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Abstract: The absorption performance of a locally-reacting acoustic metamaterial under oblique
incidence is studied. The metamaterial is composed of a slotted panel, each slit being loaded by an
array of Helmholtz resonators. The system is analytically studied using the transfer matrix method,
accounting for the viscothermal losses both in the resonator elements and in the slits, allowing the
representation of the reflection coefficient in the complex frequency plane. We show that by tuning
the geometry of the metamaterial, perfect absorption peaks can be obtained on demand at selected
frequencies and different angles of incidence. When tilting the incidence angle, the peaks of perfect
absorption are shifted in frequency, producing an acoustic iridescence effect similar to the optic
iridescence achieved by incomplete band gap. Effectively, we show that in this kind of locally-reacting
metamaterial, perfect and omnidirectional absorption for a given frequency is impossible to achieve
because the metamaterial impedance does not depend on the incidence angle (i.e., the impedance
is a locally reacting one). The system is interpreted in the complex frequency plane by analysing
the trajectories of the zeros of the reflection coefficient. We show that the trajectories of the zeros
do not overlap under oblique incidence, preventing the observation of perfect and omnidirectional
absorption in locally reacting metamaterials. Moreover, we show that for any locally resonant
material, the absorption in diffuse field takes a maximal value of 0.951, which is achieved by a
material showing perfect absorption for an incidence angle of 50.34 degrees.

Keywords: perfect absorption; acoustic metamaterials; sound absorbers; iridescence; oblique incidence;
transfer matrix method

1. Introduction

Acoustic absorption is a major topic in acoustics, mainly because acoustic absorbers are broadly
used in industry (e.g., in building and civil engineering applications). In these situations, a typical
configuration is to place the materials at the walls of a room, the non-reflecting acoustic material being
rigidly backed. The classical approach to designing such materials is to produce a porous frame whose
scale of porous cavities is on the order of the thermal and viscous boundary layers of the filling host
fluid (typically air) [1]. When a porous foam layer is rigidly backed, absorption might be large for
frequencies only above the so-called quarter wavelength resonance of the backed layer. Thus, the main
limitation of porous material-based absorbers yields in the sound speed inside the absorbers, which is
on the same order as the one in the air medium: to efficiently absorb low-frequency sound, the thickness
of the layer must be large, because at these frequencies the wavelength in air is on the order of several
meters. Peculiar absorption properties are also encountered in composite structures like double porosity
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materials [2], dead-end porosity materials [3,4], or chirped layered structures [5]. However, it is of
special interest to design materials and structures in the form of thin panels (i.e., much smaller than the
characteristic wavelength).

In recent years, metamaterials have been used to design sub-wavelength absorbers. These specific
materials are artificial structures composed of an arrangement of resonant unit cells—smaller than the
characteristic wavelength—that present effective properties not observed in the materials that compose
the structure. Examples of such absorbers are metaporous materials [6–9], metamaterials composed of
membrane-type resonators [10–13], Helmholtz resonators (HRs) [13–16], and quarter-wavelength
resonators (QWRs) [4,17–19]. These last types of metamaterials [4,15–18] make use of strong
dispersion, giving rise to slow-sound propagation inside the material. Using slow sound results
in a decrease of the cavity resonance frequency, and hence the structure thickness can be reduced to
the deep-subwavelength regime [18].

Materials that present perfect absorption are of special interest. This occurs when the leakage
of the structure is exactly compensated by the intrinsic losses of the system (i.e., when the material
is critically coupled with the exterior media) [13]. For a rigidly backed material, this reduces to the
well-known impedance matching conditions. However, the critical coupling conditions can only be
fulfilled at a single particular incidence angle for a particular frequency in locally reacting materials,
because the effective acoustic impedance does not depend on the direction of propagation. This can
reduce the efficiency of the material when used in situations where the incoming acoustic waves
impinge the structure in a broad range of angles [1,20].

