Document downloaded from:

http://hdl.handle.net/10251/99725

This paper must be cited as:

López Alfonso, S.; Mas Marí, J.; Moll López, SE. (2016). Nikodym boundedness property for webs in sigma-algebras. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 110(2):711-722. doi:10.1007/s13398-015-0260-4

The final publication is available at http://doi.org/10.1007/s13398-015-0260-4

Copyright Springer-Verlag

Additional Information

Nikodym boundedness property for webs in σ -algebras*

S. López-Alfonso¹, J. Mas², and S. Moll³

 ¹ Depto. Construcciones Arquitectónicas., Universitat Politècnica de València,, E-46022 València, Spain, salloal@csa.upv.es
 ² Instituto de Matemática Multidisciplinar., Universitat Politècnica de València,, E-46022 València, Spain, jmasm@imm.upv.es
 ³ Depto. de Matemática Aplicada and IUMPA., Universitat Politècnica de València, E-46022 València, Spain, sanmollp@mat.upv.es

Abstract

A subset \mathscr{B} of an algebra \mathscr{A} of subsets of Ω is said to have the *property N* if a \mathscr{B} -pointwise bounded subset M of ba(\mathscr{A}) is uniformly bounded on \mathscr{A} , where ba(\mathscr{A}) is the Banach space of the real (or complex) finitely additive measures of bounded variation defined on \mathscr{A} with the norm variation. Moreover \mathscr{B} is said to have the *property sN* if for each increasing countable covering $(\mathscr{B}_m)_m$ of \mathscr{B} there exists \mathscr{B}_n which has the property N and \mathscr{B} is said to have *property wN* if given the increasing countable coverings $(\mathscr{B}_{m_1})_{m_1}$ of \mathscr{B} and $(\mathscr{B}_{m_1m_2...m_pm_{p+1}})_{m_{p+1}}$ of $\mathscr{B}_{m_1m_2...m_p}$, for each $p, m_i \in \mathbb{N}, 1 \leq i \leq p+1$, there exists a sequence $(n_i)_i$ such that each $\mathscr{B}_{n_1n_2...n_r}, r \in \mathbb{N}$, has property N. For a σ -algebra \mathscr{S} of subsets of Ω it has been proved that \mathscr{S} has property N (Nikodym-Grothendieck), property *sN* (Valdivia) and property w(sN) (Kakol-López-Pellicer). We give a proof of property wN for a σ -algebra \mathscr{S} which is independent of properties N and sN. This result and the equivalence of properties wN and w^2N enable us to give some applications to localization of bounded additive vector measures.

Keywords: Bounded set; finitely additive scalar (vector) measure; inductive limit; NV-tree; σ -algebra; web Nikodym property

MSC: 28A60, 46G10

*This work was supported for the second named author by the Spanish Ministerio de Economía y Competitividad under grant MTM2014-58159-P.

1 Introduction

Let Ω be a set and \mathscr{A} a set-algebra of subsets of Ω . If \mathscr{B} is a subset of \mathscr{A} then $L(\mathscr{B})$ is the normed space of the real or complex linear hull of the set of characteristics functions $\{e_C : C \in \mathscr{B}\}$ endowed with the supremum norm $\|\cdot\|$. The dual of $L(\mathscr{A})$ with the dual norm is named $L(\mathscr{A})'$ and it is isometric to the Banach space ba (\mathscr{A}) of finitely additive measures on \mathscr{A} with bounded variation provided with the variation norm, i.e., $|\cdot| := |\cdot|(\Omega)$, being the isometry the map Θ : ba $(\mathscr{A}) \to L(\mathscr{A})'$ such that, for each $\mu \in$ ba $(\mathscr{A}), \Theta(\mu)$ is the linear form named also by μ and defined by $\mu(e_C) := \mu(C)$, for each $C \in \mathscr{A}$, [2, Chpater 1]. A norm in $L(\mathscr{A})$ equivalent to the supremum norm is defined by the Minkowski functional of $\operatorname{absco}(\{e_C : C \in \mathscr{A}\})$ ([12, Propositions 1 and 2]), which dual norm is the \mathscr{A} -supremum norm, i.e., $\|\mu\| := \sup\{|\mu(C)| : C \in \mathscr{A}\}$, $\mu \in \operatorname{ba}(\mathscr{A})$.

In this paper duality is referred to the dual pair $\langle L(\mathscr{A}), ba(\mathscr{A}) \rangle$ and we follow notations of [7]. Then the weak * dual of a locally convex space *E* is $(E', \tau_s(E))$, whence the topology $\tau_s(\mathcal{A})$) is the topology $\tau_s(\mathscr{A})$ of pointwise convergence in the elements of \mathscr{A} , the cardinal of a set *C* is denoted by |C|, \mathbb{N} is the set $\{1, 2, \ldots\}$ of positive integers, the closure of a set is marked by an overline, the convex (absolutely convex) hull of a subset *M* of a topological vector space is represented by co(M) (absco(M)) and $absco(M) = co(\cup\{rM : |r| = 1\})$.

A subset \mathscr{B} of a set-algebra \mathscr{A} has the Nikodym property, property N in brief, if each \mathscr{B} -pointwise bounded subset M of $ba(\mathscr{A})$ is bounded in $ba(\mathscr{A})$ (see [10, Definition 2.4] or [13, Definition 1]). If \mathscr{B} has property N the polar set $\{e_C : C \in \mathscr{B}\}^\circ$ is bounded in $ba(\mathscr{A})$, hence the bipolar set $\{e_C : C \in \mathscr{B}\}^\circ = absco\{e_C : C \in \mathscr{B}\}$ is a neighborhood of zero in $L(\mathscr{A})$ and then $L(\mathscr{B})$ is dense in $L(\mathscr{A})$. Notice also that a subset \mathscr{B} of an algebra \mathscr{A} has property N if each \mathscr{B} -pointwise bounded, $\tau_s(A)$ -closed and absolutely convex subset M of ba(A) is uniformly bounded in \mathscr{A} . The algebra of finite and co-finite subsets of \mathbb{N} fails to have property N and Schachermayer proved that the algebra $\mathscr{J}(I)$ of Jordan measurable subsets of I := [0, 1] has property N [10, Corollary 3.5] (see a generalization of this property in [4, Corollary]).

A subset \mathscr{B} of a set-algebra \mathscr{A} has the strong Nikodym property, property sN in brief, if for each increasing covering $\cup_m \mathscr{B}_m$ of \mathscr{B} there exists \mathscr{B}_n which has property N. Valdivia proved that the algebra $\mathscr{J}(K)$ of Jordan measurable subsets of a compact k-dimensional interval $K := \prod\{[a_i, b_i] : 1 \le i \le k\}$ in \mathbb{R}^k has property sN [13, Theorem 2].

An increasing web in a set A is a family $\mathscr{W} := \{A_{m_1m_2...m_p} : (m_1, m_2, ..., m_p) \in \bigcup_s N^s\}$ of subsets of A such that $(A_{m_1})_{m_1}$ and $(A_{m_1m_2...m_pm_{p+1}})_{m_{p+1}}$ are, respectively, increasing coverings of A and $A_{m_1m_2...m_p}$, for each $p, m_i \in N$, $1 \le i \le p+1$ [7, Chapter 7, 35.1], and each sequence $(A_{m_1m_2...m_p})_p$ is a strand in \mathscr{W} . A subset \mathscr{B} of a set-algebra \mathscr{A} has the web Nikodym property, property wN in brief, if for each increasing web $\{\mathscr{B}_t : t \in \bigcup_s N^s\}$ in \mathscr{B} there exists a strand composed of sets which have property N. In general, if B is a set and \mathfrak{P} is a property verified in the elements of a family of subsets of B then B has property $w\mathfrak{P}$ if each increasing web $\{B_t : t \in \bigcup_s N^s\}$ in \mathscr{B} has a strand composed of sets which have property \mathfrak{P} .

Property $w(w\mathfrak{P})$ is named as property $w^2\mathfrak{P}$. The next straightforward proposition states that properties $w\mathfrak{P}$ and $w^2\mathfrak{P}$ are equivalent.

