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Abstract

It is well-known that the Schur complement of some H-matrices
is an H-matrix. In this paper, the Schur complement of any general
H-matrix is studied. In particular it is proved that the Schur com-
plement, if it exists, is an H-matrix and it is studied to which class
of H-matrix the Schur complement belongs to. In addition, some re-
sults are given for singular irreducible H-matrices and for the Schur
complement of nonsingular irreducible H-matrices.

1 Introduction

M -matrices and the more general class of H-matrices have been applied in
different problems of mathematics and other sciences. One of the most im-
portant applications of these kind of matrices is in Numerical Linear Algebra;
more concretely in the solution of linear systems by the LU factorization and
by the Schur complement as well as in the construction of preconditioners.

Furthermore, there are studies aimed to determine if the L and U factors
or the Schur complement of a matrix preserve some properties of the initial
matrix A, such as diagonally dominance, M -matrix or H-matrix properties
including irreducibility. Despite the existence of many studies on these topics
it would be interesting to conclude the subject studying the heritability of
the H-matrix properties of the Schur complements, which is the goal of this
paper.

∗Supported by Spanish DGI grant MTM2007-64477.
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The concept of nonsingular M -matrix and H-matrix was introduced by
Ostrowski [18] in the study of the convergence of iteration processes and
spectral theory. Later, these definitions were extended by Fiedler and Ptak to
possible singular M -matrices [8] and H-matrices [9]. Moreover, the study of
nonsingular or general M -matrices and H-matrices was widely extended (see
[23], [3] and the references therein). Different characterizations ofM -matrices
and H-matrices are referred to the properties of diagonal dominance (strict,
general, double, weak, . . . ) or nonsingularity of a principal submatrix and
to the irreducibility of the original matrix. On the other hand, the partition
of H-matrices according to the singularity or not of the matrix is established
in reference [4], where the general set of H-matrices is split in three different
classes with different properties related with the above subjects for each class
of H-matrices.

With regards to the Schur complement of H-matrices, the initial reference
is [7] where Ky Fan stated that the Schur complement (with respect to an
index) of an invertible M -matrix is an invertible M -matrix. This result was
extended to general Schur complements by Crabtree [6] (see also [26]) and for
nonsingular H-matrices by Polman [19]. Also, from the results of Johnson
[14] and Smith [22] the irreducibility of the Schur complement of general M -
matrices with respect to an invertible principal submatrix was characterized
(see also [25]). Further, in the book [21] there is a detailed study of different
classes of matrices which are closed for the Schur complement, in particular
the invertible class of H-matrices.

Moreover, with respect to the LU factorization it seems that the first
result is in a characterization by Fiedler and Ptak [8] of a symmetric per-
mutation of a nonsingular M -matrix (see also Varga [23]). Other related
interesting references are Kuo [15] obtaining the LU factorization of irre-
ducible possible singular M -matrices, Varga and Cai [25] extending the ear-
lier result to particular reducible M -matrices, or Funderlic, Neumann and
Plemmons [10, 11] obtaining the LU factorization of generalized diagonally
dominant H-matrices. Neumann [17] completes those results among Schur
complements and LU factorizations. In this context Ahac, Buoni and Olesky
[2, 1, 5] give a stable algorithm for computing the LU factorization of H-
matrices.

In this paper we are dealing with general M -matrices (matrices written
as A = rI − B, r ≥ ρ(B) and B nonnegative) and with general H-matrices
(matrices whose comparison matrix M(A) is a general M -matrix. See [3]).
In [4] a partition of the set of all H-matrices in three classes is given: The
invertible class HI containing all (nonsingular) H-matrices such that their
comparison matrix is a nonsingular M -matrix; the mixed class HM formed
for all H-matrices having singular comparison matrix but with at least one
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equimodular matrix (that is, a matrix with the same comparison matrix)
being nonsingular; and the singular class HS with all (reducible) H-matrices
such that all their equimodular matrices are singular.

The goal of this paper is to establish that the Schur complement of a
general H-matrix, if it exists, is also an H-matrix. Moreover we establish
that Sα(A) belongs to the same H-matrices class than the original matrix A
if A belongs to HI or HS or if A is a singular matrix in HM . For nonsingular
matrices in HM we give some conditions on the graph of A to determine
when Sα(A) remains in HM or improves to HI .

