think of a map having the specification property
outside of the compact setting; in other words, for all cases we know of operators having
the OSP, the required sets Km are always compact.

Its is natural to study any property in linear dynamics for the most typical operators
in this context, namely the weighted shifts on sequence spaces. By a sequence space we
mean a topological vector space X which is continuously included in ω, the countable
product of the scalar field K. A sequence F -space is a sequence space that is also an F -
space. Given a sequence w = (wn)n of positive weights, the associated unilateral weighted
backward shift Bw : KN → KN is defined by Bw(x1, x2, . . . ) = (w2x2, w3x3, . . . ). If a
sequence F -space X is invariant under certain weighted backward shift T , then T is also
continuous on X by the closed graph theorem. In [4] we characterize when backward
shift operators defined on certain Banach sequence spaces exhibit the OSP. We were able
to extend these characterizations to the more general setting of sequence F -spaces in [3]
where the next result is proved.
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Theorem 5 ([3]). Let Bw : X → X be a unilateral weighted backward shift on a sequence
F -space X in which (en)n∈N is an unconditional basis. Then the following conditions are
equivalent:

(i) Bw is chaotic;

(ii) the series
∞∑
n=1

( n∏
ν=1

wν

)−1
en

converges in X;

(iii) Bw has a nontrivial periodic point;

(iv) Bw has the OSP.

The paper is organised as follows: in Section 2 we study the basic properties for
operators with the OSP. In Section 3 we show the connections of the OSP with other
dynamical properties for linear operators like mixing, chaos in the sense of Devaney and
frequent hypercyclicity. Section 4 provides several examples of operators with the OSP. In
the final Section 5 we present the conclusions and a diagram containing the implications
between the different dynamical properties discussed here.

2 Basic properties

We first show that the OSP behaves well by quasi-conjugation.

Proposition 6. Suppose Ti : Xi → Xi is an operator on a separable F -space Xi, i = 1, 2,
and φ : X1 → X2 is a uniformly continuous map with dense range such that the diagram

X1
T1−−−→ X1

φ

y φ

y
X2

T2−−−→ X2

conmutes. If T1 has the OSP then so does T2.

Proof. Without loss of generality, we may assume that φ(0) = 0, otherwise take φ̃ :=
φ − φ(0). Since T1 has the OSP, let (K1

m)m the required sequence of T1-invariant sets
satisfying all the conditions given in Definition 3. Set (K2

m)m := (φ(K1
m))m. Clearly

0 ∈ K2
1 and, since φ has dense range we have that ∪m∈NK2

m = X2. The map φ is
uniformly continuous on each K1

m, therefore, fixed δ > 0, there exists δ′ > 0 such that for
each x, y ∈ K1

m with ‖x − y‖ < δ′, we have ‖φ(x) − φ(y)‖ < δ. Since T1|K1
m

has the SP,
there exits Nδ′,m. Taking now Nδ,m := Nδ′,m, using the commutativity of the diagram,
and the uniform continuity of φ, it is routine to see that T2 has the OSP.

Remark 7. Since uniform continuity and continuity are equivalent for linear transforma-
tions on F -spaces, we have that Proposition 6 is true when φ : X1 → X2 is a linear
continuous transformation with dense range. Even more, if φ is a linear homeomorphism,
then T1 has the OSP if and only if T2 does it.
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Our next result shows that each iterate of an operator having the OSP inherits that
property. This is a natural question in discrete dynamics, and the most important result in
this direction in the linear setting was due to Ansari [1] who proved that T n is hypercyclic
whether T is. We recall that for continuous maps on separable complete metric spaces,
topological transitivity is equivalent to the existence of a dense orbit, and this concept is
known as hypercyclicity in our context (see [25]).

Proposition 8. If T : X → X has the OSP, then so does T k for every k ∈ N.