In this work, we present an ultra-thin acoustic metamaterial presenting perfect absorption at
selected angles and frequencies. Thus, it produces an acoustic iridescent effect due to its selective and
perfect absorption at particular angles and frequencies. Light iridescence is commonly observed in
nature in structured natural phononic materials as occurs in beetles and butterfly wings, fish scales,
or bird feathers [21,22], producing strong reflections at selected angles. It has also been proposed to
generate acoustic iridescent materials using perforated plates [23]. The structures proposed in this
work produce iridescence through perfect absorption at selected angles and frequencies. The specific
features of the angle-dependent absorption are illustrated by using the complex frequency plane
representation of the reflection coefficient and by showing the trajectories of the different zeros of the
reflection coefficient in the complex frequency plane. The fact that these trajectories do not overlap
prevents the observation of perfect and omnidirectional absorption in locally reacting metamaterials.
The paper is organised as follows: first, in Section 2 the metamaterial and the theoretical model
are described; second, the results for oblique incidence using a metamaterial composed of a single
resonator per unit cell are shown in Section 3.1; then, examples using multiple resonators are given in
Section 3.2. Finally, the discussion and conclusions are provided in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Description of the System

The sound absorbing metamaterial is composed of a slotted panel of thickness L, each slit being
of height h and being loaded by an array of N HRs, as shown in Figure 1. The n-th square cross-section
resonator is separated by lattice step a from the preceding one. Its geometry is composed of a neck of
length l(n)n and side w(n)

n , and a cavity of length l(n)c and side w(n)
c . Note that the geometry is similar to

the one presented in Reference [15], but here we consider an array of different HRs.
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Figure 1. (a) Scheme of the deep-subwavelength absorbing panel under oblique incidence, the inset
shows the geometrical parameters of the Helmholtz resonators (HRs); (b) Scheme of the unit cell that
composes the metamaterial.

2.2. Theoretical Model

The system is analysed theoretically using the transfer matrix method (TMM). Under the
assumption of plane waves travelling inside the metamaterial, which is valid for the low frequency
regime, the transfer matrix can be obtained, providing directly the reflection of the metamaterial,
as well as its effective parameters. Thus, the relation between the pressure, p, and normal particle
velocity, v, at the beginning (x1 = 0) and at the end (x1 = L) of the slits is given by the total transfer
matrix of the system, T, as[

p
v

]
x1=0

= T
[

p
v

]
x1=L

=

[
T11 T12
T21 T22

] [
p
v

]
x1=L

(1)

The total transfer matrix of the whole system can be obtained by the product of the transfer
matrices of each layer of the material. Thus, the total transfer matrix method of the system is given by

T =

[
T11 T12

T21 T22

]
= M∆lslit

N

∏
n=1

(
MsM(n)

HRMs

)
,

where Ms is the transmission matrix of half lattice step in the slit, M(n)
HR is the transmission matrix

of the n-th resonator, and M∆lslit
the radiation correction of the slits (i.e., the “end” correction [24])

that mimics the effect of the higher-order modes. The transmission matrix for each lattice step in the
slit is written as

Ms =

[
cos (ksa/2) iZs sin (ksa/2)

i sin (ksa/2) /Zs cos (ksa/2)

]
, (2)

where Zs is the slit characteristic impedance, written as Zs =
√

κsρs/Ss, ks is the wavenumber in
the slit, and Ss = h a. The complex and frequency-dependent effective bulk modulus and density
accounting for the thermoviscous losses, κs and ρs, respectively, are given below. The HRs—introduced
as point scatterers—and the radiation correction of the slits are given by the following transfer matrices:

M(n)
HR =

[
1 0

1/Z(n)
HR 1

]
, M∆lslit

=

[
1 Z∆lslit

0 1

]
, (3)

with Z(n)
HR the impedance of the n-th HR and Z∆lslit

the characteristic radiation impedance given by
Z∆lslit

= −iω∆lslitρ0/φtS0, where S0 = d a, ρ0 is the air density, and ∆lslit the radiation correction for
a periodic distribution of slits [24].
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Eventually, after some algebra, it can be shown that under oblique incidence of angle θ,
the reflection coefficient of the rigidly-backed material can be directly calculated from the elements of
the matrix T as

R(θ) =
T11 cos(θ)− Z0T21

T11 cos(θ) + Z0T21
, (4)

with Z0 = ρ0c0/S0 the impedance of air. Finally, the absorption is obtained as α = 1 − |R|2.
The effective parameters of each slit can be obtained from the transfer matrix elements as follows

keff =
1
L

cos−1
(

T11 + T22

2

)
, Zeff =

√
T12

T21
. (5)

Note that the TMM using a similar metamaterial has been validated using finite element
simulations, modal expansion, effective parameters, and experiments in References [15,16].