Proposition 1. Let $(B_m)_m$ be an increasing covering of a set B which verifies property $w\mathfrak{P}$. There exists B_n which has property $w\mathfrak{P}$, whence B has property $w^2\mathfrak{P}$.

Proof. Let us suppose that $(B_m)_m$ is an increasing covering of a set *B* such that each B_m does not have property $w\mathfrak{P}$. Then, for each natural number *m* there exists an increasing web $\mathscr{W}_m := \{B_{m_1m_2...m_p}^m : p, m_1, m_2, ..., m_p \in N\}$ in B_m such that every strand in \mathscr{W}_m contains a set $B_{m_1m_2...m_p}^m$ without property \mathfrak{P} . If $B_{m_1m_2...m_p} := B_{m_2m_3...m_p}^{m_1}$ we get that $\mathscr{W} := \{B_{m_1m_2...m_p} : p, m_1, m_2, ..., m_p \in N\}$ is an increasing web in *B* without strands consisting of sets with property \mathfrak{P} , whence *B* does not have property $w\mathfrak{P}$. This proves the first affirmation which readily implies that if *B* verifies property $w\mathfrak{P}$ then every increasing web in *B* contains a strand consisting of sets with property $w\mathfrak{P}$ are equivalent in *B*.

Let \mathscr{S} be a σ -algebra of subsets of a set Ω . It has been sequentially shown that (*i*) \mathscr{S} has property *N* (Nikodym-Dieudonné-Grothendieck theorem [9], [3] and [1, page 80, named as Nikodym-Grothendieck boundedness theorem]), (*ii*) \mathscr{S} has property *sN* ([12, Theorem 2]) and (*iii*) \mathscr{S} has property w(sN) (very recently in [6, Theorem 2]). The aim of this paper is to present in the next section a proof of the property that each σ -algebra \mathscr{S} has property wN independent of any property related to Nikodym boundedness property, as properties *N* or *sN*, and using very elementary locally convex space theory.

Last section deals with some applications to bounded vector measures deduced from the property wN of each σ -algebra \mathscr{S} and from the equivalence stated in Proposition 1.

Following the characterization of *sN*-property of a set-algebra A by the locally convex property of L(A) given in [13, Theorem 3] it is possible to get a characterization of wN property of a set-algebra A by the locally convex properties considered in [5] and [8]. In fact Theorem 1 is equivalent to Theorem 2.7 of [8], totally stated in the locally convex theory frame.

2 NV-trees and property *wN*

Given two elements, $t = (t_1, t_2, ..., t_p)$ and $s = (s_1, s_2, ..., s_q)$, and two subsets, T and U, of $\bigcup_s \mathbb{N}^s$ then p is the *length of* t, for each $1 \le i \le p$ the *section of length* i of t is $t(i) := (t_1, t_2, ..., t_i)$; if i > p, $t(i) := \emptyset$; $T(m) := \{t(m) : t \in T\}$, for each $m \in \mathbb{N}$; $t \times s := (t_1, t_2, ..., t_{p+1}, t_{p+2}, ..., t_{p+q})$, with $t_{p+j} := s_j$, for $1 \le j \le q$, and $T \times U := \{t \times u : t \in T, u \in U\}$.

Each $t \times s \in U$ is an extension of t in U and a sequence $(t^n)_n$ of elements $t^n = (t_1^n, t_2^n, \ldots, t_n^n, \ldots) \in T$ is an *infinite chain in* T if for each $n \in \mathbb{N}$ the element t^{n+1} is an extension of the section $t^n(n)$ in T, i.e., $\emptyset \neq t^n(n) = t^{n+1}(n)$, and length of t^n is at least n, for each $n \in \mathbb{N}$. If $t = (t_1)$ then t and the products $T \times t$ and $t \times T$ are represented by $t_1, T \times t_1$ and $t_1 \times T$.

Let $\emptyset \neq U \subset \bigcup_n \mathbb{N}^n$. *U* is increasing at $t = (t_1, t_2, \dots, t_p) \in \bigcup_s \mathbb{N}^s$ if *U* contains elements $t^1 = (t_1^1, t_2^1, \dots)$ and $t^i = (t_1, t_2, \dots, t_{i-1}, t_i^i, t_{i+1}^i, \dots), 1 < i \leq p$, such that $t_i < t_i^i$, for each $1 \leq i \leq p$. *U* is increasing (increasing respect to a subset *V* of $\bigcup_s \mathbb{N}^s$) if *U* is increasing at each $t \in U$ (at each $t \in V$). Clearly U is increasing if $|U(1)| = \infty$ and $|\{n \in \mathbb{N} : t(i) \times n \in U(i+1)\}| = \infty$, for each $t = (t_1, t_2, \dots, t_p) \in U$ and $1 \leq i < p$.

Next definition deals with a particular type of increasing trees (see [6, Definition 2]).

Definition 1. An *NV*-tree *T* is an increasing subset of $\bigcup_{s \in \mathbb{N}} \mathbb{N}^s$ without infinite chains such that for each $t = (t_1, t_2, \dots, t_p) \in T$ the length of each extension of t(p-1) in *T* is *p* and $\{t(i) : 1 \le i \le p\} \cap T = \{t\}$.

An *NV*-tree *T* is *trivial* if T = T(1) and then *T* is an infinite subset of \mathbb{N} .

The sets \mathbb{N}^i , $i \in \mathbb{N} \setminus \{1\}$, and the set $\cup \{(i) \times \mathbb{N}^i : i \in \mathbb{N}\}$ are non trivial *NV*-trees. The finite product of *NV*-trees is an *NV*-tree.

If *T* is an increasing subset of $\bigcup_{s \in \mathbb{N}} \mathbb{N}^s$ and $\{B_u : u \in \bigcup_s \mathbb{N}^s\}$ is an increasing web in *B* then $(B_{u(1)})_{u \in T}$ is an increasing covering of *B*, because for each $u = (u_1, u_2, \dots, u_p) \in T$ and each i < p the sequence $(B_{u(i) \times n})_{u(i) \times n \in T(i+1)}$ is an increasing covering of $B_{u(i)}$, hence if *T* does not contain infinite chains and $b \in B$ there exists $t \in T$ such that $b \in B_t$. Therefore $B = \bigcup \{B_t : t \in T\}$.

Each increasing subset *S* of an *NV*-tree *T* is an *NV*-tree, whence if $(S_n)_n$ is a sequence of subsets of an *NV*-tree *T* such that each S_{n+1} is increasing respect to S_n then $\bigcup_n S_n$ is an *NV*-tree. This hereditary property and Proposition 7 in [6] imply next Proposition 2 and we give a proof as a help for the reader.

Proposition 2. Let U be a subset of an NV-tree T. If U does not contain an NV-tree then $T \setminus U$ contains an NV-tree.

Proof. This proposition is obvious if *T* is a trivial *NV*-tree. Whence we suppose that *T* is a non-trivial *NV*-tree and then there exists $m'_1 \in T(1)$ such that for each $n \ge m'_1$ the set $\{v \in \bigcup_s \mathbb{N}^s : n \times v \in U\}$ does not contain an *NV*-tree. We define $Q_1 := \emptyset$ and $Q'_1 := \{n \in T(1) \setminus T : m'_1 \le n\}$.

Let us suppose that we have obtained for each *j*, with $2 \le j \le i$, two disjoint subsets Q_j and Q'_j of T(j), with $Q_j \subset T \setminus U$ and $Q'_j \cap T = \emptyset$, such that for each $t \in Q_j \cup Q'_j$ the section $t(j-1) \in Q'_{j-1}$ and $A_{t(j-1)} := \{n \in \mathbb{N} : t(j-1) \times n \in Q_j \cup Q'_j\}$ is an infinite set such that $t \in Q_j$ implies that $t(j-1) \times A_{t(j-1)} \subset Q_j$ and from $t \in Q'_j$ it follows that $t(j-1) \times A_{t(j-1)} \subset Q'_j$ and that the set $\{v \in \bigcup_s \mathbb{N}^s : t \times v \in U\}$ does not contain an *NV*-tree. Then we define $S_{t(j-1)} := A_{t(j-1)}$ and $S'_{t(j-1)} := \emptyset$ in the first case and $S_{t(j-1)} := \emptyset$, $S'_{t(j-1)} := A_{t(j-1)}$ in the second case.