The background on Schur complements of general M -matrices and H-
matrices in HI is contained in section 2, where we include some results that
will be used later. The Schur complement of H-matrices in HM and HS are
studied in sections 3 and 4 respectively. The paper ends with a collection of
the main results.

2 Background and Schur complements on HI

Let A ∈ Cn×n and let α, β ⊆ 〈n〉 = {1, 2, . . . , n}. As usual, A(α, β) denotes
the submatrix of A with row and column indices all those in α and β, respec-
tively, and A(α) denotes the principal submatrix of A with row and column
indices in α. Through the paper, we denote the cardinality of the set α by
|α| and the complementary subset of α in 〈n〉 by α′. Finally, we write the
strict set inclusion by X ⊂ Y .

Given a nonsingular proper principal submatrix A(α), we will denote by
Sα(A) the Schur complement of A with respect to A(α). That is, if |α| = k,
Sα(A) is the (n− k)× (n− k) matrix

Sα(A) = A(α′)− A(α′, α)A(α)−1A(α, α′). (1)

Recall that properties of H-matrices are strongly related with generalized
diagonally dominance. In order to preserve these properties, we should re-
strict our study to Schur complements with respect to principal submatrices.
In this sense we have to consider symmetric permutations of A. Let P be
the permutation matrix such that

PAP T =

[
A(α) A(α, α′)

A(α′, α) A(α′)

]
,

then, the Schur complement is part of the block LU factorization

PAP T = LU =

[
I 0

A(α′, α)A(α)−1 I

] [
A(α) A(α, α′)

0 Sα(A)

]
(2)
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and
det(A) = det(P TAP ) = det(A(α)) det(Sα(A)).

We can easily state the generalization of the results of [7, Lemma 1]
and [6, Lemma 1], given for nonsingular M -matrices, to general M -matrices
as follows.

Theorem 1. Let A be an M-matrix and let α ⊂ 〈n〉 such that A(α) is
nonsingular, then Sα(A) is an M-matrix.

To study the Schur complement of general H-matrices we need an inter-
esting inequality obtained in [1, Lemma 1] and [16, Theorem 1] with some
different conditions. This result can be applied to singular H-matrices.

Lemma 1. Let A be an H-matrix and let α ⊂ 〈n〉 such that A(α) ∈ HI ,
then

Sα(M(A)) ≤M(Sα(A)). (3)

and Sα(A) is an H-matrix.

Proof. Since M(A)(α) = M(A(α)) is a nonsingular M -matrix and A(α) is
nonsingular both two Schur complements can be computed.

The proof of the inequality (3) follows the steps of [16, Theorem 1] consid-
ering that what is really used is that [M(A)(α)]−1 ≥ 0. Further, Sα(M(A))
is an M -matrix from Theorem 1, and following the inequality (3),M(Sα(A))
is also an M -matrix and so Sα(A) is an H-matrix.

With Lemma 1 we can give the result for H-matrices in HI .

Corollary 1 ([19, Lemma 3]). Let A ∈ HI and let α ⊂ 〈n〉, then Sα(A) ∈ HI .

Despite Lemma 1 applies to general H-matrices, the generalization is not
complete since there could be H-matrices with nonsingular A(α) but with
singular M(A(α)). Then Sα(A) exists but we can not apply Lemma 1 to
conclude that Sα(A) is an H-matrix. However if the matrix is an irreducible
M -matrix we have the next result.

Theorem 2. Let A be an irreducible M-matrix and let α ⊂ 〈n〉, then the
Schur complement Sα(A) exists and it is an M-matrix. Moreover, Sα(A) is
irreducible unless A is singular and |α| = n− 1.

Proof. Any principal submatrix of an irreducible M -matrix is a nonsingular
M -matrix. Then, A(α) is nonsingular and Sα(A) is an M -matrix. If A is
singular and |α| = n − 1, then Sα(A) = [0]. 1 In other case, Sα(A) is
irreducible ([22, Lemma 2.1 (ii)]).

1As usual the 1× 1 null matrix is considered reducible.
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Theorem 2 can not be stated for H-matrices as it can be seen in the
following example.

Example 1. Consider the irreducible matrix A ∈ HI

A =

 3 −1 −1
1 3 1
−1 1

3
3


Taking α = {1} the Schur complement is the reducible matrix

Sα(A) =

[
10/3 4/3

0 8/3

]
.