2.3. Visco-Thermal Losses Model

The visco-thermal losses in the system are considered both in the resonators and in the slits by
using its effective complex and frequency dependent parameters [25]. On the one hand, the effective
parameters in the slits are given by

ρs = ρ0

1−
tanh

(
h
2 Gρ

)
h
2 Gρ

−1

, κs = κ0

1 + (γ− 1)
tanh

(
h
2 Gκ

)
h
2 Gκ

−1

, (6)

with Gρ =
√

iωρ0/η and Gκ =
√

iωPrρ0/η, and where γ is the specific heat ratio of air, P0 is the
atmospheric pressure, Pr is the Prandtl number, η the dynamic viscosity, ρ0 the air density, and
κ0 = γP0 the air bulk modulus. On the other hand, the complex and frequency-dependent density and
bulk modulus in a rectangular cross-section tube are given by [25]:

ρe f f = −
ρ0a2b2

4G2
ρ ∑

k∈N
∑

m∈N

[
α2

k β2
m

(
α2

k + β2
m − G2

ρ

)]−1 , (7)

κe f f =
κ0

γ + 4(γ−1)G2
κ

a2b2 ∑
k∈N

∑
m∈N

[
α2

k β2
m
(
α2

k + β2
m − G2

κ

)]−1
, (8)

with the constants αk = 2(k + 1/2)π/a and βm = 2(m + 1/2)π/b, and the dimensions of the duct
a and b being either the neck, a = b = w(n)

n , or the cavity, a = b = w(n)
c of the n-th Helmholtz

resonator. Using the effective parameters for the neck and cavity elements given by Equations (7)
and (8), the impedance of a Helmholtz resonator including the thermoviscous losses and the “end”
correction due to the radiation can be obtained [26].

3. Results

3.1. Perfect Absorption under Oblique Incidence

As shown in Reference [15], by tuning the geometrical parameters, the structure described in
this work can be impedance matched with the exterior medium, and perfect acoustic absorption can
be obtained. For locally reacting materials, this occurs when Equation (4) vanishes, leading to the
impedance matching conditions:

Re(Z) cos(θ) = Z0 and Im(Z) = 0. (9)
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where Z is the acoustic impedance of the rigidly-backed material (i.e., Z = iZeff cot keffL). Thus,
for a locally reacting metamaterial whose characteristic effective impedance does not depend on the
incident angle, the impedance matching can only be achieved at one single angle for a given frequency.
In particular, using Equations (4) and (9), the angle-dependent absorption of a material presenting
perfect absorption at a given angle θPA is given by:

α(θ) = 1−
∣∣∣∣cos θPA/cos θ − 1
cos θPA/cos θ + 1

∣∣∣∣2 , (10)

where θPA is the angle at which perfect absorption is produced. For θ = 90◦, this equation is
undetermined, but in the limit when θ → π/2, the absorption vanishes if not considering other
physical phenomena in the model (see Discussion section).

To illustrate this, we begin by showing the case of a single HR (i.e, N = 1). The structure was
designed to show a peak of perfect absorption at 250 Hz at θ = 20◦. In particular, the cost using in the
optimization was ε = 1− α(θn, fn) with fn = 250 Hz and θn = 20◦, and the geometrical parameters
of the structure were varied using only the constraint of d = 5 cm and L = c0/24 fm; i.e., a structure
14 times smaller than the wavelength at 250 Hz. The optimization algorithm was a sequential quadratic
programming [27]. The retrieved parameters are given in Table A1 in the Appendix A. Figure 2a–c
show the absorption as a function of the angle and frequency. First, for an incidence angle of θ = 20◦,
the structure presents a peak of perfect absorption at fPA = 250 Hz, as shown by the red line in
Figure 2a. When the incidence angle is increased, the impedance matching condition is no longer
fulfilled, and the absorption decreases following Equation (10), as shown by Figure 2b. However,
the fact that perfect absorption might not be achieved for other angles at this frequency does not imply
that perfect absorption can be obtained at other frequencies. Thus, the mapping of the absorption
as a function of the incidence angle and frequency is shown in Figure 2c. It can be observed that by
increasing the incidence angle, the absorption peak shifts to higher frequencies: first, at θ = 80◦ the
peak appears at 300 Hz (green curves in Figsure 2b,c), and then at θ = 87.7◦ (blue curves in Figure 2b,c),
a peak of perfect absorption is obtained at 350 Hz. Note also that the peak becomes more broadband
when the structure is not critically coupled.
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Figure 2. (a) Absorption of the metamaterial using N = 1 HR as a function of the frequency for
incidence angles θ = 20◦, 80◦, 87.7◦; (b) Angle-dependent absorption obtained using transfer matrix
method (TMM; continuous lines) and Equation (10) (circles) at frequencies f = 250, 300, 350 Hz; (c) Map
of the absorption as a function of the frequency and incidence angle.