Proof. To show that T k has the OSP, take the same sequence (Km)m of T -invariant sets,
which are obviously T k-invariant. Since T |Km has the SP, given δ > 0, there exists Nδ,m

satisfying all the requirements of Definition 1 and, taking a greater index if necessary, we
may assume that Nδ,m is a multiple of k. Now, the positive integer Nδ,m/k would do the
job to show that T k|Km has the SP.

Next, we study how the OSP behaves by direct sums of operators. The motivation for
this question in our linear setting comes from an old problem of Herrero [27]: He asked
whether T ⊕ T is hypercyclic whenever T is. This problem turned out to be equivalent
to the question whether every hypercyclic operator satisfies the so called Hypercyclicity
Criterion. The negative answer was found by de la Rosa and Read [19]. In contrast, the
OSP is inherited by taking direct sums.

Proposition 9. Suppose Ti : Xi → Xi is an operator on a separable F -space Xi, 1 ≤ i ≤
n. If Ti has the OSP for 1 ≤ i ≤ n, then ⊕ni=1Ti : ⊕ni=1Xi → ⊕ni=1Xi has the OSP.

Proof. It is enough to do the proof for the case of two operators. We recall that there are
several equivalent F -norms on X1 ⊕X2, we use here the F -norm

‖(x1, x2)‖X1⊗X2 := ‖x1‖X1 + ‖x2‖X2 , (x1, x2) ∈ X1 ⊕X2,

where ‖.‖Xi is the corresponding F -norm on Xi. To make notation simpler we will avoid
to specify the underlying space.

Take (Km)m := (K1
m × K2

m)m, where (Ki
m)m is the corresponding sequence of Ti-

invariant sets required by Definition 3, i = 1, 2. To see that (T1 ⊕ T2)|Km has the SP,
given δ > 0, since Ti|Km has the SP, i = 1, 2, there exists N i

δ/2,m and we take Nδ,m :=

max{N1
δ/2,m, N

2
δ/2,m}. Now, for every s ≥ 2, any set {(y11, y21), . . . , (y1s , y

2
s)} ⊂ Km and any

integers 0 = j1 ≤ k1 < j2 ≤ k2 < · · · < js ≤ ks with jr+1 − kr ≥ Nδ,m for 1 ≤ r ≤ s − 1,
there are x1 ∈ K1

m and x2 ∈ K2
m such that, for each positive integer r ≤ s and any integer

i with jr ≤ i ≤ kr, the following conditions hold:

‖T i1(x1)− T i1(y1r)‖ < δ/2,

‖T i2(x2)− T i2(y2r)‖ < δ/2,

T n1 (x1) = x1
T n2 (x2) = x2

}
, n = Nδ,m + ks.

Now, it is easy to check that

‖(T1 ⊕ T2)i(x1, x2)− (T1 ⊕ T2)i(y1r , y2r)‖ < δ, 1 ≤ r ≤ s, jr ≤ i ≤ kr,

(T1 ⊕ T2)n(x1, x2) = (x1, x2), n = Nδ,m + ks,

which completes the proof.
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We finish this section with two additional properties. They may appear somehow
artificial and technical but they do play a crucial role in the proof of one of the main
results of the next section.

Proposition 10. Let T : X → X be an operator on a separable F -space X.

i) If λi ∈ K and Ki ⊂ X is a T -invariant set such that T |Ki has the SP, 1 ≤ i ≤ k,
then T |∑k

i=1 λiKi
has the SP.

ii) If X is locally convex and K ⊂ X is a T -invariant set such that T |K has the SP
and co(K) is the closed convex envelope of K, then T |co(K) has the SP.

