Document downloaded from:

http://hdl.handle.net/10251/99725

This paper must be cited as:
López Alfonso, S.; Mas Marí, J.; Moll López, SE. (2016). Nikodym boundedness property for webs in sigma-algebras. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 110(2):711-722. doi:10.1007/s13398-015-0260-4

The final publication is available at
http://doi.org/10.1007/s13398-015-0260-4

Copyright
Springer-Verlag

Additional Information

Nikodym boundedness property for webs in σ-algebras*

S. López-Alfonso ${ }^{1}$, J. Mas ${ }^{2}$, and S. Moll ${ }^{3}$
${ }^{1}$ Depto. Construcciones Arquitectónicas., Universitat Politècnica de València,, E-46022 València, Spain, salloal@csa.upv.es
${ }^{2}$ Instituto de Matemática Multidisciplinar. , Universitat Politècnica de València,, E-46022 València, Spain, jmasm@imm. upv.es
${ }^{3}$ Depto. de Matemática Aplicada and IUMPA., Universitat Politècnica
de València, , E-46022 València, Spain, sanmollp@mat.upv. es

Abstract

A subset \mathscr{B} of an algebra \mathscr{A} of subsets of Ω is said to have the property N if a \mathscr{B}-pointwise bounded subset M of $\mathrm{ba}(\mathscr{A})$ is uniformly bounded on \mathscr{A}, where $\mathrm{ba}(\mathscr{A})$ is the Banach space of the real (or complex) finitely additive measures of bounded variation defined on \mathscr{A} with the norm variation. Moreover \mathscr{B} is said to have the property $s N$ if for each increasing countable covering $\left(\mathscr{B}_{m}\right)_{m}$ of \mathscr{B} there exists \mathscr{B}_{n} which has the property N and \mathscr{B} is said to have property $w N$ if given the increasing countable coverings $\left(\mathscr{B}_{m_{1}}\right)_{m_{1}}$ of \mathscr{B} and $\left(\mathscr{B}_{m_{1} m_{2} \ldots m_{p} m_{p+1}}\right)_{m_{p+1}}$ of $\mathscr{B}_{m_{1} m_{2} \ldots m_{p}}$, for each $p, m_{i} \in \mathbb{N}, 1 \leqslant i \leqslant p+1$, there exists a sequence $\left(n_{i}\right)_{i}$ such that each $\mathscr{B}_{n_{1} n_{2} \ldots n_{r}}, r \in \mathbb{N}$, has property N. For a σ-algebra \mathscr{S} of subsets of Ω it has been proved that \mathscr{S} has property N (Nikodym-Grothendieck), property $s N$ (Valdivia) and property $w(s N)$ (Kakol-López-Pellicer). We give a proof of property $w N$ for a σ-algebra \mathscr{S} which is independent of properties N and $s N$. This result and the equivalence of properties $w N$ and $w^{2} N$ enable us to give some applications to localization of bounded additive vector measures.

Keywords: Bounded set; finitely additive scalar (vector) measure; inductive limit; NV-tree; σ-algebra; web Nikodym property

MSC: 28A60, 46G10

[^0]
1 Introduction

Let Ω be a set and \mathscr{A} a set-algebra of subsets of Ω. If \mathscr{B} is a subset of \mathscr{A} then $L(\mathscr{B})$ is the normed space of the real or complex linear hull of the set of characteristics functions $\left\{e_{C}: C \in \mathscr{B}\right\}$ endowed with the supremum norm $\|\cdot\|$. The dual of $L(\mathscr{A})$ with the dual norm is named $L(\mathscr{A})^{\prime}$ and it is isometric to the Banach space ba (\mathscr{A}) of finitely additive measures on \mathscr{A} with bounded variation provided with the variation norm, i.e., $|\cdot|:=|\cdot|(\Omega)$, being the isometry the map $\Theta: \operatorname{ba}(\mathscr{A}) \rightarrow L(\mathscr{A})^{\prime}$ such that, for each $\mu \in \mathrm{ba}(\mathscr{A}), \Theta(\mu)$ is the linear form named also by μ and defined by $\mu\left(e_{C}\right):=\mu(C)$, for each $C \in \mathscr{A},[2$, Chpater 1]. A norm in $L(\mathscr{A})$ equivalent to the supremum norm is defined by the Minkowski functional of absco $\left(\left\{e_{C}: C \in \mathscr{A}\right\}\right.$) ([12, Propositions 1 and 2]), which dual norm is the \mathscr{A}-supremum norm, i.e., $\|\mu\|:=\sup \{|\mu(C)|: C \in \mathscr{A}\}$, $\mu \in \mathrm{ba}(\mathscr{A})$.

In this paper duality is referred to the dual pair $\langle L(\mathscr{A}), \mathrm{ba}(\mathscr{A})\rangle$ and we follow notations of [7]. Then the weak ${ }^{*}$ dual of a locally convex space E is $\left(E^{\prime}, \tau_{s}(E)\right)$, whence the topology $\tau_{s}(L(\mathscr{A}))$ is the topology $\tau_{s}(\mathscr{A})$ of pointwise convergence in the elements of \mathscr{A}, the cardinal of a set C is denoted by $|C|, \mathbb{N}$ is the set $\{1,2, \ldots\}$ of positive integers, the closure of a set is marked by an overline, the convex (absolutely convex) hull of a subset M of a topological vector space is represented by $\operatorname{co}(M)(\operatorname{absco}(M))$ and $\operatorname{absco}(M)=\operatorname{co}(\cup\{r M:|r|=1\})$.

A subset \mathscr{B} of a set-algebra \mathscr{A} has the Nikodym property, property N in brief, if each \mathscr{B}-pointwise bounded subset M of $\mathrm{ba}(\mathscr{A})$ is bounded in $\mathrm{ba}(\mathscr{A})$ (see [10, Definition 2.4] or [13, Definition 1]). If \mathscr{B} has property N the polar set $\left\{e_{C}: C \in \mathscr{B}\right\}^{\circ}$ is bounded in $\operatorname{ba}(\mathscr{A})$, hence the bipolar set $\left\{e_{C}: C \in \mathscr{B}\right\}^{\circ \circ}=\overline{\operatorname{absco}\left\{e_{C}: C \in \mathscr{B}\right\}}$ is a neighborhood of zero in $L(\mathscr{A})$ and then $L(\mathscr{B})$ is dense in $L(\mathscr{A})$. Notice also that a subset \mathscr{B} of an algebra \mathscr{A} has property N if each \mathscr{B}-pointwise bounded, $\tau_{s}(A)$-closed and absolutely convex subset M of $\mathrm{ba}(A)$ is uniformly bounded in \mathscr{A}. The algebra of finite and co-finite subsets of \mathbb{N} fails to have property N and Schachermayer proved that the algebra $\mathscr{J}(I)$ of Jordan measurable subsets of $I:=[0,1]$ has property $N[10$, Corollary 3.5] (see a generalization of this property in [4, Corollary]).

A subset \mathscr{B} of a set-algebra \mathscr{A} has the strong Nikodym property, property $s N$ in brief, if for each increasing covering $\cup_{m} \mathscr{B}_{m}$ of \mathscr{B} there exists \mathscr{B}_{n} which has property N. Valdivia proved that the algebra $\mathscr{J}(K)$ of Jordan measurable subsets of a compact k-dimensional interval $K:=\Pi\left\{\left[a_{i}, b_{i}\right]: 1 \leqslant i \leqslant k\right\}$ in \mathbb{R}^{k} has property $s N[13$, Theorem 2].

An increasing web in a set A is a family $\mathscr{W}:=\left\{A_{m_{1} m_{2} \ldots m_{p}}:\left(m_{1}, m_{2}, \ldots, m_{p}\right) \in\right.$ $\left.\cup_{s} N^{s}\right\}$ of subsets of A such that $\left(A_{m_{1}}\right)_{m_{1}}$ and $\left(A_{m_{1} m_{2} \ldots m_{p} m_{p+1}}\right)_{m_{p+1}}$ are, respectively, increasing coverings of A and $A_{m_{1} m_{2} \ldots m_{p}}$, for each $p, m_{i} \in N, 1 \leqslant i \leqslant p+1$ [7, Chapter 7, 35.1], and each sequence $\left(A_{m_{1} m_{2} \ldots m_{p}}\right)_{p}$ is a strand in \mathscr{W}. A subset \mathscr{B} of a set-algebra \mathscr{A} has the web Nikodym property, property $w N$ in brief, if for each increasing web $\left\{\mathscr{B}_{t}: t \in \cup_{s} N^{s}\right\}$ in \mathscr{B} there exists a strand composed of sets which have property N. In general, if B is a set and \mathfrak{P} is a property verified in the elements of a family of subsets of B then B has property $w \mathfrak{P}$ if each increasing web $\left\{B_{t}: t \in \cup_{s} N^{s}\right\}$ in \mathscr{B} has a strand composed of sets which have property \mathfrak{P}.