To interpret the system, it is useful to represent eigenvalues of the scattering matrix (i.e., the reflection
coefficient) in the complex frequency plane. Figure 3 shows the complex frequency representation of
the reflection coefficient for increasing incidence angles. First, we can see that for θ = 20◦ (as shown in
Figure 3a), a zero of the reflection coefficient is exactly located on the real axis at f = 250 Hz; thus, α = 1
for this particular frequency and incidence angle. Then, the incidence angle is progressively increased
up to θ = 80◦. Figure 3b shows the reflection coefficient at this angle in the complex frequency plane,
where the trajectories of the zero and the pole for the previous incidence angles have been traced
(note the colour coding in the corresponding colour bars). At θ = 80◦, the zero is not located on the
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real axis, but as it is close to it, its effect is still visible and a broad peak of absorption is observed
in the absorption at fr = 300 Hz, as we have shown previously. Finally, if we continue increasing
the incidence angle, we can see that the trajectory of the zero turns towards the real frequency axis,
eventually crossing it once again at f = 350 Hz and θ = 87.7◦: the structure becomes again critically
coupled and a peak of perfect absorption is produced. Finally, note that the TMM model predicts
that all waves are reflected at grazing angles (θ → 90◦), then, no zero or pole exists in the complex
frequency plane. Thus, as shown in Figure 3c, we observe that the trajectory of the zero finishes at the
same complex frequency as its corresponding pole, both collapsing at the same point and resulting in
no absorption for grazing incidence.
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Figure 3. Complex frequency representation of the reflection coefficient for the metamaterial with
N = 1 HR, in logarithmic colour scale, for different angles of incidence. (a) θ = 20◦; (b) θ = 80◦;
(c) θ = 87.7◦; (d) θ → 90◦. The trajectories of the poles and the zeros of the reflection coefficient as the
incidence angle is increased are plotted in coloured lines, corresponding to the blueish and reddish
colour bars, respectively.

To summarize, using a rigidly-backed metamaterial composed of one resonator, a single pair
of zero-pole is observed in the complex frequency plane, and we have shown that the trajectory
of the zero-pole in the complex frequency plane follows an arch when the incidence wave is tilted.
Thus, a maximum amount of two peaks of perfect absorption can be obtained. Then, if the number
of resonators increases to N, the system will present N resonances, each one corresponding to a
zero-pole pair.

3.2. Acoustic Iridescence by Perfect Absorption

In the following, we will analyse a metamaterial using N = 3 resonators. The system was
designed using an optimization method (sequential quadratic programming) [27] to obtain perfect
acoustic absorption at a set of frequencies and angles: f1 = 290 Hz and θ1 = 0◦; f2 = 350 Hz
and θ2 = 65◦; and f3 = 410 Hz and θ3 = 85◦. In particular, the cost using in the optimization
was ε = 1− ∑N

n=1 α(θn, fn)/N, and the geometrical parameters of the structure were varied using
only the constraint of d = 5 cm and L = c0/18290 (i.e., a structure 18 times smaller than the
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wavelength at 290 Hz). The geometrical parameters are listed in Table A2 in the Appendix A. First,
the frequency-dependent absorption produced at the different angles is shown in Figure 4a. We can
see that a peak of perfect absorption is produced at the selected frequencies: f1 = 290 Hz (red curve);
f2 = 350 Hz (green curve), and f3 = 410 Hz (blue curve). For the selected frequencies, where perfect
absorption is obtained, the absorption as a function of the incidence angle is shown in Figure 4b.
Again, Equation (10) perfectly agrees with the TMM: the locally reacting system can only be critically
coupled at a single angle for each selected frequency. The full map of the absorption as a function of
the incidence angle and frequency is given in Figure 4c. It can be observed that when the incidence
angle increases, the peaks of absorption shift in frequency, generally to higher ones, producing an
acoustic iridescence effect. However, the absorption peak observed at 500 Hz for normal incidence
shows a shift towards lower frequencies. In addition, it is worth noting here that the effect of the other
resonators is still visible: for each angle, the absorption presents a maximum of N peaks of absorption.
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Figure 4. (a) Absorption of the metamaterial using N = 3 HRs as a function of the frequency,
for incidence angles θ = 20◦, 65◦, 85◦; (b) Angle-dependent absorption obtained using TMM
(continuous lines) and Equation (10) (circles) at frequencies f = 290, 350, 410 Hz; (c) Map of the
absorption as a function as the frequency and incidence angle.