3 Schur complements in HM

We remain that any matrix A ∈ HM , singular or not, has nonzero diagonal
elements, its comparison matrixM(A) is singular but at least one equimodu-
lar matrix is nonsingular, see [4] for details. The matrix A can be irreducible
or not, then we distinguish two cases.

3.1 Irreducible case

We prove that in this case the Schur complement always exists and is an
H-matrix (related results has been done in [10, 11, 1]). We recall that if A is
a (nonsingular) M -matrix any principal submatrix A(α) is a (nonsingular)
M -matrix, see [3]. The same happens with H-matrices, but the point is that
some principal submatrix of an H-matrix (outside the invertible class) can
belong to a different class than the original H-matrix. We shall deal with
this point in the mixed irreducible case in next theorem.

Theorem 3. Let A ∈ HM be an irreducible matrix. Then the Schur comple-
ment with respect to any α ⊂ 〈n〉 can be computed and Sα(A) is an H-matrix.

Moreover,

1. If Sα(M(A)) <M(Sα(A)), then Sα(A) ∈ HI (and A is nonsingular).

2. If A is singular and |α| = n − 1, then Sα(A) = [0] ∈ HS and it is
reducible.

3. Otherwise, Sα(M(A)) =M(Sα(A)), and Sα(A) ∈ HM is an irreducible
matrix (singular or not).
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Proof. Since M(A) is an irreducible M -matrix, we can compute the Schur
complement ofM(A) with respect to any proper principal submatrix, which
is a singular M -matrix by Theorem 2. Moreover, as all proper principal
submatrices of M(A) are nonsingular M -matrices, all proper principal sub-
matrices of A are in HI , and then by Lemma 1 the inequality (3) holds and
Sα(A) is an H-matrix.

To end the proof we distinguish three cases.
Case 1. Consider Sα(M(A)) <M(Sα(A)). If Sα(A) is irreducible2, then

M(Sα(A)) is an irreducible Z-matrix greater than the M -matrix Sα(M(A)).
Then, M(Sα(A)) is a nonsingular M -matrix and consequently Sα(A) ∈ HI ,
so A is nonsingular.

If Sα(A) is reducible and Sα(M(A)) < M(Sα(A)), since both matrices
are M -matrices we can write

Sα(M(A)) = rI −B < rI − C =M(Sα(A))

where r ≥ maxi∈〈n〉 cii, and 0 ≤ C < B. By Theorem 2 as we said before
Sα(M(A)) is singular and irreducible, then by [24, Corollary 2.5] we have
r = ρ(B) > 0. Since B is irreducible and C is reducible, we can assume,
without lost of generality that

C =


C11 C12 · · · C1k

0 C22 · · · C2k
...

...
. . .

...
0 0 . . . Ckk

 < B =


B11 B12 · · · B1k

B21 B22 · · · B2k
...

...
. . .

...
Bk1 Bk2 . . . Bkk


where all diagonal blocks Cii are irreducible or the 1 × 1 null matrix. The
case Cii = [0] for all i = 1, 2, . . . , k, with k = n, implies ρ(C) = 0 and so
r > ρ(C). Then M(Sα(A)) is a nonsingular M -matrix and so Sα(A) ∈ HI .

In other case let Cii be the irreducible diagonal block with larger spectral
radius, so ρ(C) = ρ(Cii). The corresponding block Bii is a principal subma-
trix of the irreducible nonnegative matrix B, then applying [24, Lemma 2.6]
ρ(Bii) < ρ(B). Thus

ρ(C) = ρ(Cii) ≤ ρ(Bii) < ρ(B) = r

then M(Sα(A)) is a nonsingular M -matrix, and Sα(A) ∈ HI and, so, A is
nonsingular.

Case 2. It is straightforward.

2Note that the case Sα(M(A)) = [0] <M(Sα(A)) is included here.
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Case 3. From Theorem 2, Sα(M(A)) is a singular and irreducible M -
matrix, and, since Sα(M(A)) = M(Sα(A)), Sα(A) is an H-matrix not in-
cluded in HI . By the irreducibility, Sα(M(A)) is not in HS (see [4]). Then
Sα(A) remains in HM .

Observe from the last theorem that Schur complements of an H-matrix
in HM does not decrease the quality of the original matrix, that is, the Schur
complement remains in HM or improve to HI , unless A is singular and the
cardinality of α is maximum. In this special case one obtains the null matrix
which belongs to HS. (Note that in the set of 1× 1 matrices there are only
two classes of H-matrices, HI and HS.)

