
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

https://doi.org/10.1016/0370-2693(96)00404-2

http://hdl.handle.net/10251/99719

Elsevier

Gómez-Tejedor, JA.; Cano, F.; Oset, E. (1996). THE N* (1520) -> DELTA PI AMPLITUDES
EXTRACTED FROM THE GAMMA P -> PI+ PI- P REACTION AND COMPARISON TO
QUARK MODELS. Physics Letters B. 379(1):39-44. doi:10.1016/0370-2693(96)00404-2



ar
X

iv
:n

uc
l-

th
/9

51
00

07
v3

  2
0 

M
ar

 1
99

6

THE N∗(1520) → ∆π AMPLITUDES
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Abstract

The γp → π+π−p reaction, in combination with data from the
πN → ππN reaction, allows one to obtain the s- and d-wave ampli-
tudes for the N∗(1520) decay into ∆π with absolute sign with respect
to the N∗(1520) → Nγ helicity amplitudes. In addition one obtains the
novel information on the q dependence of the amplitudes. This depen-
dence fits exactly with the predictions of the non-relativistic constituent
quark models. The absolute values provided by these models agree only
qualitatively, and a discussion is done on the reasons for it and possible
ways to improve.
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A recent detailed study of the γp → π+π−p reaction [1], improving on
the model of Lüke and Söding [2], together with a new experiment [3, 4], has
stressed the role of the N∗(1520) resonance which is essential to understand
the total cross section for the γp → π+π−p reaction for photon energies around
Eγ = 700 MeV .

In ref. [1] it is shown that the peak observed in the total cross section
for the γp → π+π−p reaction around Eγ = 700 MeV [3, 4, 5, 6] is due to
the interference of the dominant term of the reaction, the contact gauge term
γN → ∆π (the ∆-Kroll-Ruderman term) and the γN → N∗(1520) → ∆π
process, when the decay of the N∗(1520) into ∆π is through the s-wave. More
recently, these results have been confirmed in ref. [7] where a simplified model
with respect to the one in ref. [1] is used for different isospin channels of the
γp → ππN reaction.

In this paper we show how we can obtain the amplitudes for the N∗(1520) →
∆π process from the γp → π+π−p reaction and their momentum dependence,
which provides a nice test for the quark models.

The first ingredient in the γN → N∗(1520) → ∆π process is the N∗(1520)Nγ
coupling, which is given by [1]:

− iδHN ′∗Nγ = ig̃γ
~S · ~ε + g̃σ

(

~σ × ~S
)

· ~ε (1)

by means of which one reproduces the two helicity decay amplitudes. In Eq.
(1) ~σ are the ordinary spin Pauli matrices, ~S is the transition spin operator
from 1/2 to 3/2 and ~ǫ the photon polarization vector in the Coulomb Gauge.
From the average experimental values of the helicity amplitudes given in [8]
we get g̃γ = 0.108 and g̃σ = −0.049.

For the N∗(1520)∆π coupling, the simplest Lagrangian allowed by conser-
vation laws is given by [1]:

LN ′∗∆π = if̃N ′∗∆πΨN ′∗φλT λΨ∆ + h.c. (2)

where ΨN ′∗ , φλ and Ψ∆ stand for the N∗(1520), pion and ∆(1232) field re-
spectively, T λ is the 1/2 to 3/2 isospin transition operator.