As previously, the system can be analysed for complex frequencies, and the reflection coefficient
is represented in the complex frequency plane, as shown in Figure 5. First, the reflection at normal
incidence is presented in Figure 5a. We can see that the N = 3 zero-pole pairs are visible, one zero being
exactly located on the real frequency axis at f = 290 + i0 Hz. As the reflection vanishes, the absorption
is perfect, the metamaterial being perfectly impedance matched at this particular frequency. Note that
a second zero of the reflection coefficient is located at f = 300− i10 Hz, producing a quasi-perfect
peak of absorption (α = 0.9) visible in Figure 4a. The third zero is located around f = 500 + i25 Hz,
producing a third peak of absorption (α = 0.65). When the incidence angle is increased, the positions
of the zeros and poles move in the complex frequency plane, thus changing the physical reflection
coefficient on the real frequency axis. At θ = 65◦ (as shown in Figure 5b), the trajectory of a zero
crosses the real frequency axis at f = 350 Hz, producing perfect absorption. Note the higher frequency
zero moves away from the real frequency axis, then its impact on the absorption is reduced. When
the incidence angle is tilted up to θ = 85◦ (as shown in Figure 5c), a zero crosses the real frequency
axis at f = 410 Hz, and again, perfect absorption is produced. However, it is worth noting that the
trajectories of the zeros and poles interact by avoided crossing [14,28], and do not overlap. In the
present case, the zero located at 410 Hz repels the zero at f = 420 + i125 Hz, and the pole located at
f = 410− i25 Hz repels the pole located at f = 380− i125 Hz, resulting in an attraction of a zero-pole
pair that were not complex conjugate in the lossless case for normal incidence. As in the limit of
grazing angles, the TMM model predicts that the refection is the unity, only two final solutions for
the trajectories are allowed for each zero-pole pair. (i) The first option is the collapse of a zero-pole
pair, as it occurs n the case of N = 1. (ii) In the second possible solution, one zero moves towards
f → fr + i∞ and a pole move towards f = f r−i∞. Thus, the absorption at grazing angles vanishes,
as shown in Figure 5d.
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Figure 5. Complex frequency representation of the reflection coefficient for the metamaterial with
N = 3 HRs, in logarithmic colour scale, for different angles of incidence. (a) θ = 0◦; (b) θ = 65◦;
(c) θ = 85◦; (d) θ → 90◦. The trajectories of the poles and the zeros of the reflection coefficient as the
incidence angle is increased are plotted in coloured lines, corresponding to the blueish and reddish
colour bars, respectively.

3.3. Optimal Absorption in Diffuse Field

As we have shown, using a locally reacting material, perfect absorption can only be achieved
at one single angle for a given frequency. However, the structure can be optimized to maximize the
absorption at a broad range of angles, even when we know from Equation (10) that the absorption
will be the unity only at a single angle. To use a generalized criteria, we make use of the absorption in
diffuse field [20] at frequency f0 = 300 Hz, given by

αdiff( f0) = 2
∫ π/2

0
α(θ, f0) cos(θ) sin(θ)dθ, (11)

which takes into account a broad range of incidence angles, weighted to mimic diffuse field conditions.
Substituting Equation (10) into (11) yields, after some algebra,

αdiff,PA = 2 cos(θPA)
[
4 + 2 cos(θPA)

(
4 log [cos(θPA)]− 4 log [1 + cos(θPA)] + sec(θPA/2)2

)]
. (12)

This expression shows the absorption in diffuse field that can be achieved using a locally reacting
material presenting perfect absorption at an incidence angle θPA.