As for each $t \in Q'_i(\subset T(i)\backslash T)$ the set $\{v \in \bigcup_s \mathbb{N}^s : t \times v \in U\}$ does not contain an *NV*-tree and it is a subset of the *NV*-tree $T_t := \{v \in \bigcup_s \mathbb{N}^s : t \times v \in T\}$, the following two cases may happen:

- *i*. Either the *NV*-tree T_t is trivial and then there exists $m_{i+1} \in \mathbb{N}$ such that the infinite set $S_t := \{n \in \mathbb{N} : m_{i+1} \leq n, t \times n \in T(i+1)\}$ verifies that $t \times S_t \subset T \setminus U$. In this case we define $S'_t := \emptyset$.
- *ii.* Or the *NV*-tree T_t is non-trivial and then there exists $m'_{i+1} \in \mathbb{N}$ such that the infinite set $S'_t := \{n \in \mathbb{N} : m'_{i+1} < n, t \times n \in T(i+1)\}$ verifies that $t \times S'_t \subset T(i+1) \setminus T$ and for each $t \times n \in t \times S'_t$ the set $\{v \in \bigcup_s \mathbb{N}^s : t \times n \times v \in U\}$ does not contain an *NV*-tree. Now we define $S_t := \emptyset$.

The induction finish by setting $Q_{i+1} := \bigcup \{t \times S_t : t \in Q'_i\}$ and $Q'_{i+1} := \bigcup \{t \times S'_t : t \in Q'_i\}$. Then $Q_{i+1} \subset T(i+1) \cap (T \setminus U)$, $Q'_{i+1} \subset T(i+1) \setminus T$, and each $t \in Q_{i+1} \cup Q'_{i+1}$ verifies the above indicated properties when $t \in Q_j \cup Q'_j$, changing j by i+1.

As *T* does not contain infinite chains for each $(t_1, t_2, ..., t_i) \in Q'_i$ there exists $q \in \mathbb{N}$ and $(t_{i+1}, ..., t_{i+q}) \in \mathbb{N}^q$ such that $(t_1, t_2, ..., t_i, t_{i+1}, ..., t_{i+q}) \in Q_{i+q}$, whence $(\cup_{j>i}Q_j)(i) = Q'_i$. This implies that the subset $W := \cup \{Q_j : j \in \mathbb{N}\}$ of $T \setminus U$ has the increasing property, because from $W(k) = Q_k \cup Q'_k$, for each $k \in \mathbb{N}$, we get that $|W(1)| = |Q'_1| = \infty$ and if $t = (t_1, t_2, ..., t_p) \in W$ then $(t_1, t_2, ..., t_i) \in Q'_i$, if 1 < i < p, and $(t_1, t_2, ..., t_p) \in Q_p$, whence the infinite subsets $S'_{t(i-1)}$ and $S_{t(p-1)}$ of \mathbb{N} verify that $t(i-1) \times S'_{t(i-1)} \subset Q'_i \subset W(i)$ and $t(p-1) \times S_{t(p-1)} \subset Q_p \subset W$. Therefore W is an *NV*-tree contained in $T \setminus U$.

Definition 2. A property \mathfrak{P} is hereditary increasing in a set *A* if for each pair of subsets *B* and *C* of *A* such that *B* verifies property \mathfrak{P} and $B \subset C \subset A$ then *C* also has property \mathfrak{P} .

Example 1. The properties wN, sN and N are hereditary increasing properties in a set-algebra \mathscr{A} .

Proof. Let $\mathscr{B} \subset \mathscr{C} \subset \mathscr{A}$. It is obvious that if \mathscr{B} has property N then \mathscr{C} has also property N. Whence if \mathscr{B} has property sN and if $\bigcup_m \mathscr{C}_m$ is an increasing covering of \mathscr{C} then there exists \mathscr{C}_n such that $\mathscr{C}_n \cap \mathscr{B}$ has property N, therefore \mathscr{C}_n has property N and we get that \mathscr{C} has also property sN.

If \mathscr{B} has property wN and $\{\mathscr{C}_{m_1m_2...m_p} : p, m_1, m_2, ..., m_p \in \mathbb{N}\}$ is an increasing web in \mathscr{C} , then there exists a sequence $(n_i)_i$ such that each $\mathscr{C}_{n_1n_2...n_i} \cap \mathscr{B}$ has property $N, i \in \mathbb{N}$, whence $(\mathscr{C}_{n_1n_2...n_i})_i$ is a strand in \mathscr{C} consisting of sets which have property N.

Proposition 3. Let \mathfrak{P} be an hereditary increasing property in A and let $\mathscr{B} := \{B_{m_1m_2...m_p}: p, m_1, m_2, ..., m_p \in \mathbb{N}\}\$ be an increasing web in A without strands consisting of sets with property \mathfrak{P} . Then there exists an NV-tree T such that for each $t = (t_1, t_2, ..., t_q) \in T$ the set B_t does not have property \mathfrak{P} and if p > 1 then $B_{t(i)}$ has property \mathfrak{P} , for each i = 1, 2, ..., p - 1.

Proof. If each $B_{m_1}, m_1 \in \mathbb{N}$, does not have property \mathfrak{P} the proposition is obvious with $T := \mathbb{N}$. Hence we may suppose that there exists $m'_1 \in \mathbb{N}$ such that B_{t_1} has property \mathfrak{P} for each $t_1 \ge m'_1$ and then we write $Q_1 := \emptyset$ and $Q'_1 := \{t_1 \in \mathbb{N} : t_1 \ge m'_1\}$.

Let us assume that for each j, with $2 \leq j \leq i$, we have obtained by induction two disjoint subsets Q_j and Q'_j of \mathbb{N}^j such that for each $t = (t_1, t_2, \dots, t_j) \in Q_j \cup Q'_j$ the section $t(j-1) = (t_1, t_2, \dots, t_{j-1}) \in Q'_{j-1}$, if $t \in Q_j$ then the set B_t does not have property \mathfrak{P} and $t(j-1) \times \mathbb{N} \subset Q_j$ and then we define $S_{t(j-1)} := \mathbb{N}$ and $S'_{t(j-1)} = \emptyset$; otherwise, if $t \in Q'_j$ then the set B_t has property \mathfrak{P} and $S'_{t(j-1)} := \{n \in \mathbb{N} : t(j-1) \times n \in Q_j \cup Q'_j\}$ is a co-finite subset of \mathbb{N} such that $t(j-1) \times S'_{t(j-1)} \subset Q'_j$. In this case we define $S_{t(j-1)} := \emptyset$.

If $t := (t_1, t_2, ..., t_i) \in Q'_i$ then, by induction, $B_{t_1t_2...t_i}$ has property \mathfrak{P} and as $(B_{t_1t_2...t_in})_n$ is an increasing covering of $B_{t_1t_2...t_i}$ it may happen that either $B_{t_1t_2...t_in}$ does not have property \mathfrak{P} for each $n \in \mathbb{N}$ and then we define $S_{t_1t_2...t_i} := \mathbb{N}$ and $S'_{t_1t_2...t_i} := \emptyset$, or there

exists $m'_{i+1} \in \mathbb{N}$ such that $B_{t_1t_2...t_in}$ has property \mathfrak{P} for each $n \ge m'_{i+1}$ and in this second case we define $S_{t_1t_2...t_i} := \emptyset$ and $S'_{t_1t_2...t_i} := \{n \in \mathbb{N} : m'_{i+1} \le n\}$.

We finish this induction procedure by setting $Q_{i+1} := \bigcup \{t \times S_t : t \in Q'_i\}$ and $Q'_{i+1} := \bigcup \{t \times S'_t : t \in Q'_i\}$. By construction Q_{i+1} and Q'_{i+1} verify the above indicated properties of Q_j and Q'_j replacing j by i+1.

