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Recurrence properties of hypercyclic operators ∗

J. Bès †, Q. Menet‡, A. Peris§and Y. Puig¶

Abstract

We generalize the notions of hypercyclic operators, U-frequently hypercyclic op-
erators and frequently hypercyclic operators by introducing a new notion of hy-
percyclicity, called A-frequent hypercyclicity. We then state an A-Frequent Hyper-
cyclicity Criterion, inspired from the Hypercyclicity Criterion and the Frequent Hy-
percyclicity Criterion, and we show that this criterion characterizes the A-frequent
hypercyclicity for weighted shifts. We finish by investigating which kind of prop-
erties of density can have the sets N(x, U) = {n ∈ N : Tnx ∈ U} for a given hyper-
cyclic operator and study the new notion of reiteratively hypercyclic operators.

1 Introduction

Our purpose is to study how ‘often’ the orbit of a vector under a linear operator can
meet arbitrary non-empty open sets. The (chaotic) dynamics of linear operators is a very
active topic of research, and the books [4] and [16] contain many of the recent advances.

Let X be a separable F -space (i.e., a metrizable and complete topological vector
space), L(X) the space of continuous linear operators on X, and T ∈ L(X). Given
x ∈ X, its orbit under T is Orb(x, T ) = {x, Tx, T 2x, . . . }. We denote by N the set of
positive integers, by Z+ the set of non-negative integers and for any x ∈ X, any subset
V ⊂ Y , we denote the times set of Orb(x, T ) hitting V by

N(x, V ) = {n ≥ 0 : T nx ∈ V }.

Given A ⊆ Z+, its upper and lower densities are defined, respectively, by

d(A) = lim sup
k→∞

|A ∩ [0, k]|
k

and d(A) = lim inf
k→∞

|A ∩ [0, k]|
k

.

The operator T is said to be hypercyclic if there exists x ∈ X such that for any non-
empty open set V ⊂ X, N(x, V ) is non-empty (or, equivalently since X has no isolated
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Project PROMETEOII/2013/013. The second author is supported by a grant of FRIA.
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points, infinite). It is U-frequently hypercyclic if there exists x ∈ X such that for any non-
empty open set V , N(x, V ) is a set of positive upper density, and it is frequently hypercyclic
if there exists x ∈ X such that for any non-empty open set V ⊂ Y , N(x, V ) is a set of
positive lower density. Frequently hypercyclic operators were introduced by Bayart and
Grivaux [2] while U-frequently hypercyclic operators were introduced by Shkarin [20].

We generalize these notions of hypercyclicity as follows:

Definition 1. Let A ⊂ P(Z+) be a non-trivial hereditarily upward family of subsets of
Z+ (i.e., ∅ /∈ A and for any A ∈ A, if A ⊂ B, then B ∈ A). If, moreover,

(*) A contains a sequence (Ak) of disjoint sets such that for any j ∈ Ak, any j′ ∈ Ak′ ,
j 6= j′, we have |j′ − j| ≥ max{k, k′},

then we say that A is a hypercyclicity set. Given a non-trivial hereditarily upward family
A ⊂ P(Z+) and T ∈ L(X), the operator T is called A-frequently hypercyclic if there
exists x ∈ X such that for any non-empty open set V ⊂ X, N(x, V ) ∈ A. Such a vector
x is called an A-frequently hypercyclic vector for T .

An operator T is thus hypercyclic, U-frequently hypercyclic or frequently hypercyclic
if it is A-frequently hypercyclic, respectively, for A∞ (the family of infinite subsets of Z+),
for the set of positive upper density sets, or for the set of positive lower density sets. This
concept also generalizes the notions of (mk)-hypercyclic operators introduced by Bayart
and Matheron [5].

For hypercyclic operators and frequently hypercyclic operators, we have at our disposal
the well-known Hypercyclicity Criterion [9] and the Frequent Hypercyclicity Criterion [10].
We generalize these criteria to the framework of A-frequently hypercyclic operators (Sec-
tion 2.1). In particular, we obtain a U-Frequent Hypercyclicity Criterion. The A-Frequent
Hypercyclicity Criterion also improves the Frequent Hypercyclicity Criterion. Indeed, we
know that the Frequent Hypercyclicity Criterion does not characterize frequently hyper-
cyclic operators because Bayart and Grivaux [3] have exhibited a frequently hypercyclic
weighted shift on c0 that is neither chaotic nor mixing, whereas if T satisfies the Frequent
Hypercyclicity Criterion, then T is mixing and chaotic. However, we succeed to show
that, in the case of weighted shifts on `p or c0, the A-Frequent Hypercyclicity Criterion
characterizes the A-frequent hypercyclicity (Section 2.2) and thus, in particular, an oper-
ator T can satisfy the A-Frequent Hypercyclicity Criterion even if it is neither chaotic nor
mixing. This characterization of A-frequently hypercyclic weighted shifts complements
the characterization of hypercyclic weighted shifts [13, 18] and the recent characterization
of frequently hypercyclic weighted shifts on `p and c0 [6].

In Section 3 we will concentrate in A-frequently hypercyclic operators for families A
with positive Banach densities.

Definition 2. Let A ⊆ Z+, αs := lim supk→∞ |A∩ [k+1, k+s]| and αs := lim infk→∞ |A∩
[k + 1, k + s]|. The upper and lower Banach densities are defined respectively by

Bd(A) = lim
s→∞

αs

s
and Bd(A) = lim

s→∞

αs
s
.

The above densities are well-defined for any set A ⊆ Z+. A proof of this fact can be
found in [19] and we have

Bd(A) ≤ d(A) ≤ d(A) ≤ Bd(A). (1)
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For any choice of real numbers 0 ≤ r1 ≤ r2 ≤ r3 ≤ r4 ≤ 1, one can even find sets A such
that

Bd(A) = r1, d(A) = r2, d(A) = r3, Bd(A) = r4.

This result has been recently announced, and will appear in a joint paper by G. Grekos,
R. Jin and L. Miš́ık.

Suppose we want to classify and study all the recurrence properties appearing when
N(x, U) has a lower or upper (Banach) density greater than 0 or equal to 1. We show
that only the following properties make sense.

• d
(
N(x, U)

)
> 0, i.e. T is frequently hypercyclic

• d
(
N(x, U)

)
> 0, i.e. T is U-frequently hypercyclic

• Bd
(
N(x, U)

)
> 0, i.e. T is reiteratively hypercyclic.