Property $w(w \mathfrak{P})$ is named as property $w^{2} \mathfrak{P}$. The next straightforward proposition states that properties $w \mathfrak{P}$ and $w^{2} \mathfrak{P}$ are equivalent.

Proposition 1. Let $\left(B_{m}\right)_{m}$ be an increasing covering of a set B which verifies property $w \mathfrak{P}$. There exists B_{n} which has property $w \mathfrak{P}$, whence B has property $w^{2} \mathfrak{P}$.

Proof. Let us suppose that $\left(B_{m}\right)_{m}$ is an increasing covering of a set B such that each B_{m} does not have property $w \mathfrak{P}$. Then, for each natural number m there exists an increasing web $\mathscr{W}_{m}:=\left\{B_{m_{1} m_{2} \ldots m_{p}}^{m}: p, m_{1}, m_{2}, \ldots, m_{p} \in N\right\}$ in B_{m} such that every strand in \mathscr{W}_{m} contains a set $B_{m_{1} m_{2} \ldots m_{p}}^{m}$ without property \mathfrak{P}. If $B_{m_{1} m_{2} \ldots m_{p}}:=B_{m_{2} m_{3} \ldots m_{p}}^{m_{1}}$ we get that $\mathscr{W}:=\left\{B_{m_{1} m_{2} \ldots m_{p}}: p, m_{1}, m_{2}, \ldots, m_{p} \in N\right\}$ is an increasing web in B without strands consisting of sets with property \mathfrak{P}, whence B does not have property $w \mathfrak{P}$. This proves the first affirmation which readily implies that if B verifies property $w \mathfrak{P}$ then every increasing web in B contains a strand consisting of sets with property $w \mathfrak{P}$, whence properties $w \mathfrak{P}$ and $w^{2} \mathfrak{P}$ are equivalent in B.

Let \mathscr{S} be a σ-algebra of subsets of a set Ω. It has been sequentially shown that (i) \mathscr{S} has property N (Nikodym-Dieudonné-Grothendieck theorem [9], [3] and [1, page 80, named as Nikodym-Grothendieck boundedness theorem]), (ii) \mathscr{S} has property $s N$ ([12, Theorem 2]) and (iii) \mathscr{S} has property $w(s N)$ (very recently in [6, Theorem 2]). The aim of this paper is to present in the next section a proof of the property that each σ-algebra \mathscr{S} has property $w N$ independent of any property related to Nikodym boundedness property, as properties N or $s N$, and using very elementary locally convex space theory.

Last section deals with some applications to bounded vector measures deduced from the property $w N$ of each σ-algebra \mathscr{S} and from the equivalence stated in Proposition 1.

Following the characterization of $s N$-property of a set-algebra A by the locally convex property of $L(A)$ given in [13, Theorem 3] it is possible to get a characterization of $w N$ property of a set-algebra A by the locally convex properties considered in [5] and [8]. In fact Theorem 1 is equivalent to Theorem 2.7 of [8], totally stated in the locally convex theory frame.

2 NV-trees and property $w N$

Given two elements, $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ and $s=\left(s_{1}, s_{2}, \ldots, s_{q}\right)$, and two subsets, T and U, of $\cup_{s} \mathbb{N}^{s}$ then p is the length of t, for each $1 \leqslant i \leqslant p$ the section of length i of t is $t(i):=\left(t_{1}, t_{2}, \ldots, t_{i}\right)$; if $i>p, t(i):=\emptyset ; \quad T(m):=\{t(m): t \in T\}$, for each $m \in \mathbb{N}$; $t \times s:=\left(t_{1}, t_{2}, \ldots, t_{p}, t_{p+1}, t_{p+2}, \ldots, t_{p+q}\right)$, with $t_{p+j}:=s_{j}$, for $1 \leqslant j \leqslant q$, and $T \times U:=$ $\{t \times u: t \in T, u \in U\}$.

Each $t \times s \in U$ is an extension of t in U and a sequence $\left(t^{n}\right)_{n}$ of elements $t^{n}=$ $\left(t_{1}^{n}, t_{2}^{n}, \ldots, t_{n}^{n}, \ldots\right) \in T$ is an infinite chain in T if for each $n \in \mathbb{N}$ the element t^{n+1} is an extension of the section $t^{n}(n)$ in T, i.e., $\emptyset \neq t^{n}(n)=t^{n+1}(n)$, and length of t^{n} is at least n, for each $n \in \mathbb{N}$. If $t=\left(t_{1}\right)$ then t and the products $T \times t$ and $t \times T$ are represented by $t_{1}, T \times t_{1}$ and $t_{1} \times T$.

Let $\emptyset \neq U \subset \cup_{n} \mathbb{N}^{n} . U$ is increasing at $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in \cup_{s} \mathbb{N}^{s}$ if U contains elements $t^{1}=\left(t_{1}^{1}, t_{2}^{1}, \ldots\right)$ and $t^{i}=\left(t_{1}, t_{2}, \ldots, t_{i-1}, t_{i}^{i}, t_{i+1}^{i}, \ldots\right), 1<i \leqslant p$, such that $t_{i}<t_{i}^{i}$, for each $1 \leqslant i \leqslant p$. U is increasing (increasing respect to a subset V of $\cup_{s} \mathbb{N}^{s}$) if U is
increasing at each $t \in U$ (at each $t \in V$). Clearly U is increasing if $|U(1)|=\infty$ and $|\{n \in \mathbb{N}: t(i) \times n \in U(i+1)\}|=\infty$, for each $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in U$ and $1 \leqslant i<p$.

Next definition deals with a particular type of increasing trees (see [6, Definition 2]).

Definition 1. An $N V$-tree T is an increasing subset of $\cup_{s \in \mathbb{N}} \mathbb{N}^{s}$ without infinite chains such that for each $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in T$ the length of each extension of $t(p-1)$ in T is p and $\{t(i): 1 \leqslant i \leqslant p\} \cap T=\{t\}$.

An $N V$-tree T is trivial if $T=T(1)$ and then T is an infinite subset of \mathbb{N}.
The sets $\mathbb{N}^{i}, i \in \mathbb{N} \backslash\{1\}$, and the set $\cup\left\{(i) \times \mathbb{N}^{i}: i \in \mathbb{N}\right\}$ are non trivial $N V$-trees. The finite product of $N V$-trees is an $N V$-tree.

If T is an increasing subset of $\cup_{s \in \mathbb{N}} \mathbb{N}^{s}$ and $\left\{B_{u}: u \in \cup_{s} \mathbb{N}^{s}\right\}$ is an increasing web in B then $\left(B_{u(1)}\right)_{u \in T}$ is an increasing covering of B, because for each $u=\left(u_{1}, u_{2}, \ldots, u_{p}\right) \in T$ and each $i<p$ the sequence $\left(B_{u(i) \times n}\right)_{u(i) \times n \in T(i+1)}$ is an increasing covering of $B_{u(i)}$, hence if T does not contain infinite chains and $b \in B$ there exists $t \in T$ such that $b \in B_{t}$. Therefore $B=\cup\left\{B_{t}: t \in T\right\}$.

Each increasing subset S of an $N V$-tree T is an $N V$-tree, whence if $\left(S_{n}\right)_{n}$ is a sequence of subsets of an $N V$-tree T such that each S_{n+1} is increasing respect to S_{n} then $\cup_{n} S_{n}$ is an $N V$-tree. This hereditary property and Proposition 7 in [6] imply next Proposition 2 and we give a proof as a help for the reader.

Proposition 2. Let U be a subset of an $N V$-tree T. If U does not contain an $N V$-tree then $T \backslash U$ contains an $N V$-tree.

Proof. This proposition is obvious if T is a trivial $N V$-tree. Whence we suppose that T is a non-trivial $N V$-tree and then there exists $m_{1}^{\prime} \in T(1)$ such that for each $n \geqslant m_{1}^{\prime}$ the set $\left\{v \in \cup_{s} \mathbb{N}^{s}: n \times v \in U\right\}$ does not contain an $N V$-tree. We define $Q_{1}:=\emptyset$ and $Q_{1}^{\prime}:=\left\{n \in T(1) \backslash T: m_{1}^{\prime} \leqslant n\right\}$.

Let us suppose that we have obtained for each j, with $2 \leqslant j \leqslant i$, two disjoint subsets Q_{j} and Q_{j}^{\prime} of $T(j)$, with $Q_{j} \subset T \backslash U$ and $Q_{j}^{\prime} \cap T=\emptyset$, such that for each $t \in Q_{j} \cup Q_{j}^{\prime}$ the section $t(j-1) \in Q_{j-1}^{\prime}$ and $A_{t(j-1)}:=\left\{n \in \mathbb{N}: t(j-1) \times n \in Q_{j} \cup Q_{j}^{\prime}\right\}$ is an infinite set such that $t \in Q_{j}$ implies that $t(j-1) \times A_{t(j-1)} \subset Q_{j}$ and from $t \in Q_{j}^{\prime}$ it follows that $t(j-1) \times A_{t(j-1)} \subset Q_{j}^{\prime}$ and that the set $\left\{v \in \cup_{s} \mathbb{N}^{s}: t \times v \in U\right\}$ does not contain an $N V$ tree. Then we define $S_{t(j-1)}:=A_{t(j-1)}$ and $S_{t(j-1)}^{\prime}:=\emptyset$ in the first case and $S_{t(j-1)}:=\emptyset$, $S_{t(j-1)}^{\prime}:=A_{t(j-1)}$ in the second case.