Proof. i) It suffices to prove the case of two sets. Given δ > 0, take δ′ := δ/(|λ1|+|λ2|+2).
There exists N i

δ′ , i = 1, 2, and we take Nδ := max{N1
δ′ , N

2
δ′}. Now, for every s ≥ 2, any

set {(λ1y11 + λ2y
2
1), . . . , (λ1y

1
s + λ2y

2
s)} ⊂ λ1K1 + λ2K2 and any integers 0 = j1 ≤ k1 <

j2 ≤ k2 < · · · < js ≤ ks with jr+1 − kr ≥ Nδ for 1 ≤ r ≤ s − 1, there are x1 ∈ K1 and
x2 ∈ K2 such that for each integer r ∈ [1, s] and for any integer i with jr ≤ i ≤ kr, the
following conditions hold:

‖T i(x1)− T i(y1r)‖ < δ′,

‖T i(x2)− T i(y2r)‖ < δ′,

T n(x1) = x1

T n(x2) = x2

}
, n = Nδ + ks.

Now, it is easy to check that

‖T i(λ1x1 + λ2x
2)− T i(λ1y1r + λ2y

2
r)‖ < δ, 1 ≤ r ≤ s, jr ≤ i ≤ kr,

T n(λ1x
1 + λ2x

2) = λ1x
1 + λ2x

2, n = Nδ + ks.

ii) By the continuity of T and all its iterates, it is clear that if T |K has the SP, then
T |K has the SP. Therefore, it remains to show that T |co(K) has the SP. Since X is a Fréchet
space, we can fix an increasing sequence of seminorms (‖·‖n)n that generate the topology
of X. The key point to prove this is to observe that if you have two (or more points)
belonging to the convex hull of a set, you can always rewrite the convex combinations in
such a way that their length and coefficients are the same. This fact may appear strange
at first because one usually thinks about ‘minimal’ convex combinations but the fact is
clear if we decompose terms of the convex combination in several terms ‘as needed’. For
example

x = 0.9x1 + 0.1x2 = 0.5x1 + 0.3x1 + 0.1x1 + 0.1x2

y = 0.5y1 + 0.3y2 + 0.2y3 = 0.5y1 + 0.3y2 + 0.1y3 + 0.1y3

Using the above fact to express the points {y1, . . . , ys} ⊂ co(K) as convex combinations
with the same length and coefficients, the fact that T |co(K) has the SP can be obtained
as in one i), by computing the corresponding inequalities for an arbitrary seminorm ‖·‖n,
n ∈ N.
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3 Connections with other dynamical properties

In this section we focus in the connections of the OSP with other well know dynamical
properties. To be precise, we prove that operators with the OSP are mixing, chaotic in the
sense of Devaney, and they have a strong version of hypercyclicity, introduced by Bayart
and Grivaux [6, 7], called frequent hypercyclicity. For completeness we recall that an
operator T : X → X is topologically transitive if for any non-empty open sets U and V ,
there exists n ∈ N such that T n(U)∩V 6= ∅. Moreover, if the set {n ∈ N : T n(U)∩V 6= ∅}
is cofinite, then T is mixing.

Proposition 11. If T : X → X has the OSP, then T is mixing.

Proof. Fix a non-empty open set U and a 0-neighbourhood W . We recall that the return
set from U to W is defined as N(U,W ) := {n ∈ N : T n(U) ∩W 6= ∅}. We claim that
N(U,W ) and N(W,U) are cofinite and this implies T is mixing (see [25, Proposition
2.37]).

Take u ∈ U and δ > 0 such that B(u, 2δ) ⊂ U and B(0, 2δ) ⊂ W . Since T has the
OSP, we may find a set K such that T |K has the SP and K ∩ B(u, δ) 6= ∅. There exists
Nδ (depending on K and δ).

Take y1 ∈ K ∩ B(u, δ), y2 = 0, m ∈ N, 0 = j1 = k1 < j2 = Nδ < k2 = Nδ + m. Since
j2 − k1 ≥ Nδ, there exists x ∈ K such that

‖T ix− T iy1‖ < δ, i = j1, . . . , k1

‖T ix− T iy2‖ < δ, i = j2, . . . , k2.