The hypothesis that for each sequence $(m_i)_i \in \mathbb{N}^{\mathbb{N}}$ there exists $j \in \mathbb{N}$ such that $B_{m_1m_2...m_j}$ does not have property \mathfrak{P} implies that $T := \bigcup \{Q_i : i \in \mathbb{N}\}$ does not contain infinite chains, because if $(m_1, m_2, ..., m_p) \in Q_p$ then $(m_1, m_2, ..., m_{p-1}) \in Q'_p$, hence $B_{m_1m_2...m_{p-1}}$ has property \mathfrak{P} . Therefore for each $(t_1, t_2, ..., t_k) \in Q'_k$ there exists an extension $(t_1, t_2, ..., t_k, t_{k+1}, ..., t_{k+q}) \in Q_{k+q}$, whence $T(k) = Q_k \cup Q'_k$, for each $k \in \mathbb{N}$. Then the set T has the increasing property, because $|T(1)| = |Q'_1| = \infty$ and if $t = (t_1, t_2, ..., t_p) \in T$ the sets $S'_{t(i-1)}$, 1 < i < p, are co-finite subsets of \mathbb{N} , $S_{t(p-1)} := \mathbb{N}$, $t(i-1) \times S'_{t(i-1)} \subset Q'_i \subset T(i)$ and $t(p-1) \times S'_{t(p-1)} \subset Q_p \subset T$. By construction, if $t = (t_1, t_2, ..., t_p) \in T$ then $t(i) \in Q'_i$, if $1 \leq i < p$, and $t \in Q_p$, whence $B_{t(i)}$ has property \mathfrak{P} , for each i = 1, 2, ..., p-1, B_t does not have property \mathfrak{P} , $\{t(i) : 1 \leq i \leq p\} \cap T = \{t\}$ and the extensions of t(p-1) in T are the elements of $t(p-1) \times \mathbb{N}$, whose lengths are p.

Definition 3 ([6, Definition 1]). Let *B* be an element of the algebra \mathscr{A} of subsets of Ω . A subset *M* of ba(\mathscr{A}) is deep *B*-unbounded if each finite subset \mathscr{Q} of $\{e_A : A \in \mathscr{A}\}$ verifies that

$$\sup\{|\mu(C)|: \mu \in M \cap \mathscr{Q}^{\circ}, C \in \mathscr{A}, C \subset B\} = \infty.$$

The proof of the next proposition is straightforward.

Proposition 4 ([6, Proposition 5]). *If a subset M of* $ba(\mathscr{A})$ *is deep B-unbounded and* $\{B_i \in \mathscr{A} : 1 \leq i \leq q\}$ *is a partition of B then there exists j,* $1 \leq j \leq q$, *such that M is deep B_j-unbounded.*

Proposition 5 ([6, Proposition 4]). Let \mathscr{A} be an algebra of subsets of Ω and let $(\mathscr{B}_m)_m$ be an increasing sequence of subsets of \mathscr{A} such that each \mathscr{B}_m does not have N-property and span $\{e_C : C \in \bigcup_m \mathscr{B}_m\} = L(\mathscr{A})$. There exists $n_0 \in \mathbb{N}$ such that for each $m \ge n_0$ there exists a deep Ω -unbounded $\tau_s(\mathscr{A})$ -closed absolutely convex subsets M_m of ba (\mathscr{A}) which is pointwise bounded in \mathscr{B}_m , i.e., $\sup\{|\mu(C)| : \mu \in M_m\} < \infty$ for each $C \in \mathscr{B}_m$. In particular this proposition holds if $\bigcup_m \mathscr{B}_m = \mathscr{A}$ or if $\bigcup_m \mathscr{B}_m$ has N-property.

Proposition 6. Let $\mathscr{B} := \{\mathscr{B}_{m_1m_2...m_p} : p, m_1, m_2, ..., m_p \in \mathbb{N}\}$ be an increasing web in a set-algebra \mathscr{A} . If \mathscr{B} does not contain strands consisting of sets with property N then there exists an NV-tree T such that for each $t \in T$ there exists a deep Ω -unbounded $\tau_s(\mathscr{A})$ -closed absolutely convex subset M_t of ba (\mathscr{S}) which is B_t -pointwise bounded.

Proof. By Proposition 3 with $\mathfrak{P} = N$ there exists an *NV*-tree T_1 such that for each $t = (t_1, t_2, \ldots, t_p) \in T_1$ the set \mathscr{B}_t does not have property *N* and if p > 1 then $\mathscr{B}_{t(i)}$ has property *N*, for each $i = 1, 2, \ldots, p - 1$. If p = 1 the conclusion follows from Proposition 5 in the case $\bigcup_{m_1} \mathscr{B}_{m_1} = \mathscr{A}$, being $T := T_1 \setminus \{1, 2, \ldots, n_0 - 1\}$, where n_0 is the natural number in Proposition 5. If p > 1 then $\mathscr{B}_{t(p-1)} = \bigcup_m \mathscr{B}_{t(p-1)\times m}$ has property

N and the conclusion follows again from Proposition 5 in the case that $\bigcup_m \mathscr{B}_m$ has *N*-property, being *T* the *NV*-tree obtained after deleting in T_1 the elements $t(p-1) \times \{1, 2, ..., n_0(t) - 1\}$, for each $t = (t_1, t_2, ..., t_p) \in T_1$ where $n_0(t)$ is the natural number of Proposition 5 for the increasing sequence $(\mathscr{B}_{t(p-1)\times m})_m$.

Next Proposition 7 is given in [6, Proposition 8] as a currently version of Propositions 2 and 3 in [13]. Also Proposition 8 is contained in [6, Propositions 9 and 10]. In both propositions we present a sketch of the proofs for the sake of completeness and as a new help to the reader.

Proposition 7 ([6, Proposition 8]). Let $\{B, Q_1, \ldots, Q_r\}$ be a subset of the algebra \mathscr{A} of subsets of Ω and let M be a deep B-unbounded absolutely convex subset of $\operatorname{ba}(\mathscr{A})$. Then given a positive real number α and a natural number q > 1 there exists a finite partition $\{C_1, C_2, \ldots, C_q\}$ of B by elements of \mathscr{A} and a subset $\{\mu_1, \mu_2, \ldots, \mu_q\}$ of M such that $|\mu_i(C_i)| > \alpha$ and $\Sigma_{1 \leq j \leq r} \mu_i(Q_j) \leq 1$, for $i = 1, 2, \ldots, q$.

Proof. It is enough to proof the case q = 2, because then there exists C_i , $i \in \{1, 2\}$, such that M is deep C_i -unbounded by Proposition 4. Let $\mathscr{Q} = \{\chi_B, \chi_{Q_1}, \chi_{Q_2}, \dots, \chi_{Q_r}\}$. As rM is deep B-unbounded, i.e., $\sup\{|\mu(D)| : \mu \in rM \cap \mathscr{Q}^\circ, D \subset B, D \in \mathscr{A}\} = \infty$, there exists $C_1 \subset B$, with $C_1 \in \mathscr{A}$, and $\mu \in rM \cap \mathscr{Q}^\circ$ such that $|\mu(C_1)| > r(1+\alpha)$. Then $\mu_1 = r^{-1}\mu \in M, |\mu_1(B)| \leq r^{-1} \leq 1$ and $\sum_{1 \leq j \leq r} |\mu_1(Q_j)| \leq r^{-1}r = 1$. Clearly $C_2 := B \setminus C_1$ and $\mu_2 := \mu_1$ verify that $|\mu_1(C_2)| \geq |\mu_1(C_1)| - |\mu_1(B)| > 1 + \alpha - 1 = \alpha$.

Proposition 8 ([6, Propositions 9 and 10]). Let $\{B, Q_1, \ldots, Q_r\}$ be a subset of an algebra \mathscr{A} of subsets of Ω and let $\{M_t : t \in T\}$ be a family of deep B-unbounded absolutely convex subsets of $\operatorname{ba}(\mathscr{A})$, indexed by an NV-tree T. Then for each positive real number α and each finite subset $\{t^j : 1 \leq j \leq k\}$ of T there exist a set $B_1 \in \mathscr{A}$, a measure $\mu_1 \in M_{t^1}$ and an increasing tree T_1 , such that

- 1. $B_1 \subset B$, $\{t^j : 1 \leq j \leq k\} \subset T_1 \subset T$ and M_t is deep $(B \setminus B_1)$ -unbounded for each $t \in T_1$.
- 2. $|\mu_1(B_1)| > \alpha$ and $\Sigma\{|\mu_1(Q_i)| : 1 \le i \le r\} \le 1$.