As for each $t \in Q_{i}^{\prime}(\subset T(i) \backslash T)$ the set $\left\{v \in \cup_{s} \mathbb{N}^{s}: t \times v \in U\right\}$ does not contain an $N V$-tree and it is a subset of the $N V$-tree $T_{t}:=\left\{v \in \cup_{s} \mathbb{N}^{s}: t \times v \in T\right\}$, the following two cases may happen:
i. Either the $N V$-tree T_{t} is trivial and then there exists $m_{i+1} \in \mathbb{N}$ such that the infinite set $S_{t}:=\left\{n \in \mathbb{N}: m_{i+1} \leqslant n, t \times n \in T(i+1)\right\}$ verifies that $t \times S_{t} \subset T \backslash U$. In this case we define $S_{t}^{\prime}:=\emptyset$.
ii. Or the $N V$-tree T_{t} is non-trivial and then there exists $m_{i+1}^{\prime} \in \mathbb{N}$ such that the infinite set $S_{t}^{\prime}:=\left\{n \in \mathbb{N}: m_{i+1}^{\prime}<n, t \times n \in T(i+1)\right\}$ verifies that $t \times S_{t}^{\prime} \subset T(i+$ 1) $\backslash T$ and for each $t \times n \in t \times S_{t}^{\prime}$ the set $\left\{v \in \cup_{s} \mathbb{N}^{s}: t \times n \times v \in U\right\}$ does not contain an $N V$-tree. Now we define $S_{t}:=\emptyset$.

The induction finish by setting $Q_{i+1}:=\cup\left\{t \times S_{t}: t \in Q_{i}^{\prime}\right\}$ and $Q_{i+1}^{\prime}:=\cup\left\{t \times S_{t}^{\prime}\right.$: $\left.t \in Q_{i}^{\prime}\right\}$. Then $Q_{i+1} \subset T(i+1) \cap(T \backslash U), Q_{i+1}^{\prime} \subset T(i+1) \backslash T$, and each $t \in Q_{i+1} \cup Q_{i+1}^{\prime}$ verifies the above indicated properties when $t \in Q_{j} \cup Q_{j}^{\prime}$, changing j by $i+1$.

As T does not contain infinite chains for each $\left(t_{1}, t_{2}, \ldots, t_{i}\right) \in Q_{i}^{\prime}$ there exists $q \in \mathbb{N}$ and $\left(t_{i+1}, \ldots, t_{i+q}\right) \in \mathbb{N}^{q}$ such that $\left(t_{1}, t_{2}, \ldots, t_{i}, t_{i+1}, \ldots, t_{i+q}\right) \in Q_{i+q}$, whence $\left(\cup_{j>i} Q_{j}\right)(i)=$ Q_{i}^{\prime}. This implies that the subset $W:=\cup\left\{Q_{j}: j \in \mathbb{N}\right\}$ of $T \backslash U$ has the increasing property, because from $W(k)=Q_{k} \cup Q_{k}^{\prime}$, for each $k \in \mathbb{N}$, we get that $|W(1)|=\left|Q_{1}^{\prime}\right|=\infty$ and if $t=$ $\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in W$ then $\left(t_{1}, t_{2}, \ldots, t_{i}\right) \in Q_{i}^{\prime}$, if $1<i<p$, and $\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in Q_{p}$, whence the infinite subsets $S_{t(i-1)}^{\prime}$ and $S_{t(p-1)}$ of \mathbb{N} verify that $t(i-1) \times S_{t(i-1)}^{\prime} \subset Q_{i}^{\prime} \subset W(i)$ and $t(p-1) \times S_{t(p-1)} \subset Q_{p} \subset W$. Therefore W is an $N V$-tree contained in $T \backslash U$.

Definition 2. A property \mathfrak{P} is hereditary increasing in a set A if for each pair of subsets B and C of A such that B verifies property \mathfrak{P} and $B \subset C \subset A$ then C also has property \mathfrak{P}.

Example 1. The properties $w N, s N$ and N are hereditary increasing properties in a set-algebra \mathscr{A}.

Proof. Let $\mathscr{B} \subset \mathscr{C} \subset \mathscr{A}$. It is obvious that if \mathscr{B} has property N then \mathscr{C} has also property N. Whence if \mathscr{B} has property $s N$ and if $\cup_{m} \mathscr{C}_{m}$ is an increasing covering of \mathscr{C} then there exists \mathscr{C}_{n} such that $\mathscr{C}_{n} \cap \mathscr{B}$ has property N, therefore \mathscr{C}_{n} has property N and we get that \mathscr{C} has also property $s N$.

If \mathscr{B} has property $w N$ and $\left\{\mathscr{C}_{m_{1} m_{2} \ldots m_{p}}: p, m_{1}, m_{2}, \ldots, m_{p} \in \mathbb{N}\right\}$ is an increasing web in \mathscr{C}, then there exists a sequence $\left(n_{i}\right)_{i}$ such that each $\mathscr{C}_{n_{1} n_{2} \ldots n_{i}} \cap \mathscr{B}$ has property $N, i \in \mathbb{N}$, whence $\left(\mathscr{C}_{n_{1} n_{2} \ldots n_{i}}\right)_{i}$ is a strand in \mathscr{C} consisting of sets which have property N.

Proposition 3. Let \mathfrak{P} be an hereditary increasing property in A and let $\mathscr{B}:=\left\{B_{m_{1} m_{2} \ldots m_{p}}\right.$: $\left.p, m_{1}, m_{2}, \ldots, m_{p} \in \mathbb{N}\right\}$ be an increasing web in A without strands consisting of sets with property \mathfrak{P}. Then there exists an $N V$-tree T such that for each $t=\left(t_{1}, t_{2}, \ldots, t_{q}\right) \in T$ the set B_{t} does not have property \mathfrak{P} and if $p>1$ then $B_{t(i)}$ has property \mathfrak{P}, for each $i=1,2, \ldots, p-1$.

Proof. If each $B_{m_{1}}, m_{1} \in \mathbb{N}$, does not have property \mathfrak{P} the proposition is obvious with $T:=\mathbb{N}$. Hence we may suppose that there exists $m_{1}^{\prime} \in \mathbb{N}$ such that $B_{t_{1}}$ has property \mathfrak{P} for each $t_{1} \geqslant m_{1}^{\prime}$ and then we write $Q_{1}:=\emptyset$ and $Q_{1}^{\prime}:=\left\{t_{1} \in \mathbb{N}: t_{1} \geqslant m_{1}^{\prime}\right\}$.

Let us assume that for each j, with $2 \leqslant j \leqslant i$, we have obtained by induction two disjoint subsets Q_{j} and Q_{j}^{\prime} of \mathbb{N}^{j} such that for each $t=\left(t_{1}, t_{2}, \ldots, t_{j}\right) \in Q_{j} \cup Q_{j}^{\prime}$ the section $t(j-1)=\left(t_{1}, t_{2}, \ldots, t_{j-1}\right) \in Q_{j-1}^{\prime}$, if $t \in Q_{j}$ then the set B_{t} does not have property \mathfrak{P} and $t(j-1) \times \mathbb{N} \subset Q_{j}$ and then we define $S_{t(j-1)}:=\mathbb{N}$ and $S_{t(j-1)}^{\prime}=\emptyset$; otherwise, if $t \in Q_{j}^{\prime}$ then the set B_{t} has property \mathfrak{P} and $S_{t(j-1)}^{\prime}:=\left\{n \in \mathbb{N}: t(j-1) \times n \in Q_{j} \cup Q_{j}^{\prime}\right\}$ is a co-finite subset of \mathbb{N} such that $t(j-1) \times S_{t(j-1)}^{\prime} \subset Q_{j}^{\prime}$. In this case we define $S_{t(j-1)}:=\emptyset$.