This implies ‖x− y1‖ < δ, so ‖x− u‖ < 2δ and hence x ∈ U . As T iy2 = 0, we have that
T ix ∈ B(0, δ) for i = Nδ, . . . , Nδ +m, therefore TNδ+mx ∈ B(0, δ) ⊂ W . We have proved
that Nδ +m ∈ N(U,W ) for any m ∈ N.

Take now i = Nδ. Clearly ‖TNδx‖ < δ, hence TNδx ∈ B(0, δ) ⊂ W . Observing that x
is periodic with period Nδ + k2, we have

TNδ+m(TNδx) = TNδ+k2x = x ∈ U,

which means that Nδ +m ∈ N(W,U) for any m ∈ N. This finishes the proof

Proposition 12. If T : X → X has the OSP, then T is chaotic in the sense of Devaney,
that is, T is topologically transitive and it admits a dense set of periodic points.

Proof. Clearly, T is transitive by the above proposition. By the mere definition of the
specification property, it is also clear that any point in the space may be approximated
by periodic points.

Given A ⊂ N, its lower density is defined by

dens(A) = lim inf
n→∞

card(A ∩ [1, n])

n
,

An operator T is frequently hypercyclic if there exists x ∈ X such that for every non-
empty open subset U of X, the set {n ∈ N : T nx ∈ U} has positive lower density (see [7]).
Frequent hypercyclicity is a way to measure the frequency of hitting times in an arbitrary
non-empty open set for a dense orbit.
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Theorem 13. If T : X → X has the OSP, then T is frequently hypercyclic.

Proof. Let (Km)m be an increasing sequence of T -invariant sets associated with the OSP

for T . Fix vm ∈ Km, m ∈ N, such that {vm;m ∈ N} = X. We set inductively K̃1 = K1,

K̃m = Km−
∑m−1

i=1 K̃i, m > 1. We know that T satisfies the OSP with respect to (K̃m)m.
Let (rm)m be an increasing sequence in ]0, 1[ with

lim
m

m∏
i=1

ri > 0,

and fix (pm)m ⊂ N such that (pm − 1)/(pm + 1) > rm, m ∈ N. We apply the OSP with

respect to (K̃m)m. For δm := 2−m we denote Nm = Nδm,m, m ∈ N. W.l.o.g., (pm + 1)Nm

divides Nm+1, m ∈ N. Given m ∈ N we set j1 = k1 = 0, j2 = Nm, k2 = pmNm. For m = 1

let y1 = v1 and, inductively, given m > 1 suppose we have xi ∈ K̃i, i = 1, . . . ,m− 1. Let

y1 = um := vm −
m−1∑
i=1

TNixi ∈ K̃m,

y2 = 0.

By assumption, there is xm ∈ K̃m such that

‖xm − um‖ < 2−m, ‖T ixm‖ < 2−m, i = Nm, . . . , pmNm, and

T nxm = xm for n = (pm + 1)Nm.

We will show that the vector x :=
∑

k T
Nkxk is frequently hypercyclic for T .

Let qk := (pk + 1)Nk, k ∈ N. Given m > 1, we have

‖T pmNm+jqm

(
m∑
k=1

TNkxk

)
− vm‖ = ‖

(
m−1∑
k=1

TNkxk + um

)
− vm‖ <

1

2m
, (1)

for all j ∈ N0.
Fix n > qm+1. There exists m′ > m such that (pm′ − 1)Nm′ < n ≤ (pm′+1 − 1)Nm′+1.

Since

‖T j(TNkxk)‖ <
1

2k
, ∀k ≥ m′ + 1, j = 0, . . . , (pm′+1 − 1)Nm′+1,

we get,

‖T j
( ∑
k≥m′+1

TNkxk

)
‖ < 1

2m′ , j = 0, . . . , n. (2)

It remains to show the inequalities ‖T j(TNkxk)‖ < 2−k for m < k ≤ m′, and for certain
j ≤ n of the form j = pmNm + j′qm, j′ ∈ N0. To do this, we have to count the number of
elements of this form contained in suitable blocks of consecutive integers. Indeed, for each
i ∈ N0, the block of integers {iNm+1+j ; j = 0, . . . , Nm+1−1} contains Nm+1/qm elements
of the form pmNm+jqm, j ∈ N0. Hence the block {iqm+1+j ; j = 0, . . . , (pm+1−1)Nm+1}
contains (pm+1 − 1)Nm+1/qm elements of the form pmNm + jqm, j ∈ N0.