However, such a Lagrangian only gives rise to s-wave N∗(1520) → ∆π
decay, while experimentally we know that there is a large fraction of decay
into d-wave too [8, 9]. Furthermore, the amplitude of Eq. (2) provides a
spin independent amplitude, while non relativistic constituent quark models
(NRCQM) give a clear spin dependence in the amplitude. We propose here
for this coupling the following Lagrangian, which, as we shall see, is supported
by both the experiment and the NRCQM. The Lagrangian is given by

LN ′∗∆π = iΨN ′∗

(

f̃N ′∗∆π − g̃N ′∗∆π

µ2
S†

i ∂i Sj∂j

)

φλT λΨ∆ + h.c. (3)
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with µ the pion mass.
This Lagrangian gives us the vertex contribution to the N∗(1520) decay

into ∆π:

− iδHN ′∗∆π = −
(

f̃N ′∗∆π +
g̃N ′∗∆π

µ2
~S† · ~q ~S · ~q

)

T λ (4)

where ~q is the pion momentum. In order to fit the coupling constants f̃N ′∗∆π

and g̃N ′∗∆π to the experimental amplitudes in s- and d-wave [8] we make a
partial wave expansion [10] of the transition amplitude N∗(1520) to ∆π from
a state of spin 3/2 and third component M , to a state of spin 3/2 and third
component M ′, following the standard “baryon-first” phase convention [11]:

−i 〈3
2
M ′|δHN ′∗∆π|

3

2
, M〉 = As Y M−M ′

0 (θ, φ) +

Ad 〈2,
3

2
, M − M ′, M ′|2, 3

2
,
3

2
, M〉 Y M−M ′

2 (θ, φ) (5)

where 〈j1j2m1m2|j1j2JM〉 is the corresponding Clebsch-Gordan coefficient,
Y m

l (θ, φ) are the spherical harmonics, and As and Ad are the s- and d-wave
partial amplitudes for the N∗(1520) decay into ∆(1232) and π, which are given
by:

As = −
√

4π
(

f̃N ′∗∆π + 1
3
g̃N ′∗∆π

~q 2

µ2

)

Ad =
√

4π
3

g̃N ′∗∆π
~q 2

µ2

(6)

From Eq. (5) we get the expression for the N∗(1520) decay width into ∆π:

Γ =
1

4π2

m∆

mN ′∗

q
(

|As|2 + |Ad|2
)

θ(mN ′∗ − m∆ − µ) (7)

where q is the momentum of the pion. We then fit the s- and d-wave parts of
Γ to the average experimental values [8] by keeping the ratio As/Ad positive
as deduced from the experimental analysis of the πN → ππN reaction [9]. We
get then two different solutions which differ only in a global sign,

(a) f̃N ′∗∆π = 0.911 g̃N ′∗∆π = −0.552

(b) f̃N ′∗∆π = −0.911 g̃N ′∗∆π = 0.552
(8)

Now, the γp → π+π−p reaction allows us to distinguish between both
solutions, hence providing the relative sign with respect to the N∗(1520) → γN
amplitude.

In Fig. 1 we have plotted the total cross section for both solutions (solid
lines). As we can see, only solution (a) fits the experiment, while the other
one under-estimates the experimental cross section by a large amount. In Fig.
1 we also show the uncertainties in the cross section due to the experimental
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errors in the N∗(1520) helicity amplitudes and s- and d-wave ∆π decay widths
(region between dashed lines). These errors are calculated by evaluating the
results a large number of times, N , with random values of the couplings within
experimental errors. The deviation σ from the mean, x, is then obtained as
[12]:

σ2 =

∑

i(xi − x)2

N − 1
(9)

For the width of the N∗(1520) in the propagator we have taken the explicit
decay into the dominant channels (Nπ, ∆π, Nρ) with their energy dependence,
improving on the results of [1] where the energy dependence was associated to
the Nπ channel.

Because of the N∗(1520) is a d-wave resonance, the energy dependence of
the decay width into Nπ is given by:

ΓN ′∗→Nπ(
√

s) = ΓN ′∗→Nπ(mN ′∗)
q5
c.m.(

√
s)

q5
c.m.(mN ′∗)

θ(
√

s − m − µ) (10)

where ΓN ′∗→Nπ(mN ′∗) = 66 MeV [8], qc.m.(mN ′∗) = 456 MeV and qc.m.(
√

s) is
the momentum of the decay pion in the N∗(1520) rest frame.

For the ∆π channel, the energy dependence of the decay width is given by
Eq. (7).