If $t:=\left(t_{1}, t_{2}, \ldots, t_{i}\right) \in Q_{i}^{\prime}$ then, by induction, $B_{t_{1} t_{2} \ldots t_{i}}$ has property \mathfrak{P} and as $\left(B_{t_{1} t_{2} \ldots t_{i}}\right)_{n}$ is an increasing covering of $B_{t_{1} t_{2} \ldots t_{i}}$ it may happen that either $B_{t_{1} t_{2} \ldots t_{i} n}$ does not have property \mathfrak{P} for each $n \in \mathbb{N}$ and then we define $S_{t_{1} t_{2} \ldots t_{i}}:=\mathbb{N}$ and $S_{t_{1} t_{2} \ldots t_{i}}^{\prime}:=\emptyset$, or there
exists $m_{i+1}^{\prime} \in \mathbb{N}$ such that $B_{t_{1} t_{2} \ldots t_{i} n}$ has property \mathfrak{P} for each $n \geqslant m_{i+1}^{\prime}$ and in this second case we define $S_{t_{1} t_{2} \ldots t_{i}}:=\emptyset$ and $S_{t_{1} t_{2} \ldots t_{i}}^{\prime}:=\left\{n \in \mathbb{N}: m_{i+1}^{\prime} \leqslant n\right\}$.

We finish this induction procedure by setting $Q_{i+1}:=\cup\left\{t \times S_{t}: t \in Q_{i}^{\prime}\right\}$ and $Q_{i+1}^{\prime}:=$ $\cup\left\{t \times S_{t}^{\prime}: t \in Q_{i}^{\prime}\right\}$. By construction Q_{i+1} and Q_{i+1}^{\prime} verify the above indicated properties of Q_{j} and Q_{j}^{\prime} replacing j by $i+1$.

The hypothesis that for each sequence $\left(m_{i}\right)_{i} \in \mathbb{N}^{\mathbb{N}}$ there exists $j \in \mathbb{N}$ such that $B_{m_{1} m_{2} \ldots m_{j}}$ does not have property \mathfrak{P} implies that $T:=\cup\left\{Q_{i}: i \in \mathbb{N}\right\}$ does not contain infinite chains, because if $\left(m_{1}, m_{2}, \ldots, m_{p}\right) \in Q_{p}$ then $\left(m_{1}, m_{2}, \ldots, m_{p-1}\right) \in Q_{p}^{\prime}$, hence $B_{m_{1} m_{2} \ldots m_{p-1}}$ has property \mathfrak{P}. Therefore for each $\left(t_{1}, t_{2}, \ldots, t_{k}\right) \in Q_{k}^{\prime}$ there exists an extension $\left(t_{1}, t_{2}, \ldots, t_{k}, t_{k+1}, \ldots, t_{k+q}\right) \in Q_{k+q}$, whence $T(k)=Q_{k} \cup Q_{k}^{\prime}$, for each $k \in$ \mathbb{N}. Then the set T has the increasing property, because $|T(1)|=\left|Q_{1}^{\prime}\right|=\infty$ and if $t=$ $\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in T$ the sets $S_{t(i-1)}^{\prime}, 1<i<p$, are co-finite subsets of $\mathbb{N}, S_{t(p-1)}:=\mathbb{N}$, $t(i-1) \times S_{t(i-1)}^{\prime} \subset Q_{i}^{\prime} \subset T(i)$ and $t(p-1) \times S_{t(p-1)}^{\prime} \subset Q_{p} \subset T$. By construction, if $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in T$ then $t(i) \in Q_{i}^{\prime}$, if $1 \leqslant i<p$, and $t \in Q_{p}$, whence $B_{t(i)}$ has property \mathfrak{P}, for each $i=1,2, \ldots, p-1, B_{t}$ does not have property $\mathfrak{P},\{t(i): 1 \leqslant i \leqslant p\} \cap T=\{t\}$ and the extensions of $t(p-1)$ in T are the elements of $t(p-1) \times \mathbb{N}$, whose lengths are p.

Definition 3 ([6, Definition 1]). Let B be an element of the algebra \mathscr{A} of subsets of Ω. A subset M of $\mathrm{ba}(\mathscr{A})$ is deep B-unbounded if each finite subset \mathscr{Q} of $\left\{e_{A}: A \in \mathscr{A}\right\}$ verifies that

$$
\sup \left\{|\mu(C)|: \mu \in M \cap \mathscr{Q}^{\circ}, C \in \mathscr{A}, C \subset B\right\}=\infty .
$$

The proof of the next proposition is straightforward.
Proposition 4 ([6, Proposition 5]). If a subset M of $\mathrm{ba}(\mathscr{A})$ is deep B-unbounded and $\left\{B_{i} \in \mathscr{A}: 1 \leqslant i \leqslant q\right\}$ is a partition of B then there exists $j, 1 \leqslant j \leqslant q$, such that M is deep B_{j}-unbounded.

Proposition 5 ([6, Proposition 4]). Let \mathscr{A} be an algebra of subsets of Ω and let $\left(\mathscr{B}_{m}\right)_{m}$ be an increasing sequence of subsets of \mathscr{A} such that each \mathscr{B}_{m} does not have N-property and $\operatorname{span}\left\{e_{C}: C \in \cup_{m} \mathscr{B}_{m}\right\}=L(\mathscr{A})$. There exists $n_{0} \in \mathbb{N}$ such that for each $m \geqslant n_{0}$ there exists a deep Ω-unbounded $\tau_{s}(\mathscr{A})$-closed absolutely convex subsets M_{m} of $\mathrm{ba}(\mathscr{A})$ which is pointwise bounded in \mathscr{B}_{m}, i.e., $\sup \left\{|\mu(C)|: \mu \in M_{m}\right\}<\infty$ for each $C \in \mathscr{B}_{m}$. In particular this proposition holds if $\cup_{m} \mathscr{B}_{m}=\mathscr{A}$ or if $\cup_{m} \mathscr{B}_{m}$ has N-property.

Proposition 6. Let $\mathscr{B}:=\left\{\mathscr{B}_{m_{1} m_{2} \ldots m_{p}}: p, m_{1}, m_{2}, \ldots, m_{p} \in \mathbb{N}\right\}$ be an increasing web in a set- algebra \mathscr{A}. If \mathscr{B} does not contain strands consisting of sets with property N then there exists an $N V$-tree T such that for each $t \in T$ there exists a deep Ω-unbounded $\tau_{s}(\mathscr{A})$-closed absolutely convex subset M_{t} of $\mathrm{ba}(\mathscr{S})$ which is B_{t}-pointwise bounded.

Proof. By Proposition 3 with $\mathfrak{P}=N$ there exists an $N V$-tree T_{1} such that for each $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in T_{1}$ the set \mathscr{B}_{t} does not have property N and if $p>1$ then $\mathscr{B}_{t(i)}$ has property N, for each $i=1,2, \ldots, p-1$. If $p=1$ the conclusion follows from Proposition 5 in the case $\cup_{m_{1}} \mathscr{B}_{m_{1}}=\mathscr{A}$, being $T:=T_{1} \backslash\left\{1,2, \ldots, n_{0}-1\right\}$, where n_{0} is the natural number in Proposition 5. If $p>1$ then $\mathscr{B}_{t(p-1)}=\cup_{m} \mathscr{B}_{t(p-1) \times m}$ has property
N and the conclusion follows again from Proposition 5 in the case that $\cup_{m} \mathscr{B}_{m}$ has N property, being T the $N V$-tree obtained after deleting in T_{1} the elements $t(p-1) \times$ $\left\{1,2, \ldots, n_{0}(t)-1\right\}$, for each $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in T_{1}$ where $n_{0}(t)$ is the natural number of Proposition 5 for the increasing sequence $\left(\mathscr{B}_{t(p-1) \times m}\right)_{m}$.

Next Proposition 7 is given in [6, Proposition 8] as a currently version of Propositions 2 and 3 in [13]. Also Proposition 8 is contained in [6, Propositions 9 and 10]. In both propositions we present a sketch of the proofs for the sake of completeness and as a new help to the reader.

Proposition 7 ([6, Proposition 8]). Let $\left\{B, Q_{1}, \ldots, Q_{r}\right\}$ be a subset of the algebra \mathscr{A} of subsets of Ω and let M be a deep B-unbounded absolutely convex subset of $\mathrm{ba}(\mathscr{A})$. Then given a positive real number α and a natural number $q>1$ there exists a finite partition $\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ of B by elements of \mathscr{A} and a subset $\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{q}\right\}$ of M such that $\left|\mu_{i}\left(C_{i}\right)\right|>\alpha$ and $\Sigma_{1 \leqslant j \leqslant r} \mu_{i}\left(Q_{j}\right) \leqslant 1$, for $i=1,2, \ldots, q$.

Proof. It is enough to proof the case $q=2$, because then there exists $C_{i}, i \in\{1,2\}$, such that M is deep C_{i}-unbounded by Proposition 4. Let $\mathscr{Q}=\left\{\chi_{B}, \chi_{Q_{1}}, \chi_{Q_{2}}, \ldots, \chi_{Q_{r}}\right\}$. As $r M$ is deep B-unbounded, i.e., $\sup \left\{|\mu(D)|: \mu \in r M \cap \mathscr{Q}^{\circ}, D \subset B, D \in \mathscr{A}\right\}=\infty$, there exists $C_{1} \subset B$, with $C_{1} \in \mathscr{A}$, and $\mu \in r M \cap \mathscr{Q}^{\circ}$ such that $\left|\mu\left(C_{1}\right)\right|>r(1+\alpha)$. Then $\mu_{1}=r^{-1} \mu \in M,\left|\mu_{1}(B)\right| \leqslant r^{-1} \leqslant 1$ and $\Sigma_{1 \leqslant j \leqslant r}\left|\mu_{1}\left(Q_{j}\right)\right| \leqslant r^{-1} r=1$. Clearly $C_{2}:=$ $B \backslash C_{1}$ and $\mu_{2}:=\mu_{1}$ verify that $\left|\mu_{1}\left(C_{2}\right)\right| \geqslant\left|\mu_{1}\left(C_{1}\right)\right|-\left|\mu_{1}(B)\right|>1+\alpha-1=\alpha$.