We then focus on the new notion of reiteratively hypercyclic operators. Obviously,
frequently hypercyclic operators are U-frequently hypercyclic and these in turn are re-
iteratively hypercyclic. In a recent article, Bayart and Ruzsa have shown the existence
of a U-frequently hypercyclic weighted backward shift on c0 which is not frequently hy-
percyclic, see [6, Theorem 5]. We complement this result by showing that reiterative
hypercyclicity is not equivalent to U-frequent hypercyclicity. More precisely, thanks to
the characterization of A-frequently hypercyclic weighted shifts, we show that there ex-
ists a reiteratively hypercyclic weighted backward shift on c0 which is not U-frequently
hypercyclic (Theorem 17). On the other hand, Bayart and Ruzsa proved that frequent
hypercyclicity and U-frequent hypercyclicity are equivalent notions for backward shifts
on `p(Z) and `p(Z+), see [6, Theorems 3-4]. We generalize this equivalence by showing
that every reiteratively hypercyclic weighted shift on `p(Z) or on `p(Z+) is frequently
hypercyclic (Theorem 23). In particular, we deduce that there exists some mixing op-
erator which is not reiteratively hypercyclic. Finally, we observe that any reiteratively
hypercyclic operator is topologically ergodic, i.e.

N(U, V ) := {n ≥ 0 ; T nU ∩ V 6= ∅}

is syndetic (has bounded gaps) for any U, V non-empty open sets. Since topologically
ergodic operators are weakly mixing [15], we deduce that any reiteratively hypercyclic
operator T is weakly mixing.

2 A-frequently hypercyclic operators

The definition of A-frequently hypercyclic operators justifies the property (*) of hyper-
cyclicity sets (Definition 1). Indeed, the fact that A is non-trivial provides that, for any
non-empty open set V , N(x, V ) is at least non-empty. The hereditarily upward condition
implies that, for any non-empty open sets U ⊂ V , if N(x, U) ∈ A, then N(x, V ) ∈ A.
In particular, if X is a topological vector space with a countable open basis (Un)n≥1, we
deduce that in order to prove that a vector x is A-frequently hypercyclic, it is sufficient
to prove that N(x, Un) ∈ A for each n ≥ 1. Finally, condition (*) is necessary for the
existence of A-frequently hypercyclic operators on Banach spaces.

Proposition 3. Let X be a separable Banach space, X 6= {0}, let A ⊂ P(Z+) be a non-
trivial hereditarily upward family, and let T ∈ L(X). If T is A-frequently hypercyclic,
then A is a hypercyclicity set.
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Proof. Since X 6= {0} and T is A-frequently hypercyclic, the norm of T is bigger than 1.
Let K = ‖T‖ > 1 and x an A-frequently hypercyclic vector for T . We first show that for
any n ≥ 1, any C > 0, there exist y ∈ X and ε < 1 such that if A := N(x,B(0, C)) and
B := N(x,B(y, ε)), then d(A,B) ≥ n and for any j 6= j′ ∈ B, |j − j′| ≥ n.

If j ∈ A, then ‖T jx‖ < C and we have ‖T ix‖ < CKn−1 for any j ≤ i ≤ j + n− 1. In
particular, if ‖y‖ > CKn−1 + 1, we deduce that for any j ≤ i ≤ j + n− 1, we have i /∈ B.
Therefore, we consider a vector y ∈ Orb(x, T ) such that ‖y‖ > CKn−1 + 1 and such that
for any 0 ≤ i ≤ n − 1, ‖T iy‖ > C + Kn−1. Such a vector exists because otherwise the
orbit of x would not be dense. We thus have that for any 0 ≤ i ≤ n− 1, if j ∈ B, then

‖T j+ix‖ ≥ ‖T iy‖ − ‖T i(T jx− y)‖ > (C +Kn−1)−Kn−1‖T jx− y‖ ≥ C.

We deduce that for any 0 ≤ i ≤ n− 1, if j ∈ B, then j+ i /∈ A and we thus conclude that
d(A,B) ≥ n.

Now, since y ∈ Orb(x, T ), the vector y is not periodic and there thus exists 0 < η ≤ 1
such that for any 1 ≤ i ≤ n − 1, ‖T iy − y‖ > η. If we let ε := η

1+Kn−1 , then we have for
any j ∈ B, any 1 ≤ i ≤ n− 1,

‖T j+ix− y‖ ≥ ‖T iy − y‖ − ‖T i(T jx− y)‖ > η −Kn−1ε ≥ ε.

Hence, for any j, j′ ∈ B, j 6= j′, we have |j − j′| ≥ n.
We conclude that there exists a sequence (yk) ⊂ X, an increasing sequence (Ck) and

a sequence (εk) such that if Ak := N(x,B(0, Ck)) and Bk := N(x,B(yk, εk)), then for any
k ≥ 1, d(Ak, Bk) ≥ k, Bk ⊂ Ak+1 and for any j 6= j′ ∈ Bk, |j−j′| ≥ k. Since the sequence
(Ak) is increasing, we deduce that the sequence (Bk) ⊂ A satisfies the desired property.
Indeed, if j ∈ Bk, j

′ ∈ Bk′ and k > k′, then we know that j′ ∈ Ak and thus |j − j′| ≥ k,
and if j, j′ ∈ Bk with j 6= j′, we know that |j − j′| ≥ k by definition of Bk.

Nevertheless, if X is not a Banach space, it is possible that there exist a family A and
an operator T on X such that T is A-frequently hypercyclic and A is not a hypercyclicity
set.

Example 4. Let φ : N → N such that for any i, j ≥ 1, there exists n ≥ 1 satisfying
(φ(n + 1), φ(n + 2)) = (i, j). For any k ≥ 1, we let ψ(k) =

∑k
l=1 φ(l), Ak = {ψ(n) :

φ(n + 1) = k} and A = {B : B ⊇ Ak for some k}. Since d(Ak, Ak′) = min(k, k′), we
deduce that A does not contain a sequence (Bk) of disjoint sets such that for any j ∈ Bk,
any j′ ∈ Bk′ , j 6= j′, we have |j′ − j| ≥ max{k, k′}. Nevertheless, if we consider the
forward shift S on ω and a dense sequence (xk)k≥1 ⊂ ω such that for any k ≥ 1,

k > d(xk) := sup{i ≥ 0 : xk(i) 6= 0},

then the vector x =
∑∞

n=1 S
ψ(n)xφ(n+1) is an A-frequently hypercyclic vector for the back-

ward shift on ω.

2.1 A-Frequent Hypercyclicity Criterion

For the hypercyclic operators and the frequently hypercyclic operators on F -spaces, we
have at our disposal the well-known Hypercyclicity Criterion [9] and the Frequent Hyper-
cyclicity Criterion [10]. We show in this section how to generalize these criteria to the
notion of A-frequent hypercyclicity.

We recall that a F -space is a topological vector space whose the topology is induced by
a complete translation-invariant metric. In fact, if X is a F -space, there exists a complete
translation-invariant metric d such that ‖x‖ = d(x, 0) is a F -norm.
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Definition 5. Let X be a vector space. A map ‖ · ‖ from X to R+ is a F-norm if for any
x, y ∈ X, any λ ∈ K,

1. ‖x+ y‖ ≤ ‖x‖+ ‖y‖;

2. ‖λx‖ ≤ ‖x‖ if |λ| < 1;

3. limλ→0 ‖λx‖ = 0;

4. ‖x‖ = 0 implies x = 0.