Moreover, the case 2 of Theorem 3 is not the unique situation in which
the Schur complement of an irreducible matrix in HM can be reducible, as
the following example shows. Recall that Example 1 illustrates an analogous
situation for a matrix in HI . Then one can conclude that, while the property
of being an H-matrix is inherited by Schur complements, irreducibility is
only inherited by Schur complements of M -matrices.

Example 2. Consider the irreducible matrix B ∈ HM

B =

2 1 1
1 2 1
2 1 3

 .
For α = {1}, we obtain

Sα(B) =

[
3/2 1/2
0 2

]
which is a reducible matrix in HI .

The above example illustrates the following conclusion, according with
Theorem 2 and Case 1 of Theorem 3.

Corollary 2. Let A ∈ HM be an irreducible matrix. If Sα(A) 6= [0] is
reducible, then Sα(A) ∈ HI .

Theorem 3 gives the following characterization of singular irreducible H-
matrices in HM .

Corollary 3. Let A be an irreducible H-matrix in HM . The matrix A is
singular if and only if Sα(M(A)) =M(Sα(A)) holds for all α ⊂ 〈n〉.

Proof. The if part is obtained choosing α such that |α| = n− 1. The only if
part follows from Theorem 3, cases 2 and 3.

7



Singular irreducible H-matrices can be characterized also using their com-
parison matrix. In particular when the H-matrix has positive diagonal ele-
ments we have the following result in collaboration with Schneider [20].

Theorem 4. Let A be a singular irreducible H-matrix with positive diagonal
entries. Then, A is diagonally similar to its comparison matrix.

Proof. Let D = diag(h11, h22, . . . , hnn), then the matrix H1 = D−1A is a
singular irreducible H-matrix with all diagonal entries equal to 1.

Let us write H1 = I + K, since H1 is singular, then −1 ∈ σ(K). On
the other hand M(H1) = M1 = I − |K| is a singular M-matrix. Then
ρ(|K|) = 1. By [12, Theorem 8.1.18] ρ(K) ≤ ρ(|K|) = 1. Then, −1 is
the maximum eigenvalue of K in absolute value, so ρ(K) = 1. Now, taking
K = B and |K| = A in the Wielandt’s Theorem [12, Theorem 8.4.5] there
exists a diagonal unitary matrix D1 such that

K = −1D1|K|D−1
1

then, H1 = I + K = I − D1|K|D−1
1 = D1M1D

−1
1 . Finally, we recover the

matrix A as

A = DH1 = DD1M1D
−1
1 = D1DM1D

−1
1 = D1MD−1

1

where M =M(A).

In addition, we can give the general characterization of singular and irre-
ducible H-matrices in HM . There is another proof given by Johnson [13].

Corollary 4. Let A be an irreducible H-matrix in HM . Then, A is singular
if and only if A is diagonally equivalent to its comparison matrix, that is,
there exist unitary diagonal matrices D1 and D2 such that

A = D1M(A)D2.

Proof. Let H = D−1
A A, where DA = diag(A). Now, applying Theorem 4 to

the matrix H we have a diagonal unitary matrix D1 such that

H = D1M(H)D−1
1 .

Then

A = DAH = DAD1M(H)D−1
1 = DAD1M(D−1

A A)D−1
1 = D2M(A)D3

Note that D2 = DAD1M(D−1
A ) and D3 = D−1

1 are unitary diagonal matrices.
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Going back to Schur complements, Corollary 3 and Corollary 4 tell us
that all Schur complements of a singular irreducible H-matrix are in HM

(unless one obtains the null complement) and they are equimodular to the
corresponding Schur complement of M(A).

Therefore, if A ∈ HM is nonsingular, then the inequality (3) is strict
for at least one α and these Schur complements are in HI . But, it is not
straightforward for all α except for some dense matrices as we will see in
Corollary 5. On the contrary, there exist nonsingular matrices such that the
strict inequality holds only when |α| = n− 1. Below we give an example of
this limit case.

Example 3. Consider the irreducible nonsingular matrix A ∈ HM

A =


1 0 −1 0
0 1 0 1
0 1 1 0
1 0 0 1

 .
For all α ⊂ 〈n〉 such that |α| < 3 the equality Sα(M(A)) =M(Sα(A)) holds,
but for any α such that |α| = 3 one has [0] =Sα(M(A)) <M(Sα(A)).