Proposition 8 ([6, Propositions 9 and 10]). Let $\left\{B, Q_{1}, \ldots, Q_{r}\right\}$ be a subset of an algebra \mathscr{A} of subsets of Ω and let $\left\{M_{t}: t \in T\right\}$ be a family of deep B-unbounded absolutely convex subsets of $\mathrm{ba}(\mathscr{A})$, indexed by an $N V$-tree T. Then for each positive real number α and each finite subset $\left\{t^{j}: 1 \leqslant j \leqslant k\right\}$ of T there exist a set $B_{1} \in \mathscr{A}$, a measure $\mu_{1} \in M_{t^{1}}$ and an increasing tree T_{1}, such that

1. $B_{1} \subset B$, $\left\{t^{j}: 1 \leqslant j \leqslant k\right\} \subset T_{1} \subset T$ and M_{t} is deep $\left(B \backslash B_{1}\right)$-unbounded for each $t \in T_{1}$.
2. $\left|\mu_{1}\left(B_{1}\right)\right|>\alpha$ and $\Sigma\left\{\left|\mu_{1}\left(Q_{i}\right)\right|: 1 \leqslant i \leqslant r\right\} \leqslant 1$.

Proof. Let $t^{j}:=\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{p_{j}}^{j}\right)$, for $1 \leqslant j \leqslant k$. By Proposition 7 applied to $B, \alpha, q:=$ $2+\Sigma_{1 \leqslant j \leqslant k} p_{j}$ and $M_{t^{1}}$ there exist a partition $\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ of B by elements of \mathscr{A} and $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}\right\} \subset M_{t^{1}}$ such that:

$$
\begin{equation*}
\left|\lambda_{k}\left(C_{k}^{1}\right)\right|>\alpha \quad \text { and } \quad \Sigma_{1 \leqslant i \leqslant r}\left|\lambda_{k}\left(Q_{i}\right)\right| \leqslant 1 \text { for } k=1,2, \ldots, q . \tag{1}
\end{equation*}
$$

From Proposition 4 it follows that if M is deep B-unbounded there exists an $i_{M} \in$ $\{1,2, \ldots, q\}$ such that M is deep $C_{i_{M}}$-unbounded, hence if M_{u} is deep B-unbounded for each $u \in U$ and $V_{i}:=\left\{u \in U: M_{u}\right.$ is deep C_{i}-unbounded $\}, 1 \leqslant i \leqslant q$, then $U=\cup_{1 \leqslant i \leqslant q} V_{i}$. Whence if U is an $N V$-tree there exists i_{0}, with $1 \leqslant i_{0} \leqslant q$, such that $V_{i_{0}}$ contains an $N V$-tree $U_{i_{0}}$ by Proposition 2.

Therefore there exists $C_{i j}$ and $C_{i_{0}}$, with $\left\{i^{j}, i_{0}\right\} \subset\{1,2, \ldots, q\}$, and an $N V$-tree $T_{i_{0}} \subset T$ such that $M_{t j}$ is deep $C_{i j}$-unbounded, for each $j \in\{1,2, \ldots, k\}$, and M_{t} is deep $C_{i_{0}}$-unbounded for each $t \in T_{i_{0}}$.

For each $t^{j}=\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{p_{j}}^{j}\right) \notin T_{i_{0}}, \quad 1 \leqslant j \leqslant k$, and each section $t^{j}(m-1)$ of t^{j}, with $2 \leqslant m \leqslant p_{j}$, the set $W_{m}^{j}:=\left\{v \in \cup_{s} \mathbb{N}^{s}: t^{j}(m-1) \times v \in T\right\}$ is an $N V$-tree such that $M_{\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{m-1}^{j}\right) \times w}$ is deep B-unbounded for each $w \in W_{m}^{j}$, whence there exists $i_{m}^{j} \in$ $\{1,2, \ldots, q\}$ and an $N V$-tree V_{m}^{j} contained in W_{m}^{j} such that $M_{\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{m-1}^{j}\right) \times w}$ is deep $C_{i_{m}^{j}}-$ unbounded for each $w \in V_{m}^{j}$.

Let D be the union $D:=C_{i_{0}} \cup\left(\cup\left\{C_{i^{j}} \cup C_{i_{m}^{\prime}}: j \in S, 2 \leqslant m \leqslant p_{j}\right\}\right)$ and let T_{1} be the union of $T_{i_{0}}$ and the sets $\left\{t^{j}\right\} \cup\left\{\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{m-1}^{j}\right) \times V_{m}^{j}: 2 \leqslant m \leqslant p_{j}\right\}$, such that $t^{j} \notin T_{i_{0}}$ and $1 \leqslant j \leqslant k$. By construction T_{1} has the increasing property and if $t \in T_{1}$ the set M_{t} is deep D-unbounded.

The number of sets defining D is less or equal than $q-1$, hence there exists C_{h} such that $D \subset B \backslash C_{h}$ and we get that T_{1} is an $N V$-tree such that M_{t} is deep $B \backslash C_{h}$-unbounded for each $t \in T_{1}$ and, by (1), this proof is done with $B_{1}:=C_{h}^{1}$ and $\mu_{1}:=\lambda_{h}$.

Corollary 1 ([6, Proposition 10]). Let $\left\{B, Q_{1}, \ldots, Q_{r}\right\}$ be a subset of an algebra \mathscr{A} of subsets of Ω and $\left\{M_{t}: t \in T\right\}$ a family of deep B-unbounded absolutely convex subsets of $\mathrm{ba}(\mathscr{A})$, indexed by an increasing tree T. Then for each positive real number α and each finite subset $\left\{t^{j}: 1 \leqslant j \leqslant k\right\}$ of T there exist k pairwise disjoint sets $B_{j} \in \mathscr{A}, k$ measures $\mu_{j} \in M_{t}, 1 \leqslant j \leqslant k$, and an increasing tree T^{*} such that:

1. $\cup\left\{B_{j}: 1 \leqslant j \leqslant k\right\} \subset B,\left\{t^{j}: 1 \leqslant j \leqslant k\right\} \subset T^{*} \subset T$ and M_{t} is deep $\left(B \backslash \cup_{1 \leqslant j \leqslant k} B_{j}\right)$ unbounded for each $t \in T^{*}$.
2. $\left|\mu_{j}\left(B_{j}\right)\right|>\alpha$ and $\Sigma\left\{\left|\mu_{j}\left(Q_{i}\right)\right|: 1 \leqslant i \leqslant r\right\} \leqslant 1$, for $j=1,2, \ldots, k$.

Proof. Apply k times Proposition 8.
In Theorem 1 we need the sequence $\left(i_{n}\right)_{n}:=(1,1,2,1,2,3, \ldots)$ obtained with the first components of the sequence $\{(1,1),(1,2),(2,1),(1,3),(2,2),(3,1), \ldots\}$ generated writing the elements of \mathbb{N}^{2} following the diagonal order.

Theorem 1. A σ-algebra \mathscr{S} of subsets of a set Ω has property $w N$.
Proof. Let us suppose that \mathscr{S} is a σ-algebra of subsets of a set Ω which does not have property $w N$. Then there would exists in \mathscr{S} an increasing web $\left\{\mathscr{B}_{m_{1} m_{2} \ldots m_{p}}\right.$: $\left.p, m_{1}, m_{2}, \ldots, m_{p} \in \mathbb{N}\right\}$ without strands consisting of sets with Property N. By Proposition 6 there exists an $N V$-tree T such that for each $t \in T$ there exists a deep Ω unbounded $\tau_{s}(\mathscr{A})$-closed absolutely convex subset M_{t} of $\mathrm{ba}(\mathscr{S})$ which is B_{t}-pointwise bounded.

By induction it is easy to determine an $N V$-tree $\left\{t^{i}: i \in \mathbb{N}\right\}$ contained in T and a strictly increasing sequence of natural numbers $\left(k_{j}\right)_{j}$ such that for each $(i, j) \in \mathbb{N}^{2}$ with $i \leqslant k_{j}$ there exists a set $B_{i j} \in \mathscr{A}$ and $\mu_{i j} \in M_{t^{i}}$ that verify

$$
\begin{gather*}
\left.\Sigma_{s, v}\left\{\left|\mu_{i j}\left(B_{s v}\right)\right|: s \leqslant k_{v}, 1 \leqslant v<j\right\}\right)<1, \tag{2}\\
\left|\mu_{i j}\left(B_{i j}\right)\right|>j \tag{3}
\end{gather*}
$$

and $B_{i j} \cap B_{i^{\prime} j^{\prime}}=\emptyset$ if $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$.