Analogously, for each i ∈ N0, the block {iNk+1 + j ; j = 0, . . . , Nk+1 − 1} contains
Nk+1/qk blocks of the form {i′qk + j ; j = 0, . . . , (pk − 1)Nk} , i′ ∈ N0. Hence the block
{iqk+1 + j ; j = 0, . . . , (pk+1 − 1)Nk+1} contains (pk+1 − 1)Nk+1/qk blocks of the form
{i′qk + j ; j = 0, . . . , (pk − 1)Nk}, i′ ∈ N0.
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We assumed n > (pm′−1)Nm′ , then there is k ≥ 1 such that (pm′−1)Nm′ +(k−1)qm′ ≤
n < (pm′ − 1)Nm′ + kqm′ . This implies that the set of integers An := {i ∈ N0 ; i ≤ n}
contains k blocks of the form {i′qm′ + j ; j = 0, . . . , (pm′ − 1)Nm′} , i′ ∈ N0. Thus, the
above considerations yield that An contains

k

(
(pm′ − 1)Nm′

qm′−1

)
. . .

(
(pm+1 − 1)Nm+1

qm

)
> k(pm′ − 1)Nm′

αm
qm

elements of the form j = pmNm + j′qm, j′ ∈ N0, such that ‖T j(TNlxl)‖ < 2−l, for all
l ∈ {m+ 1, . . . ,m′}, where

αm :=
∏
l>m

pl − 1

pl + 1
>
∏
l>m

rl > 0.

Therefore,∣∣∣∣∣{j ≤ n ; ‖T j(
∑
k>m

TNkxk)‖ <
1

2m
}

∣∣∣∣∣ >
(

k

k + 1

)(
pm′ − 1

pm′ + 1

)
nβm ≥ n

βm
4
, (3)

where βm := αm/qm.
From (1) and (3), we conclude

dens{j ∈ N ; ‖T jx− vm‖ <
1

2m−1
} ≥ βm

4
> 0,

which finishes the proof.

The most usual way to prove that an operator is (frequently) hypercyclic is to use the
so called (Frequent) Hypercyclicity Criterion (see [9, 25]). It should be noted that the
proof of Theorem 13 does not use the Frequent Hypercyclicity Criterion, instead a frequent
hypercyclicity vector is constructed. Next result shows that the Frequent Hypercyclicity
Criterion is far stronger than any of the dynamical properties we have been working with
in this paper. In particular, it implies the OSP. We will take the general version of the
Frequent Hypercyclicity Criterion given in [14].

Theorem 14. Let T : X → X be an operator on a separable F -space X. If there is a
dense subset X0 of X and a sequence of maps Sn : X0 → X such that, for each x ∈ X0,

(i)
∑∞

n=0 T
nx converges unconditionally,

(ii)
∑∞

n=0 Snx converges unconditionally, and

(iii) T nSnx = x and TmSnx = Sn−mx if n > m,

then the operator T has the OSP.

Proof. We suppose that X0 = {xn ; n ∈ N} with x1 = 0 and Sn0 = 0 for all n ∈ N. Let
(Un)n be a basis of balanced open 0-neighbourhoods in X such that Un+1 + Un+1 ⊂ Un,
n ∈ N. By (i) and (ii), there exists an increasing sequence of positive integers (Nn)n with
Nn+2 −Nn+1 > Nn+1 −Nn for all n ∈ N such that∑

k>Nn

T kxmk ∈ Un+1 and
∑
k>Nn

Skxmk ∈ Un+1, if mk ∈ {1, . . . , n}, for each n ∈ N. (4)
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We let Bm = {1, . . . ,m} and define the map Φ :
⋃∞
m=1B

Z
m → X given by

Φ((nk)k∈Z) =
∑
k<0

S−kxnk + xn0 +
∑
k>0

T kxnk .