An interesting property about F -norms following from 1. and 2. is that for any x ∈ X,
any λ ∈ K, we have

‖λx‖ ≤ (|λ|+ 1)‖x‖. (2)

The Hypercyclicity Criterion and the Frequent Hypercyclicity Criterion can be stated
as follows.

Theorem 6 (Hypercyclicity Criterion [9]). Let X be a separable F -space and T ∈ L(X).
If there are dense subsets X0 ⊂ X, Y0 ⊂ X, an increasing sequence (nk)k≥1 of positive
integers and maps Snk

: Y0 → X, such that for any x ∈ X0, y ∈ Y0,

1. T nkx→ 0,

2. Snk
y → 0,

3. T nkSnk
y → y,

then T is weakly mixing and thus hypercyclic.

Theorem 7 (Frequent Hypercyclicity Criterion [10]). Let X be a separable F -space and
T ∈ L(X). If there are a dense subset Y0 ⊂ Y and Sn : Y0 → X, n ≥ 0 such that for each
y ∈ Y0,

1.
∑∞

n=0 Sny converges unconditionally in X,

2.
∑k

n=0 T
kSk−ny converges unconditionally in Y , uniformly in k ≥ 0,

3.
∑∞

n=0 T
kSk+ny converges unconditionally in Y , uniformly in k ≥ 0,

4. T nSny → y,

then T is frequently hypercyclic.

Remark 8. Let (xn,k)n≥0,k∈I ⊂ X. A collection of series
∑∞

n=0 xn,k, k ∈ I, is said to be
unconditionally convergent uniformly in k ∈ I if for any ε > 0, there exists N ≥ 1 such
that for any k ∈ I, any finite set F ⊂ [N,∞[,∥∥∥∑

n∈F

xk,n

∥∥∥ < ε,

where ‖ · ‖ is a F-norm inducing the topology of X.

We adapt the Hypercyclicity Criterion and the Frequent Hypercyclicity Criterion to
the notion of A-frequent hypercyclicity.
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Theorem 9 (A-Frequent Hypercyclicity Criterion). Let X be a separable F -space, T ∈
L(X) and A a hypercyclicity set. If there exist a dense subset Y0 ⊂ X, Sn : Y0 → X,
n ≥ 0, and disjoint sets Ak ∈ A, k ≥ 1, such that for each y ∈ Y0,

1. there exists k0 ≥ 1 such that
∑

n∈Ak
Sny converges unconditionally in X, uniformly

in k ≥ k0,

2. for any k0 ≥ 1, any ε > 0, there exists k ≥ k0 such that for any finite set F ⊂ Ak,
any n ∈

⋃
l≥1Al, n /∈ F , we have∥∥∥∑

i∈F

T nSiy
∥∥∥ ≤ ε,

and such that for any δ > 0, there exists l0 ≥ 1 such that for any finite set F ⊂ Ak,
any n ∈

⋃
l≥l0 Al, n /∈ F , we have∥∥∥∑

i∈F

T nSiy
∥∥∥ ≤ δ,

3. supn∈Ak
‖T nSny − y‖ → 0 as k →∞,

then T is A-frequently hypercyclic.

Proof. Let (yl) ⊂ Y0 be a dense sequence and ‖ · ‖ a F -norm inducing the topology of X.
Without loss of generality, we can suppose that T satisfies the A-Frequent Hypercyclicity
Criterion for Y0 = {yl : l ≥ 1} and for a sequence (Ak) ⊂ A of disjoint sets with
Ak ⊂ [k,∞[. Indeed, it suffices to consider a subsequence of the initial sequence (Ak) such
that 2. remains satisfied for any vector yl. We then construct recursively an increasing
sequence (kl) such that for any l ≥ 1,

i. for any finite set F ⊂ [kl,∞[, any j ≤ l,∥∥∥ ∑
n∈F∩Akj

Snyj

∥∥∥ ≤ 1

l2l
,

ii. for any finite set F ⊂ Akl , any n ∈
⋃
k≥1Ak,∥∥∥ ∑

i∈F\{n}

T nSiyl

∥∥∥ ≤ 1

2l
,

iii. for any j < l, any finite set F ⊂ Akj , any n ∈ Akl ,∥∥∥∑
i∈F

T nSiyj

∥∥∥ ≤ 1

l2l
,

iv. for any n ∈ Akl , ∥∥∥T nSnyl − yl∥∥∥ ≤ 1

2l
.

6



Property i. follows from 1., property ii. and property iii. from 2., and property iv. from
3. Moreover, since we suppose Ak ⊂ [k,∞[, property i. implies that for any finite set F ,
for any j ≥ 1, we have ∥∥∥ ∑

n∈F∩Akj

Snyj

∥∥∥ ≤ 1

j2j
. (3)

We write A :=
⋃
lAkl and for any n ∈ A, we let zn = yl if n ∈ Akl . We then consider

the vector x :=
∑

n∈A Snzn. We show that x is well-defined and that x is an A-frequently
hypercyclic vector. Let l ≥ 1 and F be a finite subset of [kl,∞[. We deduce from i. and
(3) that

∥∥∥ ∑
n∈F∩A

Snzn

∥∥∥ ≤ l∑
j=1

∥∥∥ ∑
n∈F∩Akj

Snyj

∥∥∥+
∞∑

j=l+1

∥∥∥ ∑
n∈F∩Akj

Snyj

∥∥∥
≤

l∑
j=1

1

l2l
+

∞∑
j=l+1

1

j2j
≤ 1

2l−1
→ 0.

We conclude that the vector x is well-defined. To show that x is A-frequently hypercyclic,
it is sufficient to prove that there exists a sequence Cl tending to 0 such that for any l ≥ 1,
any n ∈ Akl ,

‖T nx− yl‖ ≤ Cl.

Let l ≥ 1 and n ∈ Akl . We decompose T nx− yl as follows:

T nx− yl =
∑
i∈A
i<n

T nSizi +
∑
i∈A
i>n

T nSizi + T nSnyl − yl.

We already know by iv. that ‖T nSnyl − yl‖ ≤ 1
2l

. Let m > n. We also have

∑
i∈A

n<i≤m

T nSizi =
∞∑
j=1

∑
i∈Akj

n<i≤m

T nSiyj =
∞∑
j=1

∑
i∈Fkj

T nSiyj

where Fkj = Akj ∩ ]n,m]. We know by ii. that for any j ≥ 1,∥∥∥ ∑
i∈Fkj

T nSiyj

∥∥∥ ≤ 1

2j

and by iii. that for any j < l, ∥∥∥ ∑
i∈Fkj

T nSiyj

∥∥∥ ≤ 1

l2l
.