In fact, select $t^{1} \in T$. Corollary 1 with $B:=\Omega$ and $\alpha=1$ provides $B_{11} \in \mathscr{S}$, $\mu_{11} \in M_{t^{1}}$ and an $N V$-tree T_{1} such that $\left|\mu_{11}\left(B_{11}\right)\right|>1, t^{1} \in T_{1} \subset T$ and M_{t} is deep $\Omega \backslash B_{11}$-unbounded for each $t \in T_{1}$. Define $k_{1}:=1, S^{1}:=\left\{t^{1}\right\}$ and $B^{1}:=B_{11}$.

Let us suppose that we have obtained the natural numbers $k_{1}<k_{2}<k_{3}<\cdots<k_{n}$, the $N V$-trees $T_{1} \supset T_{2} \supset T_{3} \supset \cdots \supset T_{n}$, the elements $\left\{t^{1}, t^{2}, \ldots, t^{k_{n}}\right\}$ such that $S^{j}:=$ $\left\{t^{i}: i \leqslant k_{j}\right\} \subset T_{j}$ and $S_{j}:=\left\{t^{k_{j-1}+1}, \ldots, t^{k_{j}}\right\}$ has the increasing property respect to S^{j-1}, for each $1<j \leqslant n$, together with the measures $\mu_{i j} \in M_{t^{i}}$ and the pairwise disjoint elements $B_{i j} \in \mathscr{S}, i \leqslant k_{j}$ and $j \leqslant n$, such that $\left|\mu_{i j}\left(B_{i j}\right)\right|>j$ and $\Sigma_{s, v}\left\{\left|\mu_{i j}\left(B_{s v}\right)\right|: s \leqslant k_{v}\right.$, $1 \leqslant v<j\}<1$, if $i \leqslant k_{j}$ and $j \leqslant n$, in such a way that the union $B^{j}:=\cup\left\{B_{s v}: s \leqslant k_{v}\right.$, $1 \leqslant v \leqslant j\}$ verifies that M_{t} is deep $\Omega \backslash B^{j}$-unbounded for each t belonging to the $N V$-tree T_{j}, for each $j<n$.

To finish the induction procedure select a subset $S_{n+1}:=\left\{t^{k_{n}+1}, \ldots, t^{k_{n+1}}\right\}$ of $T_{n} \backslash\left\{t^{i}\right.$: $\left.i \leqslant k_{n}\right\}$ which has the increasing property respect to S^{n} and apply again Corollary 1 to $\Omega \backslash B^{n},\left\{B_{s v}: s \leqslant k_{v}, 1 \leqslant v \leqslant n\right\}, T_{n}$, the finite subset $S^{n+1}:=\left\{t^{i}: i \leqslant k_{n+1}\right\}$ of T_{n} and $n+1$. Then, for each $i \leqslant k_{n+1}$, we obtain $B_{\text {in+1 }} \in \mathscr{A}, B_{i n+1} \subset \Omega \backslash B^{n}$, and $\mu_{i n+1} \in M_{t^{i}}$ such that $\left|\mu_{i n+1}\left(B_{i n+1}\right)\right|>n+1, \Sigma_{s, v}\left\{\left|\mu_{i n+1}\left(B_{s v}\right)\right|: s \leqslant k_{v}, 1 \leqslant v \leqslant n\right\}<1$, $B_{\text {in }+1} \cap B_{i^{\prime} n+1}=\emptyset$, if $i \neq i^{\prime}$, and the union $B^{n+1}:=\cup\left\{B_{s v}: s \leqslant k_{s}, 1 \leqslant v \leqslant n+1\right\}$ has the property that T_{n} contains an increasing tree T_{n+1} such that $S^{n+1} \subset T_{n+1}$ and M_{t} is deep $\Omega \backslash B^{n+1}$-unbounded for each $t \in T_{n+1}$.

With a new easy induction we obtain a subset $J:=\left\{j_{1}, j_{2}, \ldots, j_{n}, \ldots\right\}$ of \mathbb{N} such that $j_{n}<j_{n+1}$, for $n \in \mathbb{N}$, and for each $(i, j) \in \mathbb{N} \times J$ with $i \leqslant k_{j}$ we have

$$
\Sigma_{s, v}\left\{\left|\mu_{i j}\left(B_{s v}\right)\right|: s \leqslant k_{v}, j<v \in J\right\}<1
$$

because if the variation $\left|\mu_{i j}\right|(\Omega)<s \in \mathbb{N},\left\{N_{u}, 1 \leqslant u \leqslant s\right\}$ is a partition of $\mathbb{N} \backslash\{1,2, \ldots, j\}$ in s infinite subsets and $B_{u}:=\cup\left\{B_{s v}: s \leqslant k_{v}, v \in N_{u}\right\}, 1 \leqslant u \leqslant s_{1}$, then the inequality $\Sigma\left\{\left|\mu_{i j}\right|\left(B_{u}\right): 1 \leqslant u \leqslant s_{1}\right\}<s_{1}$ implies that there exists u^{\prime}, with $1 \leqslant u^{\prime} \leqslant s_{1}$, such that $\left|\mu_{i j}\right|\left(B_{u^{\prime}}\right)<1$, whence

$$
\Sigma_{s, v}\left\{\left|\mu_{i j}\left(B_{s v}\right)\right|: s \leqslant k_{v}, v \in N_{u^{\prime}}\right\}<1,
$$

and then the sequence $\left(B_{i_{n} j_{n}}, \mu_{i_{n} j_{n}}\right)_{n}$ verifies for each $n \in \mathbb{N}$ that:

$$
\begin{gather*}
\left.\Sigma_{s}\left\{\left|\mu_{i_{n} j_{n}}\left(B_{i_{s} j_{s}}\right)\right|: s<n\right\}\right)<1, \tag{4}\\
\left|\mu_{i_{n} j_{n}}\left(B_{i_{n} j_{n}}\right)\right|>j_{n}, \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|\mu_{i_{n} j_{n}}\left(\cup_{s}\left\{B_{i_{s} j_{s}}: n<s\right\}\right)\right|<1 . \tag{6}
\end{equation*}
$$

As S^{n+1} has the increasing property respect to S^{n} we have that $\left\{t^{i}: i \in \mathbb{N}\right\}$ is an $N V$-tree contained in T, hence $\cup\left\{\mathscr{B}_{t^{i}}: i \in \mathbb{N}\right\}=\mathscr{S}$. The relation $H:=\cup\left\{B_{i_{s} j_{s}}: s=\right.$ $1,2, \ldots\} \in \mathscr{S}$ implies that there exists $r \in \mathbb{N}$ such that $H \in \mathscr{B}_{t^{r}}$. Then for each strictly increasing sequence $\left(n_{p}\right)_{p}$ such that $i_{n_{p}}=r$ we have that $\left\{\mu_{i_{n_{p}} j_{n_{p}}}: p \subset \mathbb{N}\right\}$ is a subset of $M_{t^{r}}$. As $M_{t^{r}}$ is $B_{t^{r}}$-pointwise bounded we get that

$$
\begin{equation*}
\sup \left\{\left|\mu_{i_{n_{p}} j_{n_{p}}}(H)\right|: p \in \mathbb{N}\right\}<\infty . \tag{7}
\end{equation*}
$$

The sets $C_{p}:=\cup_{s}\left\{B_{i_{s} j_{s}}: s<n_{p}\right\}, B_{i_{n_{p}} j_{n_{p}}}$ and $D_{p}:=\cup_{s}\left\{B_{i_{s} j_{s}}: n_{p}<s\right\}$ are a partition of the set H. By (4), (5) and (6), $\left|\mu_{i_{n_{p}} j_{n_{p}}}(C)\right|<1, \mu_{i_{n_{p}} j_{n_{p}}}\left(B_{i_{n_{p}} j_{n_{p}}}\right)>j_{n_{p}}>n_{p}$ and $\left|\mu_{i_{n_{p}} j_{n_{p}}}(D)\right|<1$, for each $p \in \mathbb{N} \backslash\{1\}$. Therefore the inequality

$$
\left|\mu_{i_{n_{p}} j_{n_{p}}}(H)\right|>-\left|\mu_{i_{n_{p}} j_{n_{p}}}(C)\right|+\mu_{i_{n_{p}} j_{n_{p}}}\left(B_{i_{n_{p}} j_{n_{p}}}\right)-\left|\mu_{i_{n_{p}} j_{n_{p}}}\right|(D)>j_{n_{p}}-2
$$

implies that

$$
\lim _{p}\left|\mu_{i_{n_{p}} j_{n_{p}}}\left(H_{0}\right)\right|=\infty,
$$

contradicting (7).
The following corollary extends Corollary 13 in [6]. A family $\left\{B_{m_{1} m_{2} \ldots m_{i}}: i, m_{j} \in\right.$ $\mathbb{N}, 1 \leqslant j \leqslant i \leqslant p\}$ of subsets of A is an increasing p-web in A if $\left(B_{m_{1}}\right)_{m_{1}}$ is an increasing covering of A and $\left(B_{m_{1} m_{2} \ldots m_{i+1}}\right)_{m_{i+1}}$ is an increasing covering of $B_{m_{1} m_{2} \ldots m_{i}}$, for each $m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i<p$ (this definition comes from [7, Chapter 7, 35.1]).