Proof. Let $t^j := (t_1^j, t_2^j, \dots, t_{p_j}^j)$, for $1 \le j \le k$. By Proposition 7 applied to B, $\alpha, q := 2 + \sum_{1 \le j \le k} p_j$ and M_{t^1} there exist a partition $\{C_1, C_2, \dots, C_q\}$ of B by elements of \mathscr{A} and $\{\lambda_1, \lambda_2, \dots, \lambda_q\} \subset M_{t^1}$ such that:

$$|\lambda_k(C_k^1)| > \alpha \quad \text{and} \quad \Sigma_{1 \le i \le r} |\lambda_k(Q_i)| \le 1 \text{ for } k = 1, 2, \dots, q.$$
 (1)

From Proposition 4 it follows that if *M* is deep *B*-unbounded there exists an $i_M \in \{1, 2, ..., q\}$ such that *M* is deep C_{i_M} -unbounded, hence if M_u is deep *B*-unbounded for each $u \in U$ and $V_i := \{u \in U : M_u \text{ is deep } C_i\text{-unbounded}\}, 1 \leq i \leq q$, then $U = \bigcup_{1 \leq i \leq q} V_i$. Whence if *U* is an *NV*-tree there exists i_0 , with $1 \leq i_0 \leq q$, such that V_{i_0} contains an *NV*-tree U_{i_0} by Proposition 2.

Therefore there exists C_{ij} and C_{i_0} , with $\{i^j, i_0\} \subset \{1, 2, ..., q\}$, and an *NV*-tree $T_{i_0} \subset T$ such that M_{tj} is deep C_{ij} -unbounded, for each $j \in \{1, 2, ..., k\}$, and M_t is deep C_{i_0} -unbounded for each $t \in T_{i_0}$.

For each $t^j = (t_1^j, t_2^j, \dots, t_{p_j}^j) \notin T_{i_0}, \ 1 \leqslant j \leqslant k$, and each section $t^j(m-1)$ of t^j , with $2 \leqslant m \leqslant p_j$, the set $W_m^j := \{v \in \bigcup_s \mathbb{N}^s : t^j(m-1) \times v \in T\}$ is an *NV*-tree such that $M_{(t_1^j, t_2^j, \dots, t_{m-1}^j) \times w}$ is deep *B*-unbounded for each $w \in W_m^j$, whence there exists $i_m^j \in \{1, 2, \dots, q\}$ and an *NV*-tree V_m^j contained in W_m^j such that $M_{(t_1^j, t_2^j, \dots, t_{m-1}^j) \times w}$ is deep $C_{i_m^j}$ unbounded for each $w \in V_m^j$. Let *D* be the union $D := C_{i_0} \cup (\cup \{C_{i_j} \cup C_{i_m^j} : j \in S, 2 \leqslant m \leqslant p_j\})$ and let T_1 be the

Let *D* be the union $D := C_{i_0} \cup (\bigcup \{C_{i^j} \cup C_{i^j_m} : j \in S, 2 \leq m \leq p_j\})$ and let T_1 be the union of T_{i_0} and the sets $\{t^j\} \cup \{(t_1^j, t_2^j, \dots, t_{m-1}^j) \times V_m^j : 2 \leq m \leq p_j\}$, such that $t^j \notin T_{i_0}$ and $1 \leq j \leq k$. By construction T_1 has the increasing property and if $t \in T_1$ the set M_t is deep *D*-unbounded.

The number of sets defining *D* is less or equal than q - 1, hence there exists C_h such that $D \subset B \setminus C_h$ and we get that T_1 is an *NV*-tree such that M_t is deep $B \setminus C_h$ -unbounded for each $t \in T_1$ and, by (1), this proof is done with $B_1 := C_h^1$ and $\mu_1 := \lambda_h$.

Corollary 1 ([6, Proposition 10]). Let $\{B, Q_1, \ldots, Q_r\}$ be a subset of an algebra \mathscr{A} of subsets of Ω and $\{M_t : t \in T\}$ a family of deep B-unbounded absolutely convex subsets of ba(\mathscr{A}), indexed by an increasing tree T. Then for each positive real number α and each finite subset $\{t^j : 1 \leq j \leq k\}$ of T there exist k pairwise disjoint sets $B_j \in \mathscr{A}$, k measures $\mu_j \in M_{t^j}$, $1 \leq j \leq k$, and an increasing tree T^{*} such that:

- 1. $\cup \{B_j : 1 \leq j \leq k\} \subset B$, $\{t^j : 1 \leq j \leq k\} \subset T^* \subset T$ and M_t is deep $(B \setminus \bigcup_{1 \leq j \leq k} B_j)$ unbounded for each $t \in T^*$.
- 2. $|\mu_i(B_i)| > \alpha$ and $\Sigma\{|\mu_i(Q_i)| : 1 \le i \le r\} \le 1$, for j = 1, 2, ..., k.

Proof. Apply k times Proposition 8.

In Theorem 1 we need the sequence $(i_n)_n := (1, 1, 2, 1, 2, 3, ...)$ obtained with the first components of the sequence $\{(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), ...\}$ generated writing the elements of \mathbb{N}^2 following the diagonal order.

Theorem 1. A σ -algebra \mathscr{S} of subsets of a set Ω has property wN.

Proof. Let us suppose that \mathscr{S} is a σ -algebra of subsets of a set Ω which does not have property wN. Then there would exists in \mathscr{S} an increasing web $\{\mathscr{B}_{m_1m_2...m_p} : p, m_1, m_2, ..., m_p \in \mathbb{N}\}$ without strands consisting of sets with Property N. By Proposition 6 there exists an NV-tree T such that for each $t \in T$ there exists a deep Ω -unbounded $\tau_s(\mathscr{A})$ -closed absolutely convex subset M_t of ba (\mathscr{S}) which is B_t -pointwise bounded.

By induction it is easy to determine an *NV*-tree $\{t^i : i \in \mathbb{N}\}$ contained in *T* and a strictly increasing sequence of natural numbers $(k_j)_j$ such that for each $(i, j) \in \mathbb{N}^2$ with $i \leq k_j$ there exists a set $B_{ij} \in \mathscr{A}$ and $\mu_{ij} \in M_{i}$ that verify

$$\Sigma_{s,v}\{|\mu_{ij}(B_{sv})|: s \leqslant k_v, \ 1 \leqslant v < j\}\} < 1,$$
(2)

$$\left|\mu_{ij}(B_{ij})\right| > j,\tag{3}$$

 \square

and $B_{ij} \cap B_{i'j'} = \emptyset$ if $(i, j) \neq (i', j')$.

In fact, select $t^1 \in T$. Corollary 1 with $B := \Omega$ and $\alpha = 1$ provides $B_{11} \in \mathscr{S}$, $\mu_{11} \in M_{t^1}$ and an *NV*-tree T_1 such that $|\mu_{11}(B_{11})| > 1$, $t^1 \in T_1 \subset T$ and M_t is deep $\Omega \setminus B_{11}$ -unbounded for each $t \in T_1$. Define $k_1 := 1$, $S^1 := \{t^1\}$ and $B^1 := B_{11}$.

Let us suppose that we have obtained the natural numbers $k_1 < k_2 < k_3 < \cdots < k_n$, the *NV*-trees $T_1 \supset T_2 \supset T_3 \supset \cdots \supset T_n$, the elements $\{t^1, t^2, \dots, t^{k_n}\}$ such that $S^j := \{t^i : i \leq k_j\} \subset T_j$ and $S_j := \{t^{k_{j-1}+1}, \dots, t^{k_j}\}$ has the increasing property respect to S^{j-1} , for each $1 < j \leq n$, together with the measures $\mu_{ij} \in M_{t^i}$ and the pairwise disjoint elements $B_{ij} \in \mathscr{S}$, $i \leq k_j$ and $j \leq n$, such that $|\mu_{ij}(B_{ij})| > j$ and $\sum_{s,v} \{|\mu_{ij}(B_{sv})| : s \leq k_v, 1 \leq v < j\} < 1$, if $i \leq k_j$ and $j \leq n$, in such a way that the union $B^j := \bigcup \{B_{sv} : s \leq k_v, 1 \leq v \leq j\}$ verifies that M_t is deep $\Omega \setminus B^j$ -unbounded for each t belonging to the *NV*-tree T_j , for each j < n.