We study more in depth the above case. Avoiding trivial cases n = 1 or
2, consider the irreducible matrices

A = D +M (4)

where D is diagonal with nonzero diagonal entries and |M | is a cyclic matrix
of index n (see [24]). That is, the graph of M is (only) a cycle of length n.

Theorem 5. Let A ∈ HM ∪HI . If A admits the partition (4) with n > 2,
Let A = D + M be a matrix of size n > 2, where D is diagonal with

nonzero diagonal entries and |M | is a cyclic matrix of index n and let α ⊂
〈n〉.

1. If A ∈ HM ∪HI and |α| < n− 1, then Sα(M(A)) =M(Sα(A)).

2. If A ∈ HM is nonsingular and |α| = n− 1, then Sα(A) ∈ HI .

Proof. Without loss of generality suppose that γ = {1, 2, . . . , n, 1} is the
cycle of the graph of M . Let α = {k}. Then, all entries of Sα(A), ãij,
remains unchanged except exactly one entry depending on k:

• ãn,2 = 0− an,1a1,2

a11
6= 0 if k = 1

• ãn−1,1 = 0− an−1,nan,1

ann
6= 0 if k = n
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• ãk−1,k+1 = 0− ak−1,kak,k+1

akk
6= 0 if k 6= 1 and k 6= n

and the same happens for the Schur complement of the comparison matrix.
Then, if m̃ij with i, j ∈ α′ denotes the entries of Sα(M(A)), one has |m̃ij| =
|ãij|, so Sα(M(A)) =M(Sα(A)).

Moreover, Sα(A) admits the partition (5) where the graph of the (n−1)×
(n− 1) cyclic matrix M̃ is obtained deleting the k vertex, so Sα(A) satisfies
initial hypothesis. Proceeding by induction until |α| = n − 2 the proof of
first part of the theorem is complete.

Finally, when A ∈ HM is nonsingular, since A is irreducible, there exists
some α such that Sα(M(A)) <M(Sα(A)) and, necessarily, |α| = n− 1.

If α = {i1, i2, . . . , ip}, Sα(A) can be done recursively computing the Schur
complements Sip(Sip−1(· · ·Si1(A))) where |αk| = 1. Then, a characterization
of Sα(M(A)) =M(Sα(A)) for |α| = 1 is given in the following result where
the matrix A can be irreducible or not.

Recall that the entries of the matrix may be complex, so the sign of the
nonzero complex entry aij is sign(aij) = aij/|aij|.

Theorem 6. Let A ∈ HI or A ∈ HM , and let α = {k}. Then Sα(M(A)) =
M(Sα(A)) holds if and only if for all i, j 6= k the two following conditions
are satisfied

1. i = j: sign(aii) = sign(aikakia
−1
kk ) or aikaki = 0

2. i 6= j: sign(aij) = − sign(aikakja
−1
kk ) or aijaikakj = 0.

Moreover, in this case,

sign(ãij) = sign(aij) if aij 6= 0

where ãij = aij − aikakj/akk ∈ Sα(A), i, j ∈ α′.

Proof. Let denote by mij and m̃ij the entries of M(A) and Sα(M(A)),
respectively. Then Sα(M(A)) = M(Sα(A)) if and only if |m̃ij| = |ãij|,
i, j 6= k. We study element by element considering three cases.
(i) Clearly if aik = 0 all entries in the i-th row of A and M(A) remain un-
changed, then |m̃ij| = |ãij| for all j 6= k and conditions 1 and 2 are fulfilled.
Moreover, sign(ãij) = sign(aij) for j 6= k.

The same applies in the case akj = 0 to the elements of the j-th column.
(ii) If aij = 0 (i 6= j) the corresponding entries in the Schur complements
of A and M(A) are

ãij = −aikakj
akk

, and m̃ij = −mikmkj

mkk

,
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and then, |ãij| = |m̃ij|.
Condition 2 is fulfilled, and condition 1 does not happen since i 6= j and

A is an H-matrix in HI or in HM , that is aii 6= 0.
(iii) Otherwise, aijaikakj 6= 0, and so, we have

ãij = aij −
aikakj
akk

, and m̃ij = mij −
mikmkj

mkk

.