The map Φ is well-defined and Φ|BZ
m

is continuous for each m ∈ N by (4). We have that
Km := Φ(BZ

m) is a compact subset of X, invariant under the operator T , and such that
T |Km is conjugated to σ−1|BZ

m
via Φ, for each m ∈ N; where σ is the usual Bernoulli shift

defined as σ(. . . , n−1, n0, n1, . . . ) = (. . . , n0, n1, n2, . . . ). Since σ−1|BZ
m

has the SP (see for
instance [38]), by conjugacy, we obtain that T |Km satisfies the SP too, for every m ∈ N
and, since

⋃
m∈NKm is dense in X because it contains X0, we conclude that T has the

OSP.

4 Families of operators with the OSP

We already noticed in Theorem 5 that weighted backward shifts on sequence F -spaces
having the OSP can be characterized in terms of the weight sequence, therefore examples
of backward shifts with the OSP defined on the Banach spaces `p and c0 are easy to find
(see [4]). Also, any weighted shift so that every weight is non-zero on ω has the OSP.
Theorem 14 is very useful to find more examples of operators having the OSP.

Example 15. We consider the Fréchet space H(C) of entire functions endowed with the
topology of uniform convergence on compact sets. Suppose that T : H(C) → H(C),
T 6= λI, is an operator that commutes with the operator of differentiation D, that is,
TD = DT . It is known that T satisfies the Frequent Hypercyclicity Criterion [13], so T
has the OSP.

Example 16. Let ϕ be a nonconstant bounded holomorphic function on the unit disc
D = {λ ∈ C : |λ| < 1}, and let M∗

ϕ be the corresponding adjoint multiplication operator
on the Hardy space H2. Godefroy and Shapiro proved that M∗

ϕ is hypercyclic if and only
if ϕ(D)∩T 6= ∅, where T = {λ ∈ C : |λ| = 1} (see [22]). They even proved that condition
ϕ(D) ∩ T 6= ∅ is equivalent to M∗

ϕ being chaotic and also equivalent to M∗
ϕ being mixing.

Later, Bayart and Grivaux improved this result showing that if ϕ(D) ∩ T 6= ∅, then M∗
ϕ

satisfies the Frequent Hypercyclicity Criterion [7]. Taking into account Theorem 14 we
have the following characterization.

Theorem 17. Let ϕ be a nonconstant bounded holomorphic function on D and let M∗
ϕ

be the corresponding adjoint multiplier on H2. Then the following assertions are equiv-
alent: (i) M∗

ϕ is hypercyclic; (ii) M∗
ϕ is mixing; (iii) M∗

ϕ is chaotic; (iv) M∗
ϕ is frequently

hypercyclic; (v) M∗
ϕ has the OSP; (vi) ϕ(D) ∩ T 6= ∅.

Example 18. Let ϕ be an automorphism of the unit disk D and let Cϕf = f ◦ ϕ be
the corresponding composition operator on the Hardy space H2. Bourdon and Shapiro
proved that Cϕ is hypercyclic if and only if Cϕ is mixing if and only if ϕ has no fixed point
in D (see [15]). Hosokawa [28] proved that Cϕ is chaotic whenever it is hypercyclic and
his proof shows that in fact Cϕ satisfies the Frequent Hypercyclicity Criterion whenever
Cϕ has no fixed point (see also [39]). Therefore we have the following characterization.