To finish the induction procedure select a subset $S_{n+1} := \{t^{k_n+1}, \ldots, t^{k_{n+1}}\}$ of $T_n \setminus \{t^i : i \leq k_n\}$ which has the increasing property respect to S^n and apply again Corollary 1 to $\Omega \setminus B^n$, $\{B_{sv} : s \leq k_v, 1 \leq v \leq n\}$, T_n , the finite subset $S^{n+1} := \{t^i : i \leq k_{n+1}\}$ of T_n and n+1. Then, for each $i \leq k_{n+1}$, we obtain $B_{in+1} \in \mathscr{A}$, $B_{in+1} \subset \Omega \setminus B^n$, and $\mu_{in+1} \in M_{t^i}$ such that $|\mu_{in+1}(B_{in+1})| > n+1$, $\sum_{s,v} \{|\mu_{in+1}(B_{sv})| : s \leq k_v, 1 \leq v \leq n\} < 1$, $B_{in+1} \cap B_{i'n+1} = \emptyset$, if $i \neq i'$, and the union $B^{n+1} := \cup \{B_{sv} : s \leq k_s, 1 \leq v \leq n+1\}$ has the property that T_n contains an increasing tree T_{n+1} such that $S^{n+1} \subset T_{n+1}$ and M_t is deep $\Omega \setminus B^{n+1}$ -unbounded for each $t \in T_{n+1}$.

With a new easy induction we obtain a subset $J := \{j_1, j_2, ..., j_n, ...\}$ of \mathbb{N} such that $j_n < j_{n+1}$, for $n \in \mathbb{N}$, and for each $(i, j) \in \mathbb{N} \times J$ with $i \leq k_j$ we have

$$\Sigma_{s,v}\{|\mu_{ij}(B_{sv})|: s \leqslant k_v, \ j < v \in J\} < 1$$

because if the variation $|\mu_{ij}|(\Omega) < s \in \mathbb{N}$, $\{N_u, 1 \le u \le s\}$ is a partition of $\mathbb{N} \setminus \{1, 2, ..., j\}$ in *s* infinite subsets and $B_u := \cup \{B_{sv} : s \le k_v, v \in N_u\}$, $1 \le u \le s_1$, then the inequality $\Sigma \{|\mu_{ij}|(B_u) : 1 \le u \le s_1\} < s_1$ implies that there exists *u'*, with $1 \le u' \le s_1$, such that $|\mu_{ij}|(B_{u'}) < 1$, whence

$$\Sigma_{s,v}\{|\boldsymbol{\mu}_{ij}(\boldsymbol{B}_{sv})|:s\leqslant k_v,v\in N_{u'}\}<1,$$

and then the sequence $(B_{i_n j_n}, \mu_{i_n j_n})_n$ verifies for each $n \in \mathbb{N}$ that:

$$\Sigma_s\{\left|\mu_{i_n j_n}(B_{i_s j_s})\right|: s < n\}) < 1, \tag{4}$$

$$\left|\mu_{i_n j_n}(B_{i_n j_n})\right| > j_n,\tag{5}$$

and

$$\left| \mu_{i_n j_n} (\cup_s \{ B_{i_s j_s} : n < s \}) \right| < 1.$$
(6)

As S^{n+1} has the increasing property respect to S^n we have that $\{t^i : i \in \mathbb{N}\}$ is an *NV*-tree contained in *T*, hence $\cup \{\mathscr{B}_{t^i} : i \in \mathbb{N}\} = \mathscr{S}$. The relation $H := \cup \{B_{i_s j_s} : s = 1, 2, ...\} \in \mathscr{S}$ implies that there exists $r \in \mathbb{N}$ such that $H \in \mathscr{B}_{t^r}$. Then for each strictly increasing sequence $(n_p)_p$ such that $i_{n_p} = r$ we have that $\{\mu_{i_{n_p} j_{n_p}} : p \subset \mathbb{N}\}$ is a subset of M_{t^r} . As M_{t^r} is B_{t^r} -pointwise bounded we get that

$$\sup\left\{\left|\mu_{i_{n_p}j_{n_p}}(H)\right|:p\in\mathbb{N}\right\}<\infty.$$
(7)

The sets $C_p := \bigcup_s \{B_{i_s j_s} : s < n_p\}, B_{i_{n_p} j_{n_p}} \text{ and } D_p := \bigcup_s \{B_{i_s j_s} : n_p < s\}$ are a partition of the set H. By (4), (5) and (6), $|\mu_{i_{n_p} j_{n_p}}(C)| < 1, \ \mu_{i_{n_p} j_{n_p}}(B_{i_{n_p} j_{n_p}}) > j_{n_p} > n_p$ and $|\mu_{i_{n_p} j_{n_p}}(D)| < 1$, for each $p \in \mathbb{N} \setminus \{1\}$. Therefore the inequality

$$\left|\mu_{i_{n_{p}}j_{n_{p}}}(H)\right| > -\left|\mu_{i_{n_{p}}j_{n_{p}}}(C)\right| + \mu_{i_{n_{p}}j_{n_{p}}}(B_{i_{n_{p}}j_{n_{p}}}) - \left|\mu_{i_{n_{p}}j_{n_{p}}}\right|(D) > j_{n_{p}} - 2$$

implies that

$$\lim_{p} \left| \mu_{i_{n_p} j_{n_p}}(H_0) \right| = \infty,$$

contradicting (7).

The following corollary extends Corollary 13 in [6]. A family $\{B_{m_1m_2...m_i} : i, m_j \in \mathbb{N}, 1 \leq j \leq i \leq p\}$ of subsets of *A* is an *increasing p-web in A* if $(B_{m_1})_{m_1}$ is an increasing covering of *A* and $(B_{m_1m_2...m_{i+1}})_{m_{i+1}}$ is an increasing covering of $B_{m_1m_2...m_i}$, for each $m_j \in \mathbb{N}, 1 \leq j \leq i < p$ (this definition comes from [7, Chapter 7, 35.1]).

Corollary 2. Let \mathscr{S} be a σ -algebra of subsets of Ω and let $\{\mathscr{B}_{m_1m_2...m_i}: i, m_j \in \mathbb{N}, 1 \leq j \leq i \leq p\}$ be an increasing p-web in \mathscr{S} . Then there exists $\mathscr{B}_{n_1n_2...n_p}$ such that if

$$\{\mathscr{B}_{n_1n_2\dots n_pm_{p+1}m_{p+1}\dots m_{p+k}}: k, m_{p+l} \in \mathbb{N}, 1 \leq l \leq k \leq q\}$$

is an increasing q-web of $\mathscr{B}_{n_1n_2...n_p}$ there exists $(n_{p+1}, n_{p+2}, ..., n_{p+q}) \in \mathbb{N}^q$ such that each $\tau_s(\mathscr{B}_{n_1n_2...n_pn_{p+1}...n_{p+q}})$ -Cauchy sequence $(\mu_n \in ba(\mathscr{S}))_n$ is $\tau_s(\mathscr{S})$ -convergent.

Proof. By Proposition 1 with $\mathfrak{P} = N$ and Theorem 1 there exists $\mathscr{B}_{n_1n_2...n_p}$ which has property wN. Hence there exists $\mathscr{B}_{n_1n_2...n_pn_{p+1}...n_{p+q}}$ which has property N. Then if $(\mu_n)_n \subset \operatorname{ba}(\mathscr{S})$ is a $\tau_s(\mathscr{B}_{n_1n_2...n_pn_{p+1}...n_{p+q}})$ -Cauchy sequence we have that $(\mu_n)_n$ has no more than one $\tau_s(\mathscr{S})$ -adherent point, whence $(\mu_n)_n$ is $\tau_s(\mathscr{S})$ -convergent. As $\overline{L(\mathscr{B}_{n_1n_2...n_pn_{p+1}})} = L(\mathscr{S})$ the sequence $(\mu_n)_n$ has no more that one $\tau_s(\mathscr{S})$ -adherent point, whence $(\mu_n)_n$ is $\tau_s(\mathscr{S})$ -convergent.