When i = j, recalling thatM(A) is an M -matrix we have mii ≥ mikmki

mkk
>

0. Then |ãii| = |aii − aikaki

akk
| = m̃ii if and only if sign(aii) = sign(a−1

kk aikaki).

Moreover, sign(ãii) = sign(aii).
When i 6= j, since mij < 0 and

mikmkj

mkk
> 0, |ãij| = |m̃ij| if and only

if sign(aij) = − sign(aikakja
−1
kk ). In this case also, the equality sign(ãij) =

sign(aij) holds.

Corollary 5. Let A ∈ HM be nonsingular such that aij 6= 0 for all i, j ∈ 〈n〉.
Then Sα(M(A)) <M(Sα(A)) and Sα(A) ∈ HI for all α ⊂ 〈n〉.

Proof. OPCION 1: (Note that A is nonsingular and irreducible and M(A)
is singular, then, by Theorem 3, if α ⊂ 〈n〉, Sα(A) ∈ HI if and only if
Sα(M(A)) < M(Sα(A)). Moreover, if α1 ⊂ α2 ⊂ 〈n〉 and Sα1(A) ∈ HI ,
then Sα2(A) ∈ HI by Corollary 1. Then, proving that Sα(A) ∈ HI when
α = {k} is enough.)

OPCION 2: (First we prove that Sα(A) ∈ HI when α = {k}.)
Without loss of generality we assume k = 1 and we proceed by contra-

diction.
OPCION 2: (Suppose, by Theorem 3, that S{1}(M(A)) =M(S{1}(A)).)
OPCION 1: (Suppose that S{1}(M(A)) =M(S{1}(A)).)
Then, conditions 1 and 2 of Theorem 6 can be written as

sign(a1i) sign(ai1)

sign(a11)
= sign(aii), ∀i 6= 1,

sign(ai1) sign(a1j)

sign(a11)
= − sign(aij), ∀i, j 6= 1, i 6= j.

From both conditions we obtain

sign(a1i) sign(aij)

sign(a1j)
= − sign(aii), ∀i, j 6= 1, i 6= j.

Since A = [aij] = [|aij| sign(aij)], let D = diag(sign(a1i)). Then,

DAD−1 =

[
|aij| sign(aij) sign(a1i)

sign(a1j)

]
= [pij]
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We have pij = −|aij| sign(aii), for i, j 6= 1, i 6= j, and p1i = |a1i| sign(a11),
pi1 = |ai1| sign(aii) and pii = |aii| sign(aii), ∀i. Therefore, constructing the
diagonal matrices

D2 = diag(−1, 1, 1, . . . , 1) and D3 = diag(sign(aii)
−1)

we obtain D2D3DAD
−1D2 =M(A), which is singular and so A, contradict-

ing the hypothesis.
OPCION 1: (END PROOF)
OPCION 2: (For a general subset α = {i1, i2, . . . , ip} ∈ 〈n〉, since Sα(A)

is a Schur complement of S{ik}(A) ∈ HI , by Corollary 1, Sα(A) ∈ HI .)

Remark. The result of Theorem 3 has a nice application to precondi-
tioning linear systems with H-matrices in HM . The proofs, in literature of
preconditioning, to assure that a preconditioner can be computed breakdown-
free are based on the breakdown-free computing of the preconditioner of the
comparison matrix, which is assumed to be nonsingular or to admit an LU
factorization into M -matrices [5, Theorem 2.2]. Then, this technique and
the corresponding results cannot be applied to a nonsingular irreducible H-
matrix in HM . Since Theorem 3 shows that in some moment of the com-
putation the Schur complement will switch to an H-matrix in HI , then the
same technique as before could be applied.

3.2 Reducible case

Without lost of generality we can assume that A ∈ HM is already in its
normal form

A = (Aij) i > j ⇒ Aij = 0 (5)

where Aii, for i = 1, 2, . . . , p, are irreducible square H-matrices (see [4, The-
orem 5, Theorem 7]), that is, there are not null diagonal blocks and then
Aii ∈ HM or Aii ∈ HI . Moreover, at least one diagonal block is in HM

and its comparison matrix is singular. All properties that we want to study
(see [4] again) depend only of these diagonal blocks (the offdiagonal blocks
does not influence on the Schur complement). So we reduce our study to the
block diagonal submatrices.