Finally, for the N∗(1520) decay into Nππ through the Nρ channel is given
by:

ΓN ′∗→Nρ[ππ] =
m

6(2π)3

mN ′∗√
s

g2
ρf

2
ρ

∫

dω1dω2|Dρ(q1 + q2)|2(~q1 − ~q2 )2 (11)

where qi = (ωi, ~qi) (i = 1, 2) are the fourmomenta of the outgoing pions,
Dρ(q1 + q2) is the ρ propagator including the ρ width, fρ is the ρππ coupling
constant (fρ = 6.14), and gρ is the N ′∗Nρ coupling constant (gρ = 7.73)
that we fit from the experimental N ′∗ → Nρ[ππ] decay width [8]. A slightly
different, although equivalent treatment can be found in ref. [7].

The differences induced in the cross section from these improvements with
respect to ref. [1] are, however, very small.

In Fig. 1 we are also plotting the experimental results of ref. [3] with the
DAPHNE acceptance, together with our theoretical results with this accep-
tance (long dashed line). This is proper to do since the experimental total
cross section is extrapolated from the measured one using the model of ref.
[7].

We have also checked possible effects coming from off-shell effects in the
propagators and vertices of the spin 3/2 particles (∆ and N∗(1520)) [13, 14].
By taking A = −1 and Z ∈ [−1/2, 1/2] the changes observed in the cross
section are of the order of 1%.
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We should note that the interference between the γN∆π-Kroll-Ruderman
and the γN → N∗(1520) → ∆π terms changes sign around

√
s = mN ′∗ where

the real part of the N∗(1520) propagator changes sign. This means that the
on-shell value of the amplitudes As and Ad for the N∗(1520) → ∆π decay
plays no role at this energy and what matters is the value of As (the one that
interferes) at values of q other than the one from the decay of the N∗(1520)
on-shell. This brings us to the q dependence of the amplitude. While the Ad

part should have the q2 dependence exhibited in Eq. (6), the combination of q2

which appears in As is given by the chosen Lagrangian. One could, however,
postulate other Lagrangians which would lead to a different combination. In
order to investigate the most general q2 dependence of As we substitute f̃N ′∗∆π

by

f̃N ′∗∆π

(

1 + ǫ
~q 2 − ~q 2

on−shell

µ2

)

(12)

where ~q is the momentum of the decay pion, and ~q 2
on−shell is de momentum

of the pion for a on-shell N∗(1520) decaying into ∆π (|~qon−shell| = 228 MeV ),
and then we change ǫ comparing the results to the data. We find that, to
a good approximation, ǫ = 0 gives the best agreement with the data, hence
supporting the Lagrangian of Eq. (3).

In a recent paper [15] we use the information obtained here, together with
all the other needed effective Lagrangians, in order to study the γN → ππN
reaction in all the isospin channels.

Next we pass to see what the NRCQM have to say with respect to this novel
information. We followed a model designed by Bhaduri et al. [16] to describe
the mesonic spectrum and which was used later on by Silvestre-Brac et al. [17]
in the baryonic sector. The model has as starting point the quark-quark (qq)
potential

Vqq =
1

2

∑

i<j

(

− κ

rij

+
rij

a2
+

κσ

mimj

exp (−rij/r0)

r2
0rij

~σi · ~σj − D

)

(13)

incorporating the basic QCD motivated confining, coulombic and spin-spin qq
interactions, where the parameters are chosen in order to reproduce the low
energy baryonic spectrum.