3 Applications

In this section we obtain some applications of Theorem 1 to bounded finitely additive vector measures.

A bounded finitely additive vector measure, or simple bounded vector measure, μ defined in an algebra \mathscr{A} of subsets of Ω with values in a topological vector space *E* is a map $\mu : \mathscr{A} \to E$ such that $\mu(\mathscr{A})$ is a bounded subset of *E* and $\mu(B \cup C) = \mu(B) + \mu(C)$, for each pairwise disjoint subsets *B*, $C \in \mathscr{A}$. Then the *E*-valued linear map $\mu : L(\mathscr{A}) \to E$ defined by $\mu(e_B) := \mu(B)$, for each $B \in \mathscr{A}$, is continuous.

A locally convex space $E(\tau)$ is the *p*-inductive limit of the family of locally convex spaces $\mathscr{E} := \{E_{m_1m_2...m_i}(\tau_{m_1m_2...m_i}) : i, m_j \in \mathbb{N}, 1 \leq j \leq i \leq p\}$ if $E(\tau)$ is the inductive limit of $(E_{m_1}(\tau_{m_1}))_{m_1}$ and moreover, each $E_{m_1m_2...m_i}(\tau_{m_1m_2...m_i})$ is the inductive limit of the sequence $(E_{m_1m_2...m_im_{i+1}}(\tau_{m_1m_2...m_{i+1}}))_{m_{i+1}}$, for each $m_j \in \mathbb{N}, 1 \leq j \leq i < p$. Then \mathscr{E} is a defining *p*-increasing web for $E(\tau)$ with steps $E_{m_1m_2...m_i}(\tau_{m_1m_2...m_i})$. $E(\tau)$ is a p(LF) (or p(LB)) space if $E(\tau)$ admits a defining p-increasing web \mathscr{E} such that each $E_{m_1m_2...m_p}(\tau_{m_1m_2...m_p})$ is a Fréchet (or Banach) space and we say that \mathscr{E} is a *defining* p-(LF) (or p-(LB)) increasing web for $E(\tau)$.

Next proposition extends [12, Theorem 4] and [6, Proposition 10].

Proposition 9. Let μ be a bounded vector measure defined in a σ -algebra \mathscr{S} of subsets of Ω with values in a topological vector space $E(\tau)$. Suppose that $\{E_{m_1m_2\cdots m_i}:$ $m_j \in \mathbb{N}, 1 \leq j \leq i \leq p$ is an increasing p-web in E. Then there exists $E_{n_1n_2\cdots n_p}$ such that if $E_{n_1n_2\cdots n_p}(\tau_{n_1n_2\cdots n_p})$ is an q-(LF)-space, the topology $\tau_{n_1n_2\cdots n_p}$ is finer than *the relative topology* $\tau|_{E_{n_1n_2...n_p}}$ *and* $\{E_{n_1n_2...n_pm_{p+1}...m_{p+i}}(\tau_{m_1m_2...m_im_{p+1}...m_{p+i}}): i, m_{p+j} \in \mathbb{C}$ $\mathbb{N}, 1 \leq j \leq i \leq q$ a defining q-(*LF*) increasing web for $E_{n_1n_2\cdots n_p}(\tau_{n_1n_2\cdots n_p})$ there exists $(n_{p+1}, n_{p+2}, \dots, n_{p+q}) \in \mathbb{N}^q$ such that $\mu(\mathscr{S})$ is a bounded subset of

 $E_{n_1n_2\dots n_pn_{p+1}\dots n_{p+q}}(\tau_{n_1n_2\dots n_pn_{p+1}\dots n_{p+q}}).$

Proof. Let $\mathscr{B}_{m_1m_2...m_i} := \mu^{-1}(E_{m_1m_2...m_i})$ for each $m_j \in \mathbb{N}$, $1 \leq j \leq i \leq p$. By Proposition 1 and Theorem 1 there exists $(n_1, n_2, ..., n_p) \in \mathbb{N}^p$ such that $\mathscr{B}_{n_1n_2...n_p}$ has wNproperty. Let $\{E_{n_1n_2...n_pm_{p+1}...m_{p+i}}(\tau_{m_1m_2...m_im_{p+1}...m_{p+i}}): i, m_j \in \mathbb{N}, 1 \leq j \leq i \leq q\}$ be a defining p-(*LF*) increasing web for $E_{n_1n_2...n_p}(\tau_{n_1n_2...n_p})$ and let $\mathscr{B}_{n_1n_2...n_pm_{p+1}...m_{p+i}}$:= $\mu^{-1}(E_{n_1n_2\dots n_pm_{p+1}\dots m_{p+i}})$, for each $i, m_{p+j} \in \mathbb{N}, 1 \leq j \leq i \leq q$. As

$$\{\mathscr{B}_{n_1n_2\dots n_pm_{p+1}\dots m_{p+i}}: i, m_{p+j} \in \mathbb{N}, 1 \leq j \leq i \leq q\}$$

is an increasing q-web of $\mathscr{B}_{n_1n_2...n_p}$ and this set has wN-property then there exists a subset $\mathscr{B}_{n_1n_2...n_pn_{p+1}...n_{p+q}}$ which has property N, whence $L(\mathscr{B}_{n_1n_2...n_pn_{p+1}...n_{p+q}})$ is a dense subspace of $L(\mathscr{S})$ and then the map with closed graph

$$\mu|_{L(\mathscr{B}_{n_1n_2\dots n_pn_{p+1}\dots n_{p+q}})} \colon L(\mathscr{B}_{n_1n_2\dots n_pn_{p+1}\dots n_{p+q}}) \to E_{n_1n_2\dots n_pn_{p+1}\dots n_{p+q}}(\tau_{n_1n_2\dots n_pn_{p+1}\dots n_{p+q}})$$

has a continuous extension υ to $L(\mathscr{S})$ with values in $E_{n_1n_2...n_pn_{p+1}...n_{p+q}}(\tau_{n_1n_2...n_pn_{p+1}...n_{p+q}})$ (by [10, 2.4 Definition and (N₂)] and [11, Theorems 1 and 14]). Since $\mu: L(\mathscr{S}) \to$ $E(\tau)$ is continuous, $v(A) = \mu(A)$, for each $A \in \mathscr{S}$.

Whence $\mu(\mathscr{S})$ is a bounded subset of $E_{n_1n_2...n_pn_{p+1}...n_{p+q}}(\tau_{n_1n_2...n_pn_{p+1}...n_{p+q}})$.

Corollary 3. Let μ be a bounded vector measure defined in a σ -algebra \mathscr{S} of subsets of Ω with values in an inductive limit $E(\tau) = \sum_m E_m(\tau_m)$ of an increasing sequence $(E_m(\tau_m))_m$ of q-(LF) spaces. There exists $n_1 \in \mathbb{N}$ such that for each defin*ing* q-(*LF*) *increasing web for* $E_{n_1}(\tau_{n_1})$, { $E_{n_1m_{1+1}...m_{1+i}}(\tau_{n_1m_{1+1}...m_{1+i}})$: $i, m_{1+j} \in \mathbb{N}, 1 \leq 1, \dots, 1 \leq 1, \dots \leq n$ $j \leq i \leq q$ there exists $(n_{1+i})_{1 \leq i \leq q}$ in \mathbb{N}^q such that $\mu(\mathscr{S})$ is a bounded subset of $E_{n_1n_{1+1}...n_{1+q}}, (\tau_{n_1n_{1+1}...n_{1+q}}).$

A sequence $(x_k)_k$ in a locally convex space E is subseries convergent if for every subset J of N the series $\Sigma\{x_k: k \in J\}$ converges. The following corollary is a generalization of the localization property given in [12, Corollary 1.4] and it follows from Corollary 3.