We deduce that∥∥∥ ∑
i∈A

n<i≤m

T nSizi

∥∥∥ ≤ 1

2l−2
and thus

∥∥∥∑
i∈A
i>n

T nSizi

∥∥∥ ≤ 1

2l−2
.
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Similarly, we get, with Fkj = Akj ∩ [0, n[,

∥∥∥∑
i∈A
i<n

T nSizi

∥∥∥ =
∥∥∥ ∞∑
j=1

∑
i∈Fkj

T nSiyj

∥∥∥ ≤ 1

2l−2
.

We conclude that for any l ≥ 1, any n ∈ Akl ,

‖T nx− yl‖ ≤
1

2l−2
+

1

2l−2
+

1

2l
,

which concludes the proof.

We now compare the A-Frequent Hypercyclicity Criterion with the Hypercyclicity
Criterion and the Frequent Hypercyclicity Criterion.

Theorem 10. Let X be a separable F -space and T ∈ L(X). If T satisfies the Hyper-
cyclicity Criterion, then T satisfies the A∞-Frequent Hypercyclicity Criterion.

Proof. Suppose that T satisfies the Hypercyclicity Criterion for (nk), (Snk
), X0 and Y0.

Since X0 is dense, we can suppose without loss of generality that Snk
(Y0) ⊂ X0 for any

k ≥ 1. Let (yj) be a dense sequence in Y0. There exists a subsequence (mk) ⊂ (nk) such
that for any j, k < l, we have

‖Sml
yj‖ ≤

1

l2
, ‖TmkSml

yj‖ ≤
1

l2
, ‖TmlSmk

yj‖ ≤
1

l2
and ‖TmlSml

yj − yj‖ ≤
1

l2
.

Therefore, one has that T satisfies the A-Frequent Hypercyclicity Criterion for Ak =
{mpjk

: j ∈ N}, k ∈ N, where p1 = 2 < p2 = 3 < . . . is the increasing enumeration of the

prime numbers, and Y0 = {yj : j ∈ N}.

Theorem 11. Let X be a separable F -space, T ∈ L(X) and A a hypercyclicity set.
If T satisfies the Frequent Hypercyclicity Criterion, then T satisfies the A-Frequent Hy-
percyclicity Criterion for any sequence (Ak)k≥1 ∈ AN of disjoint sets such that for any
j ∈ Ak, any j′ ∈ Ak′, j 6= j′, we have |j′ − j| ≥ max{k, k′}.

Proof. Suppose that T satisfies the Frequent Hypercyclicity Criterion for Y0 and (Sn).
Let ε > 0 and y ∈ Y0. We then know that there exists N ≥ 1 such that for any finite set
F ⊂ [N,∞[, we have

•
∥∥∥∑
n∈F

Sny
∥∥∥ ≤ ε,

• for any k ≥ 0,
∥∥∥ ∑
n∈F∩[0,k]

T kSk−ny
∥∥∥ ≤ ε,

• for any k ≥ 0,
∥∥∥∑
n∈F

T kSk+ny
∥∥∥ ≤ ε,

• for any n ≥ N , ‖T nSny − y‖ ≤ ε.
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In particular, we deduce that for any k ≥ 0, any finite subset F ⊂ Z+, if d(F, k) ≥ N ,
then ∥∥∥∑

n∈F

T kSny
∥∥∥ ≤ ∥∥∥ ∑

n∈F∩[0,k[

T kSk−(k−n)y
∥∥∥+

∥∥∥ ∑
n∈F∩]k,∞[

T kSk+(n−k)y
∥∥∥ ≤ 2ε.

Let (Ak) ⊂ A be a sequence of disjoint sets such that for any j ∈ Ak, any j′ ∈ Ak′ , j 6= j′,
we have |j′ − j| ≥ max{k, k′}. We deduce that the operator T satisfies the assertions 2.
and 3. of the A-Frequent Hypercyclicity Criterion for the sequence (Ak). It is obvious
that T satisfies the assertion 1. of the A-Frequent Hypercyclicity Criterion and since for
any N ≥ 1, there exists k0 such that for any k ≥ k0, Ak ∩ [0, N ] = ∅, we conclude that T
also satisfies the assertion 4. of the A-Frequent Hypercyclicity Criterion for the sequence
(Ak).

In particular, we deduce the following result from Theorem 11.

Corollary 12. Let X be a separable F -space and T ∈ L(X). If T satisfies the Frequent
Hypercyclicity Criterion, then T is A-frequently hypercyclic for any hypercyclicity set A.

2.2 Characterization of A-frequently hypercyclic weighted shifts

Weighted shifts are one of the most important family of operators in linear dynamics.
The goal of this section consists in showing how we can apply the A- Hypercyclicity
Criterion in order to characterize the A-frequently hypercyclic weighted shifts on `p(Z+)
(1 ≤ p <∞) or on c0(Z+).

Theorem 13. Let A be a hypercyclicity set and Bw a weighted shift on X where X =
`p(Z+) (1 ≤ p <∞) or c0(Z+). The following assertions are equivalent:

1) Bw is A-frequently hypercyclic,

2) Bw satisfies the A-Frequent Hypercyclicity Criterion,

3) there is a sequence (Ak)k≥1 ⊂ A of disjoints sets such that

i. for any j ∈ Ak, any j′ ∈ Ak′, j 6= j′, we have |j′ − j| ≥ max{k, k′}.
ii. for any k′ ≥ 0, any k > k′,∑

n∈Ak+k′

en∏n
ν=1wν

∈ X and
∑

n∈Ak+k′

en∏n
ν=1wν

k→∞−−−→ 0;

iii. there exists a family (Ck,l)k,l≥1 such that for any k′ ≥ 0, any k > k′, any l ≥ 1,

sup
j∈Al

∥∥∥ ∑
n∈Ak−j

en+k′∏n
ν=1wν+k′

∥∥∥ ≤ Ck,l

and such that supl Ck,l converges to 0 when k → ∞ and, for any k ≥ 0, Ck,l
converges to 0 when l→∞.

Remark 14. In the statement of this theorem and the rest of this section, for any A ⊂ Z+,
any j ∈ Z+, we denote by

∑
n∈A−j the series

∑
n∈(A−j)∩N and by

∑
n∈j−A the series∑

n∈(j−A)∩N. We also suppose by convention that
∏0

ν=1wν = 1.
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Proof. 3) ⇒ 2). Let S((xn)n≥0) = (0, x0
w1
, x1
w2
, . . . ). We show that Bw satisfies the A-

Frequent Hypercyclicity Criterion for the set Y0 = span{ek : k ≥ 0}, the maps (Sn)n≥0
and the sets Ak given by the assertion 3). We notice that for any x ∈ Y0, any n ≥ 1, any
finite set F ⊂ Z+, we have∑

i∈F\{n}

Bn
wS

ix =
∑
i∈F
i<n

Bn−i
w x+

∑
i∈F
i>n

Si−nx =
∑
i∈n−F

Bi
wx+

∑
i∈F−n

Six. (4)

We prove that Bw satisfies each assumption of theA-Frequent Hypercyclicity Criterion
for any vector ek′ :

1. Let k′ ≥ 0. For any k > k′, we deduce from ii. that

∑
n∈Ak

Snek′ =
∑
n∈Ak

ek′+n∏n
ν=1wν+k′

=
k′∏
ν=1

wν ·
∑

n∈Ak+k′

en∏n
ν=1wν

∈ X.