In order to study strong pionic decays B → B′π we shall follow the ele-
mentary emission model (EEM) in which the decay takes place through the
emission of a (point-like) pion by one of the quark. Some choices for the qqπ
Hamiltonian are possible. We quote here a pseudovector interaction

Hqqπ =
fqqπ

µ
Ψq(x)γνγ5~τΨq(x)∂ν

~φ(x) (14)
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The non-relativistic approach comes from the non-relativistic expansion of
Eq. (14) in powers of (p/mq), where p is the quark momentum operator. Up
to first order in (p/mq) the Hamiltonian governing the transition B → B′πα

has this form:

Hqqπ ∝ fqqπ (τα)†
[

~σ · ~qe−i~q~r − ωπ

2mq
~σ · (~pe−i~q~r + e−i~q~r~p )

]

(15)

The isospin (~τ), spin (~σ) and momentum (~p ) operators stand for the quark
responsible for the emission, and ωπ, ~q are the energy and momentum of the
emitted pion respectively. In Eq. (15) one distinguishes the term proportional
to ~q (direct term) and the recoil term with the ~p structure.

There are two independent helicity amplitudes for the N∗(1520) → ∆π
decay. If we take the quantization axis along the pion momentum in the
resonance rest frame, the helicity amplitudes correspond to a resonance spin
projection, and we denote them as A1/2 and A3/2. After performing the cal-
culations the ratio between them is:

A3/2

A1/2

=
−CREC

CDIR − CREC
(16)

where CDIR (REC) is the contribution from the direct (recoil) term. Rigorously,
what we call CDIR contains a small piece, proportional to ωπ

6mq
coming from the

recoil term in (15).
The amplitudes As and Ad of Eq. (6) can be expressed in terms of these

helicity amplitudes as follows [18]:

Ad ∝ A3/2 − A1/2

As ∝ A3/2 + A1/2

(17)

and their ratio in the EEM is given by

Ad

As
=

CDIR

2CREC − CDIR
= +0.156 (18)

where we have quoted the value obtained with the Bhaduri potential (13). The
experimental value for this ratio is 1.2 [8].

Let us first discuss the sign. Notice that if only the direct term were
present, the relative sign would be negative (the so-called SU(6)W signs) [19].
The introduction of the first order (recoil) contribution provokes a change of
sign (the anti-SU(6)W situation) in agreement with the experiments [9]. This
fact was pointed out long ago by Le Yaouanc et al. [20] by using the 3P0

model (that could be regarded to some extent as a (p/mq) model). We have
checked this sign with a wide variety of qq potentials and with the 3P0 model
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also, and the anti-SU(6)W signs remain. Moreover, we have explored in the
EEM with harmonic oscillator wave functions under which conditions are the
SU(6)W signs recovered. The answer is that the radius of the nucleon has to
be larger than ≈ 1 fm. Certainly, spectroscopy does not support such a big
quark core radius. Hence, as a quite model independent conclusion, we can
say that the recoil term is crucial to explain the anti-SU(6)W signs, and it is
generally bigger than the direct term.

It is interesting to contrast the model prediction with the information on
the q dependence which our analysis of the experiment has provided for As

and Ad. From Eq. (6) we find

As + Ad = −
√

4πf̃N ′∗∆π

Ad =
√

4π
3

g̃N ′∗∆π
~q 2

µ2

(19)

Equation (19) summarizes in a practical way the empirical q dependence
of the amplitudes. Now let us see what the NRCQM gives. Eqs. (19) can be
recast in terms of the helicity amplitudes as

A3/2 ∝ f̃N ′∗∆π

A3/2 − A1/2 ∝ g̃N ′∗∆π~q
2

(20)

which in terms of Eq. (16), by means of the direct and recoil terms of Eq.
(15), can be rewritten as

CREC ∝ f̃N ′∗∆π

CDIR ∝ g̃N ′∗∆π~q
2

(21)