Theorem 19. Let Cϕ ∈ Aut(D) and Cϕ be the corresponding composition operator on
H2. Then the following assertions are equivalent: (i) Cϕ is hypercyclic; (ii) Cϕ is mixing;
(iii) Cϕ is chaotic; (iv) Cϕ is frequently hypercyclic; (v) Cϕ has the OSP; (vi) ϕ has no
fixed point in D.
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Example 20. Let Ω ⊂ C be a simply connected domain, and let ϕ : Ω → Ω be a holo-
morphic function. Bès (see Theorem 1 in [11]) characterized several dynamical properties
for the composition operator Cϕ on H(Ω), which included when Cφ satisfies the Frequent
Hypercyclicity Criterion. As a consequence we obtain the following result.

Theorem 21. Then the following assertions are equivalent: (i) Cϕ is hypercyclic; (ii)
P (Cϕ) has the OSP for every non-constant polynomial P ; (iii) ϕ is univalent and has no
fixed point in Ω.

5 Concluding remarks

Theorems 11, 12, and 13 show that the OSP is in fact a strong dynamical property. Next
we prove that neither converse of those theorems are true. Even more, we will show
that there are operators defined on the Hilbert space `2 which are mixing, chaotic and
frequently hypercyclic altogether but not having the OSP. To this aim we need a result
from [17] concerning sets of periods of maps. We recall that n ∈ N is a period of T if
there is x ∈ X such that T nx = x but T ix 6= x for 0 < i < n. The set of periods of T is
defined as {n : n is a period of T}.

Theorem 22 ([17]). A nonvoid subset A ⊂ N is the set of periods for certain bounded
operator T on a separable complex Hilbert space H if and only if A contains lcm(a, b) for
every a, b ∈ A. Moreover, if A is infinite, then it is possible to find a mixing, chaotic and
frequently hypercyclic bounded operator T on H whose set of periods is exactly A.

Now, as set of periods take the powers of 2, that is, A = {2i, i ∈ N}. To fix ideas
set the complex Hilbert space `2. Obviously A contains the least common multiple of any
pair of elements of A so, by Theorem 22, there exists a mixing, chaotic and frequently
hypercyclic operator T : `2 → `2 whose periods are only the powers of 2. The operator T
cannot have OSP because for any operator having this property there is a positive integer
N such that any integer greater than N is a period.

At this point, relationships between OSP, mixing, chaos, frequent hypercyclicity and
the Frequent Hypercyclicity Criterion are shown in the next figure.

FreqHypCrit OSP

Chaos

Mixing

FreqHyp

X

X

X

XX

XX

XX

To complete the figure, we would like to mention here the sources for the counter ex-
amples: Mixing operators which are not chaotic are easy to find; Bayart and Grivaux [8]
constructed a weighted shift on c0 that is frequently hypercyclic, but neither chaotic
nor mixing; Badea and Grivaux [2] found operators on a Hilbert space that are frequently
hypercyclic and chaotic but not mixing. Also, Bayart and Grivaux [7] provided easy exam-
ples of topologically mixing operators that are not frequently hypercyclic. Very recently,
Menet constructed examples of chaotic operators which are not frequently hypercyclic
in [33], which solved an important problem in linear dynamics.

10



References

[1] S. I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), no. 2, 374–
383.

[2] C. Badea and S. Grivaux, Unimodular eigenvalues, uniformly distributed sequences
and linear dynamics, Adv. Math. 211 (2007), no. 2, 766–793.
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[17] J. Conejero, F. Mart́ınez-Giménez, and A. Peris, Sets of periods for chaotic linear
operators, preprint 2015.

[18] G. Costakis and M. Sambarino, Topologically mixing hypercyclic operators, Proc.
Amer. Math. Soc. 132 (2004), no. 2, 385–389 (electronic).

[19] M. de la Rosa and C. Read, A hypercyclic operator whose direct sum T ⊕ T is not
hypercyclic, J. Operator Theory 61 (2009), no. 2, 369–380.

[20] M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces,
Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin, 1976.
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