In particular, each series
∑

n∈Ak
Snek′ converges unconditionally and since

∑
n∈Ak

Snek′
tends to 0 as k →∞ by ii., we deduce that

∑
n∈Ak

Snek′ converges unconditionally,
uniformly in k > k′.

2. Let k′ ≥ 0, k0 ≥ 0 and ε > 0. For any k > k′, we deduce from i. that for any
j ∈

⋃
lAl, ∑

n∈j−Ak

Bn
wek′ = 0

and if j ∈ Al, we deduce from iii. that∥∥∥ ∑
n∈Ak−j

Snek′
∥∥∥ ≤ Ck,l.

Since supl Ck,l → 0 when k → ∞, there exists k > max{k′, k0} such that we have
for any j ∈

⋃
lAl, ‖

∑
n∈Ak−j S

nek′‖ ≤ ε. On the other hand, since Ck,l converges
to 0 when l→ 0, for any δ > 0, there exists l0 ≥ 1 such that for any l ≥ l0, we have
Ck,l ≤ δ. We conclude by using (4).

3. Obvious.

2)⇒ 1) follows from Theorem 9.

1)⇒ 3). Let x be an A-frequently hypercyclic vector for Bw. For any k ≥ 1, any Ck > 0,
any εk > 0, there exists Ak ∈ A such that for any n ∈ Ak,∥∥∥Bn

wx− (Ck + εk)
k∑

k′=0

ek′
∥∥∥ < εk.

We will fix Ck and εk later but we already suppose that (Ck) is an increasing sequence
tending to ∞ and (εk) is a decreasing sequence tending to 0. We first notice that for any
n ∈ Ak, any k′ > k, we have ∣∣∣ n∏

ν=1

wν+k′xn+k′
∣∣∣ < εk (5)
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and for any 0 ≤ k′ ≤ k, we have∣∣∣ n∏
ν=1

wν+k′xn+k′ − (Ck + εk)
∣∣∣ < εk

and thus

Ck <
∣∣∣ n∏
ν=1

wν+k′xn+k′
∣∣∣ < Ck + 2εk. (6)

We show that the sequence (Ak)k≥1 satisfies i., ii. and iii. for a good choice of (Ck) and
(εk):

1. We show that the sets (Ak) are disjoints and that for any j ∈ Ak, any j′ ∈ Ak′ ,
j 6= j′, we have |j′ − j| > max{k, k′}.
Let 1 ≤ k′ < k and j ∈ Ak. We have to show that for any 0 ≤ n ≤ k, we
have j + n /∈ Ak′ and j − n /∈ Ak′ . Let 0 ≤ n ≤ k. We know by (6) that∣∣∣∏j

ν=1wν+kxj+k

∣∣∣ > Ck. We deduce that

∣∣∣ j+n∏
ν=1

wν+k−nxj+k

∣∣∣ > Ck min
0≤n′≤k

min
ν≤k
|wν |n

′
(7)

and ∣∣∣ j−n∏
ν=1

wν+k+nxj+k

∣∣∣ > Ck
max0≤n′≤k maxk≤ν≤2k |wν |n′

. (8)

On the other hand, we also know by (5) and (6) that for any m ∈ Ak′ , any l ≥ 0,∣∣∣ m∏
ν=1

wν+lxm+l

∣∣∣ < Ck′ + 2εk′ . (9)

In particular, if j + n ∈ Ak′ , we would have, for l = k − n,

∣∣∣ j+n∏
ν=1

wν+k−nxj+k

∣∣∣ < Ck′ + 2εk′ ≤ Ck−1 + 2ε1. (10)

We then deduce from (7) and (10) that if we suppose

Ck >
Ck−1 + 2ε1

min0≤n′≤k minν≤k |wν |n′
, (11)

then for any k′ < k, any 0 ≤ n ≤ k, we have j + n /∈ Ak′ . On the other hand, if we
suppose that j − n ∈ Ak′ , then we would have by (9) for l = k + n,

∣∣∣ j−n∏
ν=1

wν+k+nxj+k

∣∣∣ < Ck′ + 2εk′ ≤ Ck−1 + 2ε1. (12)

Hence, if we suppose

Ck > (Ck−1 + 2ε1) max
0≤n′<k

max
k≤ν≤2k

|wν |n
′
, (13)
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then, by (8) and (12), we deduce that for any k′ < k, any 0 ≤ n ≤ k, we have
j − n /∈ Ak′ and thus d(Ak′ , Ak) > k.

If k = k′, it suffices to show that for any j ∈ Ak, any 1 ≤ n ≤ k, we have j−n /∈ Ak.
By (5), we know that for any m ∈ Ak, any l > k,∣∣∣ m∏

ν=1

wν+lxm+l

∣∣∣ < εk.

If j − n ∈ Ak, we would thus have, for l = k + n,

∣∣∣ j−n∏
ν=1

wν+k+nxj+k

∣∣∣ < εk ≤ ε1. (14)

We deduce from (8) and (14) that if

Ck > ε1 max
0≤n′≤k

max
k≤ν≤2k

|wν |n
′

(15)

then j − n /∈ Ak for any 1 ≤ n ≤ k.

The property i. is thus satisfied if we choose (Ck) such that Conditions (11), (13) and
(15) are satisfied. For the sequence (εk), we can consider any decreasing sequence
tending to 0.

2. Let k′ ≥ 0. We know by (6) that for any k > k′, any n ∈ Ak,

1∏n
ν=1 |wν+k′ |

<
|xn+k′ |
Ck

.

Hence, we have∥∥∥ ∑
n∈Ak+k′

en∏n
ν=1wν

∥∥∥ =
∥∥∥ ∑
n∈Ak

en+k′∏n+k′

ν=1 wν

∥∥∥
=

1∏k′

ν=1 |wν |

∥∥∥ ∑
n∈Ak

en+k′∏n
ν=1 |wν+k′ |

∥∥∥
≤ ‖x‖
Ck
∏k′

ν=1 |wν |
<∞

and since Ck →∞, we deduce that∑
n∈Ak+k′

en∏n
ν=1wν

k→∞−−−→ 0.