Corollary 2. Let \mathscr{S} be a σ-algebra of subsets of Ω and let $\left\{\mathscr{B}_{m_{1} m_{2} \ldots m_{i}}: i, m_{j} \in \mathbb{N}\right.$, $1 \leqslant j \leqslant i \leqslant p\}$ be an increasing p-web in \mathscr{S}. Then there exists $\mathscr{B}_{n_{1} n_{2} \ldots n_{p}}$ such that if

$$
\left\{\mathscr{B}_{n_{1} n_{2} \ldots n_{p} m_{p+1} m_{p+1} \ldots m_{p+k}}: k, m_{p+l} \in \mathbb{N}, 1 \leqslant l \leqslant k \leqslant q\right)
$$

is an increasing q-web of $\mathscr{B}_{n_{1} n_{2} \ldots n_{p}}$ there exists $\left(n_{p+1}, n_{p+2}, \ldots, n_{p+q}\right) \in \mathbb{N}^{q}$ such that each $\tau_{s}\left(\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right)$-Cauchy sequence $\left(\mu_{n} \in \mathrm{ba}(\mathscr{S})\right)_{n}$ is $\tau_{s}(\mathscr{S})$-convergent.

Proof. By Proposition 1 with $\mathfrak{P}=N$ and Theorem 1 there exists $\mathscr{B}_{n_{1} n_{2} \ldots n_{p}}$ which has property $w N$. Hence there exists $\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}$ which has property N. Then if $\left(\mu_{n}\right)_{n} \subset \mathrm{ba}(\mathscr{S})$ is a $\tau_{s}\left(\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right)$-Cauchy sequence we have that $\left(\mu_{n}\right)_{n}$ has no more than one $\tau_{s}(\mathscr{S})$-adherent point, whence $\left(\mu_{n}\right)_{n}$ is $\tau_{s}(\mathscr{S})$-convergent. As $\overline{L\left(\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1}}\right)}=L(\mathscr{S})$ the sequence $\left(\mu_{n}\right)_{n}$ has no more that one $\tau_{s}(\mathscr{S})$-adherent point, whence $\left(\mu_{n}\right)_{n}$ is $\tau_{s}(\mathscr{S})$-convergent.

3 Applications

In this section we obtain some applications of Theorem 1 to bounded finitely additive vector measures.

A bounded finitely additive vector measure, or simple bounded vector measure, μ defined in an algebra \mathscr{A} of subsets of Ω with values in a topological vector space E is a map $\mu: \mathscr{A} \rightarrow E$ such that $\mu(\mathscr{A})$ is a bounded subset of E and $\mu(B \cup C)=\mu(B)+\mu(C)$, for each pairwise disjoint subsets $B, C \in \mathscr{A}$. Then the E-valued linear map $\mu: L(\mathscr{A}) \rightarrow$ E defined by $\mu\left(e_{B}\right):=\mu(B)$, for each $B \in \mathscr{A}$, is continuous.

A locally convex space $E(\tau)$ is the p-inductive limit of the family of locally convex spaces $\mathscr{E}:=\left\{E_{m_{1} m_{2} \ldots m_{i}}\left(\tau_{m_{1} m_{2} \ldots m_{i}}\right): i, m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant p\right\}$ if $E(\tau)$ is the inductive limit of $\left(E_{m_{1}}\left(\tau_{m_{1}}\right)\right)_{m_{1}}$ and moreover, each $E_{m_{1} m_{2} \ldots m_{i}}\left(\tau_{m_{1} m_{2} \ldots m_{i}}\right)$ is the inductive limit of the sequence $\left(E_{m_{1} m_{2} \ldots m_{i} m_{i+1}}\left(\tau_{m_{1} m_{2} \ldots m_{i+1}}\right)\right)_{m_{i+1}}$, for each $m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i<p$. Then \mathscr{E} is a defining p-increasing web for $E(\tau)$ with steps $E_{m_{1} m_{2} \ldots m_{i}}\left(\tau_{m_{1} m_{2} \ldots m_{i}}\right) . E(\tau)$ is a
$p-(L F)($ or $p-(L B))$ space if $E(\tau)$ admits a defining p-increasing web \mathscr{E} such that each $E_{m_{1} m_{2} \ldots m_{p}}\left(\tau_{m_{1} m_{2} \ldots m_{p}}\right)$ is a Fréchet (or Banach) space and we say that \mathscr{E} is a defining $p-(L F)$ (or $p-(L B)$) increasing web for $E(\tau)$.

Next proposition extends [12, Theorem 4] and [6, Proposition 10].
Proposition 9. Let μ be a bounded vector measure defined in a σ-algebra \mathscr{S} of subsets of Ω with values in a topological vector space $E(\tau)$. Suppose that $\left\{E_{m_{1} m_{2} \cdots m_{i}}\right.$: $\left.m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant p\right\}$ is an increasing p-web in E. Then there exists $E_{n_{1} n_{2} \cdots n_{p}}$ such that if $E_{n_{1} n_{2} \cdots n_{p}}\left(\tau_{n_{1} n_{2} \cdots n_{p}}\right)$ is an $q-(L F)$-space, the topology $\tau_{n_{1} n_{2} \cdots n_{p}}$ is finer than the relative topology $\left.\tau\right|_{E_{n_{1} n_{2} \cdots n_{p}}}$ and $\left\{E_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+i}}\left(\tau_{m_{1} m_{2} \ldots m_{i} m_{p+1} \ldots m_{p+i}}\right): i, m_{p+j} \in\right.$ $\mathbb{N}, 1 \leqslant j \leqslant i \leqslant q\}$ a defining $q-(L F)$ increasing web for $E_{n_{1} n_{2} \cdots n_{p}}\left(\tau_{n_{1} n_{2} \cdots n_{p}}\right)$ there exists $\left(n_{p+1}, n_{p+2}, \ldots, n_{p+q}\right) \in \mathbb{N}^{q}$ such that $\mu(\mathscr{S})$ is a bounded subset of $E_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\left(\tau_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right)$.

Proof. Let $\mathscr{B}_{m_{1} m_{2} \ldots m_{i}}:=\mu^{-1}\left(E_{m_{1} m_{2} \ldots m_{i}}\right)$ for each $m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant p$. By Proposition 1 and Theorem 1 there exists $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in \mathbb{N}^{p}$ such that $\mathscr{B}_{n_{1} n_{2} \ldots n_{p}}$ has $w N$ property. Let $\left\{E_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+i}}\left(\tau_{m_{1} m_{2} \ldots m_{i} m_{p+1} \ldots m_{p+i}}\right): i, m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant q\right\}$ be a defining p-($L F)$ increasing web for $E_{n_{1} n_{2} \ldots n_{p}}\left(\tau_{n_{1} n_{2} \ldots n_{p}}\right)$ and let $\mathscr{B}_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+i}}:=$ $\mu^{-1}\left(E_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+i}}\right)$, for each $i, m_{p+j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant q$. As

$$
\left\{\mathscr{B}_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+i}}: i, m_{p+j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant q\right\}
$$

is an increasing q-web of $\mathscr{B}_{n_{1} n_{2} \ldots n_{p}}$ and this set has $w N$-property then there exists a subset $\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}$ which has property N, whence $L\left(\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right)$ is a dense subspace of $L(\mathscr{S})$ and then the map with closed graph
$\left.\mu\right|_{L\left(\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right)}: L\left(\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right) \rightarrow E_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\left(\tau_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right)$
has a continuous extension v to $L(\mathscr{S})$ with values in $E_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\left(\tau_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right)$ (by [10, 2.4 Definition and $\left.\left(\mathrm{N}_{2}\right)\right]$ and [11, Theorems 1 and 14]). Since $\mu: L(\mathscr{S}) \rightarrow$ $E(\tau)$ is continuous, $v(A)=\mu(A)$, for each $A \in \mathscr{S}$.
Whence $\mu(\mathscr{S})$ is a bounded subset of $E_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\left(\tau_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right)$.
Corollary 3. Let μ be a bounded vector measure defined in a σ-algebra \mathscr{S} of subsets of Ω with values in an inductive limit $E(\tau)=\Sigma_{m} E_{m}\left(\tau_{m}\right)$ of an increasing sequence $\left(E_{m}\left(\tau_{m}\right)\right)_{m}$ of $q-(L F)$ spaces. There exists $n_{1} \in \mathbb{N}$ such that for each defining q-(LF) increasing web for $E_{n_{1}}\left(\tau_{n_{1}}\right),\left\{E_{n_{1} m_{1+1} \ldots m_{1+i}}\left(\tau_{n_{1} m_{1+1} \ldots m_{1+i}}\right): i, m_{1+j} \in \mathbb{N}, 1 \leqslant\right.$ $j \leqslant i \leqslant q\}$ there exists $\left(n_{1+i}\right)_{1 \leq i \leq q}$ in \mathbb{N}^{q} such that $\mu(\mathscr{S})$ is a bounded subset of $E_{n_{1} n_{1+1} \ldots n_{1+q}},\left(\tau_{n_{1} n_{1+1} \ldots n_{1+q}}\right)$.