Corollary 4. Let $(x_k)_k$ be a subseries convergent sequence in an inductive limit $E(\tau) =$ $\Sigma_m E_m(\tau_m)$ of an increasing sequence $(E_m(\tau_m))_m$ of q-(LF) spaces. There exists $n_1 \in$ \mathbb{N} such that for each defining q-(LF) increasing web $\{E_{n_1m_{1+1}...m_{1+i}}(\tau_{n_1m_{1+1}...m_{1+i}}):$ $i, m_{1+j} \in \mathbb{N}, 1 \leq j \leq i \leq q$ for $E_{n_1}(\tau_{n_1})$ there exists $(n_{1+1}, n_{1+2}, \dots, n_{1+q}) \in \mathbb{N}^q$ such *that* $\{x_k : k \in \mathbb{N}\}$ *is a bounded subset of* $E_{n_1n_{1+1}...n_{1+a}}(\tau_{n_1n_{1+1}...n_{1+a}})$ *.*

Proof. As $(x_k)_k$ is subseries convergent, then the additive vector measure $\mu: 2^{\mathbb{N}} \to E(\tau)$ defined by $\mu(J) := \sum_{k \in J} x_k$, for each $J \in 2^{\mathbb{N}}$, is bounded, because $(f(x_k))_k$ is subseries convergent for each $f \in E'$, whence $\sum_{n=1}^{\infty} |f(x_n)| < \infty$. Therefore we may apply Corollary 3.

Proposition 10. Let μ be a bounded vector measure defined in a σ -algebra \mathscr{S} of subsets of Ω with values in a topological vector space $E(\tau)$. Suppose that $\{E_{m_1m_2...m_i}: m_j \in \mathbb{N}, 1 \leq j \leq i \leq p\}$ is an increasing p-web in E. There exists $E_{n_1n_2...n_p}$ such that if $\{E_{n_1n_2...n_p}m_{p+1}...m_{p+i} \in \mathbb{N}, 1 \leq j \leq i \leq q\}$ is a q-increasing web in $E_{n_1n_2...n_p}$ with the property that each relative topology $\tau|_{E_{n_1n_2...n_pm_{p+1}...m_{p+q}}, (m_{p+1},...,m_{p+q}) \in \mathbb{N}^q$ is sequentially complete, then there exists $(n_{p+1},...,n_{p+q}) \in \mathbb{N}^q$ such that $\mu(\mathscr{S}) \subset E_{n_1n_2...n_pn_{p+1}...n_q}$.

Proof. Let $\mathscr{B}_{m_1m_2...m_i} := \mu^{-1}(E_{m_1m_2...m_i})$ for each $m_j \in \mathbb{N}$, $1 \leq j \leq i \leq p$. By Proposition 1 and Theorem 1 there exists $(n_1, n_2, ..., n_p) \in \mathbb{N}^p$ such that $\mathscr{B}_{n_1n_2...n_p}$ has *wN*-property. Let $\{E_{n_1n_2...n_pm_{p+1}...m_{p+i}} : i, m_j \in \mathbb{N}, 1 \leq j \leq i \leq q\}$ be a increasing *q*-web in $E_{n_1n_2...n_p}$ and let $\mathscr{B}_{n_1n_2...n_pm_{p+1}...m_{p+i}} := \mu^{-1}(E_{n_1n_2...n_pm_{p+1}...m_{p+i}})$, for each $i, m_{p+j} \in \mathbb{N}, 1 \leq j \leq i \leq q$. As

 $\{\mathscr{B}_{n_1n_2\dots n_pm_{p+1}\dots m_{p+i}}: i, m_{p+j} \in \mathbb{N}, \ 1 \leq j \leq i \leq q\}$

is an increasing *q*-web of $\mathscr{B}_{n_1n_2...n_p}$ there exists $\mathscr{B}_{n_1n_2...n_pn_{p+1}...n_{p+q}}$ which has property *N*, whence $L(\mathscr{B}_{n_1n_2...n_pn_{p+1}...n_{p+q}})$ is a dense subspace of $L(\mathscr{S})$ and then the continuous map

$$\mu|_{L(\mathscr{B}_{n_{1}n_{2}\cdots n_{p}n_{p+1}})} \colon L(\mathscr{B}_{n_{1}n_{2}\dots n_{p}n_{p+1}\dots n_{p+q}}) \to E_{n_{1}n_{2}\dots n_{p}n_{p+1}\dots n_{p+q}}(\tau|_{E_{n_{1}n_{2}\dots n_{p}n_{p+1}\dots n_{p+q}}})$$

has a continuous extension v to $L(\mathscr{S})$ with values in $E_{n_1n_2...n_pn_{p+1}...n_{p+q}}(\tau|_{E_{n_1n_2...n_pn_{p+1}...n_{p+q}}})$. The continuity of $\mu : L(\mathscr{S}) \to E(\tau)$ implies that $v(A) = \mu(A)$, for each $A \in \mathscr{S}$. Whence $\mu(\mathscr{S})$ is a subset of $E_{n_1n_2...n_pn_{p+1}...n_{p+q}}$.

Corollary 5. Let μ be a bounded additive vector measure defined in a σ -algebra \mathscr{S} of subsets of Ω with values in an inductive limit $E(\tau) = \sum_{m_1} E_{m_1}(\tau_{m_1})$ of an increasing sequence $(E_m(\tau_m))_m$ of countable dimensional topological vector spaces. Then there exists n_1 such that for each q-increasing web $\{E_{n_1m_{1+1}...m_{1+i}}: i, m_{1+j} \in \mathbb{N}, 1 \leq j \leq i \leq q\}$ in E_{n_1} such that the dimension of each $E_{n_1m_{1+1}...m_{1+q}}$ is finite there exists $E_{n_1n_{1+1}...n_{1+q}}$ which contains the set.

Proof. As the relative topology $\tau|_{E_{n_1m_{1+1}\dots m_{1+q}}}$ is complete we may apply Proposition 10.

Acknowledgement

To Professor Manuel Valdivia (1928-2014), whose paper *On Nikodym boundedness* property, RACSAM 2013, give us many suggestions for this work.

We thank to an anonymous referee his proof that properties wN and w^2N are equivalent that we generalize in Proposition 1. We are also grateful to two both referees by their suggestions and indications.

References

- J. Diestel, Sequences and Series in Banach Spaces. Springer, New York, Berlin, Heidelberg, 1984.
- [2] J. Diestel and J.J. Uhl, *Vector Measures*. Mathematical Surveys and Monographs **15**, American Mathematical Society, Providence, 1977.
- [3] J. Dieudonné, Sur la convergence de suites de measures de Radon. An. Acad. Brasi. Ciên. 23, 277–282, 1951.
- [4] J. C. Ferrando, Strong barrelledness properties in certain l₀[∞](𝒜) spaces. J. Math. Anal. Appl. **190**, 194–202, 1995.
- [5] J.C. Ferrando, M. López-Pellicer, *Strong barrelledness properties in* $l_0^{\infty}(X, \mathscr{A})$ *and bounded finite additive measures*, Math. Ann. **287**,727–736, 1990.
- [6] J. Kakol, M. López-Pellicer, On Valdivia strong version of Nikodym boundedness property, preprint.
- [7] G. Köthe, Topological Vector Spaces I and II, Springer, 1969, 1979.
- [8] M. López-Pellicer, Webs and Bounded Finitely Additive Measures, J. Math. Anal. Appl. 210, 257–267, 1997.
- [9] O.M. Nikodym, Sur les familles bornées de fonctions parfaitement additives d'ensembles abstrait. Monatsh. Math. U. Phys. 40, 418–426, 1933.
- [10] W. Schachermayer, On some classical measure-theoretic theorems for nonsigma-complete Boolean algebras. Dissertationes Math. (Rozprawy Mat.) 214, 33 pp., 1982.
- [11] M. Valdivia, On the closed graph theorem. Collect. Math. 22, 51–72, 1971.
- [12] M. Valdivia, On certain barrelled normed spaces, Ann. Inst. Fourier (Grenoble) 29, 39–56, 1979.
- [13] M. Valdivia, On Nikodym boundedness property, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 107, 355–372, 2013.