3. We show that for any k′ ≥ 0, any k > k′, any l ≥ 1, any j ∈ Al, we have∥∥∥ ∑
n∈Ak−j

Ck∏n
ν=1wν+k′

en+k′
∥∥∥ < εl.
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Let k > k′ ≥ 0, l ≥ 1 and j ∈ Al. We have, by definition of Al,

εl >
∥∥∥Bj

wx− (Cl + εl)
l∑

l′=0

el′
∥∥∥ ≥ ∥∥∥ ∞∑

n=l+1

( j∏
ν=1

wν+n

)
xj+nen

∥∥∥
≥
∥∥∥ ∞∑
n=l+1

( j∏
ν=1

wν+n+k′
)
xj+n+k′en+k′

∥∥∥
≥
∥∥∥ ∑
n∈Ak−j

( j∏
ν=1

wν+n+k′
)
xj+n+k′en+k′

∥∥∥ by 1.

=
∥∥∥ ∑
n∈Ak
n>j

( j∏
ν=1

wν+n−j+k′
)
xn+k′en−j+k′

∥∥∥
=
∥∥∥ ∑
n∈Ak
n>j

(∏n
ν=1wν+k′∏n−j
ν=1 wν+k′

)
xn+k′en−j+k′

∥∥∥
≥
∥∥∥ ∑
n∈Ak
n>j

Ck∏n−j
ν=1 wν+k′

en−j+k′
∥∥∥ by (6)

=
∥∥∥ ∑
n∈Ak−j

Ck∏n
ν=1wν+k′

en+k′
∥∥∥.

We deduce that ∥∥∥ ∑
n∈Ak−j

en+k′∏n
ν=1wν+k′

∥∥∥ ≤ εl
Ck

and since
sup
l

εl
Ck
≤ ε1
Ck
−−−→
k→∞

0 and
εl
Ck
−−−→
l→∞

0,

we obtain the desired result.

An important result of Bayart and Ruzsa [6] about frequently hypercyclic weighted
shifts on `p is that a weighted shift Bw on `p is frequently hypercyclic if and only if Bw is
chaotic and thus if and only if

∞∑
n=1

1∏n
ν=1 |wν |p

<∞. (16)

However, we know that this equivalence is false for weighted shifts on c0. Indeed, Bayart
and Grivaux [3] have exhibited a frequently hypercyclic weighted shift on c0 that is neither
chaotic nor mixing. The characterization of frequently hypercyclic weighted shifts that
we obtain in term of weights is not satisfactory in the case of the spaces `p if we compare
it with the characterization obtained by Bayart and Ruzsa. However, in the case of
frequently hypercyclic weighted shifts on c0, the obtained characterization is similar to
the characterization given in [6].

Thanks to the counterexample of Bayart and Grivaux, we also know that the Frequent
Hypercyclicity Criterion does not characterize frequently hypercyclic operators, because
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if T satisfies the Frequent Hypercyclicity Criterion, then T is mixing and chaotic. How-
ever, the characterization given by Theorem 13 tells us that each frequently hypercyclic
weighted shift on c0 satisfies the A-Frequent Hypercyclicity Criterion when A is the family
of positive lower density sets. A direct consequence is the existence of operators that are
neither mixing nor chaotic and that satisfy the A-Frequent Hypercyclicity Criterion when
A is the family of positive lower density sets. One can thus wonder if the A-Frequent
Hypercyclicity Criterion characterizes the frequently hypercyclic operators when A is the
set of positive lower density sets.

3 Banach densities and reiterative hypercyclicity

The purpose of this section is to analyze which kind of properties of density can have
the sets N(x, U) and classify the hypercyclic operators accordingly to these properties.
We first remark that there does not exist A-frequently hypercyclic operators if A is the
family of sets with positive lower Banach density or if A is the family of sets with upper
Banach density equal to 1.

Proposition 15. Let X 6= {0} be a F -space. If A is the family of sets with positive lower
Banach density, then X does not support an A-frequently hypercyclic operator.

Proof. Assume towards a contradiction that there exists an A-frequently hypercyclic op-
erator T on X. Let x ∈ X be an A-frequently hypercyclic vector for T .

Take U, V non-empty open sets such that x ∈ U , 0 ∈ V and U ∩ V = ∅. If we denote
the maximum gap of N(x, U) as m, then by continuity there exists W a neighbourhood
of zero such that T j(W ) ⊂ V, j = 0, 1, . . . ,m. Let n such that T nx ∈ W . We deduce
that T n+jx ∈ V for any 0 ≤ j ≤ m and therefore {n, n+ 1, . . . , n+m} /∈ N(x, U) which
is a contradiction since this implies that there are gaps in N(x, U) with length greater
than m.

Proposition 16. Let X 6= {0} be a F -space. If A is the family of sets with upper Banach
density equals to 1, then X does not support an A-frequently hypercyclic operator.

Proof. Assume towards a contradiction that there exists an A-frequently hypercyclic op-
erator T on X. Let x ∈ X be an A-frequently hypercyclic operator. This implies that
for every non-empty open set U , there exists n such that n, n+ 1 ∈ N(x, U) and thus for
every non-empty open set U , we have

T (U) ∩ U 6= ∅. (17)

Let z 6= y ∈ X such that Tz = y. Since X is metrizable, there exists open neighborhoods
Vy, Vz of y and z respectively, such that Vy ∩ Vz = ∅. On the other hand, by continuity
of T there exists an open neighborhood of z denoted Ṽz, such that T (Ṽz) ⊂ Vy. Let

V̂z = Vz ∩ Ṽz. We get that V̂z is a non-empty open set and since T (V̂z) ⊂ Vy, we conclude

that T (V̂z) ∩ V̂z = ∅. This is a contradiction with condition (17).

We deduce from Proposition 15, Proposition 16 and (1) that there are only three
possibilities:

1. T is frequently hypercyclic i.e. d(N(x, U)) > 0;

2. T is U-frequently hypercyclic i.e. d(N(x, U)) > 0;
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3. T is reiteratively hypercyclic i.e. Bd(N(x, U)) > 0.

Obviously, for any operator T , we have

frequently hypercyclic⇒ U-frequently hypercyclic⇒ reiteratively hypercyclic.

In the case of weighted shifts on `p, we have even an equivalence between frequent hyper-
cyclicity and U-frequent hypercyclicity [6]. Nevertheless, this equivalence is false in general
and in particular for weighted shifts on c0 [6]. Thanks to weighted shifts on c0, we can
also show that there is not, in general, an equivalence between reiterative hypercyclicity
and U-frequent hypercyclicity.

Theorem 17. There exists some reiteratively hypercyclic weighted shift on c0(Z+) that is
not U-frequently hypercyclic.

Proof. Let S :=
⋃
j,l≥1]l10j − j, l10j + j[. We consider the weighted sequence w given by

wk =


2 if k ∈ S

k−1∏
ν=1

w−1ν if k ∈ (S + 1)\S

1 otherwise.