A sequence $\left(x_{k}\right)_{k}$ in a locally convex space E is subseries convergent if for every subset J of \mathbb{N} the series $\Sigma\left\{x_{k}: k \in J\right\}$ converges. The following corollary is a generalization of the localization property given in [12, Corollary 1.4] and it follows from Corollary 3.

Corollary 4. Let $\left(x_{k}\right)_{k}$ be a subseries convergent sequence in an inductive limit $E(\tau)=$ $\Sigma_{m} E_{m}\left(\tau_{m}\right)$ of an increasing sequence $\left(E_{m}\left(\tau_{m}\right)\right)_{m}$ of $q-(L F)$ spaces. There exists $n_{1} \in$ \mathbb{N} such that for each defining $q-(L F)$ increasing web $\left\{E_{n_{1} m_{1+1} \ldots m_{1+i}}\left(\tau_{n_{1} m_{1+1} \ldots m_{1+i}}\right)\right.$: $\left.i, m_{1+j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant q\right\}$ for $E_{n_{1}}\left(\tau_{n_{1}}\right)$ there exists $\left(n_{1+1}, n_{1+2}, \ldots, n_{1+q}\right) \in \mathbb{N}^{q}$ such that $\left\{x_{k}: k \in \mathbb{N}\right\}$ is a bounded subset of $E_{n_{1} n_{1+1} \ldots n_{1+q}}\left(\tau_{n_{1} n_{1+1} \ldots n_{1+q}}\right)$.

Proof. As $\left(x_{k}\right)_{k}$ is subseries convergent, then the additive vector measure $\mu: 2^{\mathbb{N}} \rightarrow$ $E(\tau)$ defined by $\mu(J):=\Sigma_{k \in J} x_{k}$, for each $J \in 2^{\mathbb{N}}$, is bounded, because $\left(f\left(x_{k}\right)\right)_{k}$ is subseries convergent for each $f \in E^{\prime}$, whence $\Sigma_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|<\infty$. Therefore we may apply Corollary 3.

Proposition 10. Let μ be a bounded vector measure defined in a σ-algebra \mathscr{S} of subsets of Ω with values in a topological vector space $E(\tau)$. Suppose that $\left\{E_{m_{1} m_{2} \ldots m_{i}}\right.$: $\left.m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant p\right\}$ is an increasing p-web in E. There exists $E_{n_{1} n_{2} \ldots n_{p}}$ such that if $\left\{E_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+i}}: i, m_{p+j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant q\right\}$ is a q-increasing web in $E_{n_{1} n_{2} \ldots n_{p}}$ with the property that each relative topology $\left.\tau\right|_{E_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+q}}},\left(m_{p+1}, \ldots, m_{p+q}\right) \in$ \mathbb{N}^{q} is sequentially complete, then there exists $\left(n_{p+1}, \ldots, n_{p+q}\right) \in \mathbb{N}^{q}$ such that $\mu(\mathscr{S}) \subset$ $E_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n q}$.
Proof. Let $\mathscr{B}_{m_{1} m_{2} \ldots m_{i}}:=\mu^{-1}\left(E_{m_{1} m_{2} \ldots m_{i}}\right)$ for each $m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant p$. By Proposition 1 and Theorem 1 there exists $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in \mathbb{N}^{p}$ such that $\mathscr{B}_{n_{1} n_{2} \ldots n_{p}}$ has $w N$ property. Let $\left\{E_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+i}}: i, m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant q\right\}$ be a increasing q-web in $E_{n_{1} n_{2} \ldots n_{p}}$ and let $\mathscr{B}_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+i}}:=\mu^{-1}\left(E_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+i}}\right)$, for each $i, m_{p+j} \in$ $\mathbb{N}, 1 \leqslant j \leqslant i \leqslant q$. As

$$
\left\{\mathscr{B}_{n_{1} n_{2} \ldots n_{p} m_{p+1} \ldots m_{p+i}}: i, m_{p+j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant q\right\}
$$

is an increasing q-web of $\mathscr{B}_{n_{1} n_{2} \ldots n_{p}}$ there exists $\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}$ which has property N, whence $L\left(\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right)$ is a dense subspace of $L(\mathscr{S})$ and then the continuous map

$$
\left.\mu\right|_{L\left(\mathscr{B}_{n_{1} n_{2} \cdots n_{p} n_{p+1}}\right)}: L\left(\mathscr{B}_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right) \rightarrow E_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\left(\left.\tau\right|_{\left.E_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}\right)}\right)
$$

 The continuity of $\mu: L(\mathscr{S}) \rightarrow E(\tau)$ implies that $v(A)=\mu(A)$, for each $A \in \mathscr{S}$. Whence $\mu(\mathscr{S})$ is a subset of $E_{n_{1} n_{2} \ldots n_{p} n_{p+1} \ldots n_{p+q}}$.
Corollary 5. Let μ be a bounded additive vector measure defined in a σ-algebra \mathscr{S} of subsets of Ω with values in an inductive limit $E(\tau)=\Sigma_{m_{1}} E_{m_{1}}\left(\tau_{m_{1}}\right)$ of an increasing sequence $\left(E_{m}\left(\tau_{m}\right)\right)_{m}$ of countable dimensional topological vector spaces. Then there exists n_{1} such that for each q-increasing web $\left\{E_{n_{1} m_{1+1} \ldots m_{1+i}}: i, m_{1+j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant q\right\}$ in $E_{n_{1}}$ such that the dimension of each $E_{n_{1} m_{1+1} \ldots m_{1+q}}$ is finite there exists $E_{n_{1} n_{1+1} \ldots n_{1+q}}$ which contains the set.
Proof. As the relative topology $\left.\tau\right|_{E_{n_{1} m_{1+1} \ldots m_{1+q}}}$ is complete we may apply Proposition 10.

Acknowledgement

To Professor Manuel Valdivia (1928-2014), whose paper On Nikodym boundedness property, RACSAM 2013, give us many suggestions for this work.

We thank to an anonymous referee his proof that properties $w N$ and $w^{2} N$ are equivalent that we generalize in Proposition 1. We are also grateful to two both referees by their suggestions and indications.

References

[1] J. Diestel, Sequences and Series in Banach Spaces. Springer, New York, Berlin, Heidelberg, 1984.
[2] J. Diestel and J.J. Uhl, Vector Measures. Mathematical Surveys and Monographs 15, American Mathematical Society, Providence, 1977.
[3] J. Dieudonné, Sur la convergence de suites de measures de Radon. An. Acad. Brasi. Ciên. 23, 277-282, 1951.
[4] J. C. Ferrando, Strong barrelledness properties in certain $l_{0}^{\infty}(\mathscr{A})$ spaces. J. Math. Anal. Appl. 190, 194-202, 1995.
[5] J.C. Ferrando, M. López-Pellicer, Strong barrelledness properties in $l_{0}^{\infty}(X, \mathscr{A})$ and bounded finite additive measures, Math. Ann. 287,727-736, 1990.
[6] J. Kakol, M. López-Pellicer, On Valdivia strong version of Nikodym boundedness property, preprint.
[7] G. Köthe, Topological Vector Spaces I and II, Springer, 1969, 1979.
[8] M. López-Pellicer, Webs and Bounded Finitely Additive Measures, J. Math. Anal. Appl. 210, 257-267, 1997.
[9] O.M. Nikodym, Sur les familles bornées de fonctions parfaitement additives d'ensembles abstrait. Monatsh. Math. U. Phys. 40, 418-426, 1933.
[10] W. Schachermayer, On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Dissertationes Math. (Rozprawy Mat.) 214, 33 pp., 1982.
[11] M. Valdivia, On the closed graph theorem. Collect. Math. 22, 51-72, 1971.
[12] M. Valdivia, On certain barrelled normed spaces, Ann. Inst. Fourier (Grenoble) 29, 39-56, 1979.
[13] M. Valdivia, On Nikodym boundedness property, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 107, 355-372, 2013

[^0]: *This work was supported for the second named author by the Spanish Ministerio de Economía y Competitividad under grant MTM2014-58159-P.