Now it is straightforward to see that this is indeed the case. The N∗(1520) →
∆π transition matrix element with the direct term of Eq. (15) requires the sec-
ond term in the expansion of e−i~q~r, since N∗(1520) contains a radial excitation
with respect to the ∆(1232). Hence, the direct term is proportional to ~q 2. On
the other hand the recoil term gets the dominant contribution from the unity
in the expansion of the exponential and hence it is momentum independent.
Thus the quark model prediction for the ~q 2 dependence of the amplitudes is
in perfect agreement with experiment. However, the strength of the terms
and their ratio is not well reproduced. This is not surprising in view that the
recoil term appears to be bigger than the direct one in the (p/mq) expansion
of Eq. (15). The values met here for (p/mq) are in average bigger than 1 and
one should then expect limitations due to the nonrelativistic character of the
model.
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The purpose of the present paper is not to solve this interesting problem
which has already caught attention of some groups [21, 22]. Our purpose
has been to show the novel experimental information about the q dependence
of the s- and d-wave ∆π decay amplitudes of the N∗(1520) extracted from
the γp → π+π−p reaction, and how it fits with the structure of NRCQM. It
also gives in addition an absolute sign with respect to the N∗(1520) helicity
amplitudes which agrees with the NRCQM.

As for the need to introduce relativistic effects to get the appropriate
strength of the s- and d-wave ratio it seems quite obvious, and some results
show that the ratio improves when this is done. The method of [21] is probably
an indirect way of introducing relativistic effects by taking different factors in
front of the two terms in Eq. (15) which are the then fit to a large set of
data. In ref. [22] a 3P0 model with relativized hadronic wave functions is used
and contrasted to a large set of hadronic decays of the baryon spectrum, and,
concretely for the N∗(1520), the s- and d-wave ∆π decay ratio improves con-
siderably without still being in agreement with experimental data. In Table
I we show the results obtained with all these models. These results indicate
the importance of the relativistic effects and the need for more work. Another
possibility is explored in ref. [24] by making an expansion in powers of (p/E)
instead of (p/mq). However when trying to improve on this ratio it will be
important to take into account the new experimental constraint obtained in
the present work, and summarized in Eq. (19). While the second equation,
establishing Ad as a quadratic function of q, will come out relatively naturally
in most schemes, the independence of q of As + Ad of the first equation is less
than obvious and will pose a challenge to any new scheme.

In Fig. 1 we are also plotting the results obtained by using the strong and
electromagnetic couplings for the N∗(1520) resonance from the work of refs.
[22, 23]. The results obtained are very close to those obtained with our model.
This is so in spite that the individual electromagnetic and strong couplings are
in some disagreement with experiment [8]. Indeed, the helicity amplitudes of
[23] are smaller than experiment and the s-wave N∗(1520) → ∆π amplitude
of [22] (the relevant one in the interference) bigger tan the experiment, and
there is a certain compensation of both deficiencies in the γp → π+π−p cross
section. This observation is interesting because it tells us that the fairness
of a model for the γN → ππN reaction is not enough by itself and one has
to contrast the information provided by the model with the complementary
experimental information extracted from the πN → γN and the πN → ππN
reactions. As an example in ref. [25] we show a model which gives equally
good results as the present one in the γp → π+π−p reaction and which has
a ratio Ad/As of opposite sign to the experimental one. These two examples
show clearly the importance of using the information of several experiments
in order to obtain the proper information on the properties of resonances, the
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N∗(1520) in particular in the present case.
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Figure Captions

Fig. 1: Continuous line: Total cross section for the γp → π+π−p reaction
for different solutions of f̃N ′∗∆π and g̃N ′∗∆π (see Eq. (8)). Region between
short-dashed lines: Uncertainties in the cross section due to the experimen-
tal errors in the N ′∗(1520) helicity amplitudes and s- and d-waves ∆π decay
widths. Long-dashed line: Cross section integrated over the DAPHNE detec-
tor acceptance [3]. Dash-dotted lines: Total cross section with the Capstick et

al. values of the strong and electromagnetic couplings [22, 23].

Table Captions

Table 1:Γd/Γs Ratio for different models. Experimental value from [8].
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EEM
with Eq. (15)

EEM
[21]

3P0

[22]
Exp.

Γd

Γs
0.024 0.139 0.069 1.4 ± 0.6
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