In particular, we deduce from the definition that
∏n

ν=1wν = 1 if and only if n /∈ S, and∏n
ν=1wν ≥ 2j if and only if ]n− j, n] ⊂ S.
We first show that Bw is reiteratively hypercyclic by using Theorem 13. To this end,

we have to construct a sequence (Ak)k≥1 of disjoints sets with positive upper Banach
density such that

i. for any j ∈ Ak, any j′ ∈ Ak′ , j 6= j′, we have |j′ − j| ≥ max{k, k′}.

ii. for any k′ ≥ 0, any k > k′,

n∏
ν=1

wν
n∈Ak+k

′
−−−−−→∞ and sup

n∈Ak+k′

1∏n
ν=1wν

k→∞−−−→ 0;

iii. there exists a family (Ck,l)k,l≥1 such that for any k′ ≥ 0, any k > k′, any l ≥ 1,

sup
j∈Al

sup
n∈Ak−j

1∏n
ν=1wν+k′

≤ Ck,l

and such that supl Ck,l converges to 0 when k →∞ and, for any k ≥ 0, Ck,l converges
to 0 when l→∞.

Let φ : N → N such that for any k ≥ 1, we have #{j ≥ 1 : φ(j) = k} =∞. We
construct a sequence of sets (Fj)j≥1 such that if Ak :=

⋃
φ(j)=k Fj, then the sequence

(Ak)k≥1 satisfies the desired properties.
Let F0 = {0}. If we have already constructed F1, · · · , Fj and φ(j + 1) = k, then we

let Fj+1 = {10j0 + 102kl : l ∈ [0, l0[} where j0 and l0 are positive integers satisfying

1) l0 ≥ j + 1;
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2) 10j0 ≥ k + max1≤n≤j φ(n) + max
(⋃j

n=0 Fn

)
;

3) j0 ≥ j + 1 and j0 − k > 102kl0;

4) j0 > max
(⋃j

n=0 Fn

)
+ max1≤n≤j φ(n) + 2k.

Let Ak :=
⋃
φ(j)=k Fj. We first remark that for any real number s ≥ 1, any k ≥ 1,

αsk := lim sup
l→∞

|Ak ∩ [l + 1, l + s]| ≥ lim sup
j→∞,φ(j)=k

|Fj ∩ [minFj + 1,minFj + s]|

≥ lim sup
j→∞,φ(j)=k

min
{⌊ s

102k

⌋
, j
}

by 1)

=
⌊ s

102k

⌋
.

We deduce that for any k ≥ 1

Bd(Ak) := lim
s→∞

αsk
s
≥ lim

s→∞

⌊
s

102k

⌋
s

=
1

102k
> 0.

Moreover, the sets Ak are disjoint since it follows from 2) that the sets Fj are disjoint.
In fact, 2) implies that for any j ∈ Ak, any j′ ∈ Ak′ , j 6= j′, we have |j′− j| ≥ max{k, k′}.
Indeed if j ∈ Ak, there exists n ≥ 1 such that j ∈ Fn and φ(n) = k, and if j′ ∈ Ak′ , there
exists n′ ≥ 1 such that j′ ∈ Fn′ and φ(n′) = k′. Therefore, if n = n′, we have k = k′ and
|j − j′| is a non-zero multiple of 102k ≥ k. On the other hand, if n 6= n′, we can assume
without loss of generality that n′ < n and we deduce from 2) that

|j − j′| ≥ k + max
1≤m<n

φ(m) ≥ k + φ(n′) = k + k′ ≥ max{k, k′}.

It remains to prove that the sets Ak satisfy Condition ii. and iii. of Theorem 13.
Condition ii. is satisfied because for any k ≥ 1, any j ≥ 1 with φ(j) = k, it follows
from 3) that Fj ⊂ [10j0 , 10j0 + j0− k[ for some j0 ≥ j. Therefore, for any k′ < k, we have
Fj + k′ ⊂ [10j0 , 10j0 + j0[ and thus, by definition of w, for any n ∈ Fj + k′, we have

n∏
ν=1

wν ≥ 2j0 ≥ 2j.

Since each Fj is finite, we then get, by definition of Ak, for any k′ < k

n∏
ν=1

wν
n∈Ak+k

′
−−−−−→∞

and since min(φ−1({k}))→∞ as k →∞, we get

sup
n∈Ak+k′

1∏n
ν=1wν

k→∞−−−→ 0.

Finally, for any k′ ≥ 0, any k > k′, any j ≥ 1 such that φ(j) = k, if n = m−m′ ≥ 1
with m ∈ Fj and m′ ∈ Fj′ , we have two possibilities either j = j′ or j > j′. If j = j′, we
deduce from the definition of Fj that n = l102k for some l ≥ 1 and thus

n∏
ν=1

wν+k′ =

∏n+k′

ν=1 wν∏k′

ν=1wν
≥ 22k

2k′
≥ 2k.
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On the other hand, if j > j′, we deduce from 4) that

n ∈ [10j0 + 2k + φ(j′)− j0, 10j0 + j0 − k[

for some j0 ≥ 1 and thus n+ k′ ∈ [10j0 + 2k + φ(j′)− j0, 10j0 + j0[. We conclude that

n∏
ν=1

wν+k′ =

∏n+k′

ν=1 wν∏k′

ν=1wν
≥ 22k+φ(j′)

2k′
≥ 2k+φ(j

′).

Let Ck,k := 2−k and Ck,l := 2−(k+l) if k 6= l. We deduce that for any k′ ≥ 0, any k > k′,
any l ≥ 1, we have

sup
m′∈Al

max
n∈Ak−m′

1∏n
ν=1wν+k′

≤ Ck,l

and we remark that supl Ck,l = 2−k converges to 0 when k → ∞ and, for any k ≥ 0,
Ck,l converges to 0 when l → ∞. Condition iii. of Theorem 13 is thus satisfied and we
conclude that Bw is reiteratively hypercyclic.

We now show that Bw is not U-frequently hypercyclic. Assume that Bw is U-frequently
hypercyclic. We then deduce from Theorem 13 that there exists a set A with positive
upper density such that ∑

n∈A

en∏n
ν=1wν

∈ c0.

In other words, we have d(A) > 0 and

n∏
ν=1

wν
n∈A−−→∞.

Let Dj := {n ≥ 1 :
∏n

ν=1wν ≥ 2j}. We remark that d(A) ≤ d(Dj). In order to prove that
Bw is not U-frequently hypercyclic, it is thus sufficient to prove that d(Dj) → 0 when
j →∞. To this end, we will need the following fact.