We will denote by βi the subset of 〈n〉 such that A(βi) is the submatrix
Aii in the main diagonal, and given an α ⊂ 〈n〉 we shall denote by αi = α∩βi.

Theorem 7. Let A ∈ HM reducible, and let α ⊂ 〈n〉. Then,

1. The Schur complement of A with respect to A(α) exists if and only for
all i such that αi = βi the submatrix Aii is nonsingular.
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2. If the above condition is satisfied then Sα(A) is an H-matrix. In addi-
tion,

(a) If there exists some i such that Aii is singular and |αi| = |βi| − 1,
then Sα(A) ∈ HS.

(b) If, either αi 6= ∅, βi and Sαi
(Aii) ∈ HI either αi = βi, for all i

such that Aii ∈ HM , then Sα(A) ∈ HI .

(c) In other case Sα(A) is in HM .

Proof. 1. It is clear that A(α) is nonsingular if and only if all blocks A(αi)
are nonsingular. If the block Aii is nonsingular it is clear that A(αi) is
nonsingular. Moreover, if the block Aii is singular and αi 6= βi then A(αi) is
nonsingular since it is a proper submatrix of an irreducible H-matrix.

2. This part follows from Theorem 3 applied to the blocks in HM , and
the observations that (i) the Schur complement is in HS if at least one of its
blocks is in HS, (ii) the Schur complement is in HI if all its blocks are in HI ,
and (iii) the Schur complement is in HM if none of its blocks is in HS and at
least one is in HM .

4 Schur complements in HS

If A ∈ HS, then it has some null diagonal entries and it is reducible (see [4]).
Then its normal form has at least one diagonal block which is a 1 × 1 null
matrix (see [4]). Then the following result is straightforward.

Theorem 8. Let A be an H-matrix in HS and let α ⊂ 〈n〉. If the submatrix
Aii is nonsingular for all i such that αi = βi, then the Schur complement of
A with respect to A(α) exists and is an H-matrix in HS.

Note that from conditions of Theorem 8 null diagonal entries are not in
A(α). Then, they are unchanged in the Schur complement.

Remark. For matrices inHS and for reducible matrices inHM , the Schur
complement can not be computed when α contains all indices of a singular
diagonal block, A(αi), of its normal form. Nevertheless, deleting in A rows
and columns corresponding to αi, one could compute the Schur complement
of A(α′i) with respect to A(α \ αi) and will be an H-matrix. Adding the
deleted rows and columns one obtain an H-matrix of size n. Note that this
remark applies when the set α contains all indices of more than one singular
diagonal block.

Then, considering this remark, one can conclude that any Schur comple-
ment of any H-matrix is an H-matrix.

13



5 Conclusions

We have proved that the Schur complement of a general H-matrix is also
an H-matrix, if it can be computed, which is the case in HI or irreducible
H-matrices in HM . In addition, considering the remark of Section 4, the
result extends to general H-matrices set.

Furthermore the irreducibility can be lost for H-matrices even in HI .
When the Schur complement of an irreducible H-matrix becomes reducible,
then it is in HS or in HI if A is singular or not respectively. Moreover it has
been proved that a singular irreducible matrix in HM is diagonally equivalent
to its comparison matrix, and its Schur complements are equimodular to the
corresponding Sα(M(A)).

We have studied the class to which the Schur complement belongs and our
main results are collected in Table 1. In addition we have found conditions to
guarantee that any Schur complement of a nonsingular irreducible H-matrix
in HM belongs to HI , Sα(M(A)) <M(Sα(A)), or, on the contrary, belongs
to HM , Sα(M(A)) =M(Sα(A)), except for 1× 1 Schur complements.

Class of A Invertibility of A A(α) Class of Sα(A)
HI Invertible Invertible HI

HM Invertible Invertible HM or HI

Singular (?) HM or HS (♥)
HS Singular (?) HS

Table 1: Summary of the results.

(?) If A is invertible or irreducible, then A(α) is always invertible. In the
reducible case, A(α) is nonsingular if condition 1 in Theorem 7 is fulfilled.

(♥) The Schur complement is in HS if A is irreducible and |α| = n−1, or
A is reducible and there exists some i, with Aii singular and |αi| = |βi| − 1.

In brief the class of the Schur complement, provided it exists, maintains
or improves the initial class of A, except in the case of the Schur complement
of a singular (block) matrix is computed with respect to an (n− 1)× (n− 1)
principal submatrix.
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