In the following, we look for the optimal geometrical parameters of a structure that maximize αdiff
at a single frequency f0, using the cost function ε( f0) = 1− αdiff( f0). The algorithm and constraints
were the same as in the previous section. Figure 6a shows the optimized absorption using three HRs as
a function of the incidence angle. The absorption in diffuse field is maximized for a structure showing
perfect absorption at an angle θPA,diff = 50.34◦ ≈ 0.28π radians, and this leads to a maximum diffuse
field absorption of αdiff, MAX = 0.951. It is worth noting here that this result is independent of the
number of resonators and the kind of material; the only condition is that the structure must be a locally
reacting one. Several tests were performed using 1, 2, and 3 HRs, and the results were the same. In fact,
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it is enough to use Equation (10) to obtain these limiting values: as Figure 6b shows, the retrieved
θPA,diff angle corresponds to the maximum of the curve given by Equation (12). In summary, the angle
θPA,diff is the the optimal to obtain the maximal value of absorption in diffuse field αdiff, MAX for any
locally reacting material.
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Figure 6. (a) Angle-dependent absorption of the optimal diffuse-field absorber using TMM
(continuous line) and Equation (10), at f0 = 300 Hz; (b) Absorption in diffuse field as a function
of the critical coupling angle. The maximum absorption in diffuse field is αdiff, MAX = 0.952, and is
achieved for a structure critically-coupled at θPA,diff = 50.34◦.

4. Discussion

The current study has used a general TMM model to account for the effect of the incidence
angle in the absorption. However, Equation (4) can only be applied below the Wood anomaly
frequency [29,30]; i.e, when the wavenumber in the x2 direction k2 < 2π/d. The present structures
analysed in this work are of subwavelength dimensions; thus, this frequency is generally high:
for the N = 1 metamaterial, it was fwood ≈ 6900 Hz, and for the N = 3 metamaterial, it was
fwood ≈ 1800 Hz. However, the Bloch waves must be accounted for in the model if structures
with larger unit-cell are considered. In addition, it has been shown that the absorption at grazing
angles does not vanish; in fact, it cannot be neglected [31]: for grazing angles, the projection of the
wavenumber in the x1 is small, being the characteristic wavelength in this direction on the order of
the thermal and viscous boundary layers. Thus, the proposed general model may not be accurate in
the limit of grazing angles, and this should be taken into consideration for accurate predictions.

5. Conclusions

The performance of perfect absorbing metamaterials under oblique incidence has been studied
analytically. In particular, we presented an ultra-thin acoustic metamaterial having perfect absorption
in a broad range of angles at selected frequencies. When the incidence angle of the incoming wave
is tilted, the absorption peaks shift in frequency, producing an acoustic iridescent effect due to its
selective and perfect absorption at particular angles and frequencies.

We have shown that omnidirectional and perfect absorption cannot be obtained for locally reacting
materials when the acoustic impedance does not depend on the incidence angle. The specific function
of the absorption under oblique incidence was obtained, and this curve presents only a single maximum
for each frequency. The special features of the angle-dependent absorption are illustrated using the
complex frequency representation of the reflection coefficient. We show that the fact that the trajectories
of the different zeros of the reflection coefficient in the complex frequency plane do not overlap prevents
the observation of perfect and omnidirectional absorption in locally reacting metamaterials.

We have shown that for any locally reacting material, the maximum value of the absorption
in diffuse field is 0.951, which is achieved using a material showing perfect absorption at 50.34◦.
This implies that to maximize the absorption performance of a material in the diffuse field, the design
at normal incidence angle is not the optimal. These results can be generalized for any locally reacting
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material whose impedance does not depend on the incidence angle. The current study will help to
guide the design of new absorbing materials under oblique incidence.
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Appendix A. Geometrical Parameters

The geometrical parameters for the metamaterial composed of N = 1 HR are listed in Table A1.
For this structure, d = 50 mm, L = 57.2 mm, h1 = 57.2 mm and h2 = 24.8 mm. Thus, the structure is
24 times smaller than the wavelength at 250 Hz.

Table A1. Geometrical parameters for the resonator used in sample N = 1.

n ln (mm) lc (mm) wn (mm) wc (mm)

1 0.25 24.6 2.0 56.7

The geometrical parameters for the metamaterial composed of N = 3 HR are listed in Table A2.
For this structure, d = 18.6 mm, L = 65.3 mm, h1 = 15.4 mm and h2 = 21.4 mm. Thus, the structure is
18 times smaller than the wavelength at 290 Hz.

Table A2. Geometrical parameters for the resonators used in sample N = 3.

n ln (mm) lc (mm) wn (mm) wc (mm)

1 0.8 81.6 1.5 14.9
2 21.8 60.6 3.4 14.9
3 1.4 81.0 4.5 14.9
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