Fact 1. Let S :=
⋃
j,l≥1]l10j − j, l10j + j[. Let k ≥ 1, l ≥ 1 and n ≥ 0 such that

10n−1 < k ≤ 10n. If m ∈ {l10k +
∑n

j=0 10j, l10k −
∑n

j=0 10j}, then

either m /∈ S or m ∈]l010j0 − j0, l010j0 + j0[ for some j0 > k.

Thanks to Fact 1, we can show that

Dj := {n ≥ 1 :
n∏
ν=1

wν ≥ 2j} ⊆
⋃

k≥d j
30
e

⋃
l≥1

]l10k − 31k, l10k + 31k[:= Ej.

Let n /∈ Ej. We want to show that n /∈ Dj. In other words, we have to show that

]n− j, n] ∩ Sc 6= ∅.

We first remark that ]n − j, n]∩]l10k − k, l10k + k[= ∅ for any k ≥ d j
30
e and any l ≥ 1.

Indeed, if ]n− j, n]∩]l10k−k, l10k +k[ 6= ∅, then n ≥ l10k−k and n− j < l10k +k. Hence,

l10k − 31k < n = (n− j) + j < l10k + k + j ≤ l10k + 31k
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and thus n ∈ Ej, which is a contradiction.
Assume that ]n− j, n] ⊂ S and let

k0 := max

{
k ≥ 1 :]n− j, n] ∩

⋃
l≥1

]l10k − k, l10k + k[ 6= ∅

}
.

We deduce from the above reasoning that k0 < d j30e. We consider m ∈]n−j, n] and l0 ≥ 1
such that

m ∈]l010k0 − k0, l010k0 + k0[.

Let n ≥ 0 such that 10n−1 < k0 ≤ 10n, m1 := l010k0 −
∑n

j=0 10j and m2 := l010k0 +∑n
j=0 10j. Since m ∈]n− j, n], m ∈ [m1,m2] and

m2 −m1 + 1 ≤ 3(10)n < 30k0 ≤ j,

we deduce that either m1 ∈]n− j, n] or m2 ∈]n− j, n]. Therefore m1 or m2 belongs to S
and we deduce from Fact 1 that m1 or m2 belongs to ]l110k1 − k1, l110k1 + k1[ for some
k1 > k0 and some l1 ≥ 1 which is a contradiction with the definition of k0.

If N ∈ [10m, 10m+1[ with m ≥ 1, we thus deduce that

#(Dj ∩ [1, N ])

N
≤ #(Dj ∩ [1, 10m+1])

10m

≤ #(Ej ∩ [1, 10m+1])

10m
≤

∑m
k=d j

30
e 62k10m+1−k

10m

=
620

81

(
(9d j

30
e+ 1)10m+1−d j

30
e − 9m− 10

10m

)

≤ 8

(
9

⌈
j

30

⌉
+ 1

)
101−d j

30
e.

where the third inequality follows from the fact that for any d j
30
e ≤ k ≤ m−1, there is less

than 10m+1−k intervals of the form ]l10k− 31k, l10k + 31k[ with l ≥ 1 in Ej ∩ [1, 10m+1], 9
intervals of the form ]l10m−31m, l10m+31m[ and the interval ]10m+1−31(m+1), 10m+1].
We deduce that d(Dj)→ 0 as j →∞ and we thus conclude that Bw is not U-frequently
hypercyclic.

We finish this proof by giving the proof of Fact 1.
Proof of Fact 1. We first assume that m = l10k +

∑n
j=0 10j. If m ∈ S, then there exists

l0 ≥ 1 and j0 ≥ 1 such that m ∈]l010j0 − j0, l010j0 + j0[. Therefore, it suffices to prove
that m /∈]l110j1 − j1, l110j1 + j1[ for any 1 ≤ j1 ≤ k, any l1 ≥ 1.

If n+ 1 ≤ j1 ≤ k, then l10k−j110j1 ≤ m ≤ (l10k−j1 + 1)10j1 and we remark that

m ≥ l10k + 10n ≥ l10k−j110j1 + j1

and
m ≤ l10k + 10j1 − 10j1−1 ≤ (l10k−j1 + 1)10j1 − j1.

Hence m /∈]l110j1 − j1, l110j1 + j1[ for any n + 1 ≤ j1 ≤ k and any l1 ≥ 1. On the other
hand, if 1 ≤ j1 ≤ n then

(l10k−j1 +
n∑

j=j1

10j−j1)10j1 ≤ m ≤ (l10k−j1 +
n∑

j=j1

10j−j1 + 1)10j1 .
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However,

m ≥ l10k +
n∑

j=j1

10j + 10j1−1 ≥ (l10k−j1 +
n∑

j=j1

10j−j1)10j1 + j1

and

m ≤ l10k +
n∑

j=j1

10j + 10j1 − 10j1−1 ≤ (l10k−j1 +
n∑

j=j1

10j−j1 + 1)10j1 − j1.

So we conclude that m /∈]l110j1 − j1, l110j1 + j1[ for any 1 ≤ j1 ≤ k and any l1 ≥ 1.

If we assume that m = l10k −
∑n

j=0 10j and m ∈ S, we can show similarly that

m /∈]l110j1 − j1, l110j1 + j1[ for any 1 ≤ j1 ≤ k and any l1 ≥ 1. This concludes the proof.

In the case of weighted shifts on `p(Z) or `p(Z+), we can generalize the equivalence
obtained by Bayart and Ruzsa [6] by showing that every reiteratively hypercyclic weighted
shift on `p(Z) or `p(Z+) is frequently hypercyclic. The proof of the characterization
obtained by Bayart and Ruzsa is based on the fact that if A is a set with upper density
d(A) = δ > 0 and δk = d(A∩ (A−k)), then the set F = {k : δk > (1−ε)δ2} is syndetic [6,
Theorem 8]. We remark that this result can be extended to sets with positive upper
Banach density thanks to following two Theorems.

Theorem 18. (Furstenberg Correspondence principle [17, Theorem 0.2 ]) Given a sub-
set A ⊂ Z of positive upper Banach density, there exists a measure-preserving system
(X,B, µ, T ) and a set E ∈ B such that µ(E) = Bd(A) and

Bd
(
A ∩ (A− n1) ∩ · · · ∩ (A− nk)

)
≥ µ

(
E ∩ T−n1E ∩ · · · ∩ T−nkE

)
for any integer n1, . . . , nk.

Theorem 19. ([7, Theorem 3.1]) For every measure-preserving system (X,B, µ, T ), any
ε > 0 and A ∈ B the set {n ∈ Z : µ(A ∩ T−nA) > µ(A)2 − ε} is syndetic.

We directly deduce from these theorems the following generalization of result of Bayart
and Rusza.

Theorem 20. Let A ⊂ Z be a set with positive upper Banach density equal to δ and
ε ∈]0, 1[. For any k ∈ Z, let Bk = A ∩ (A − k) with upper Banach density equal to δk.
Then the set {k ∈ Z : δk > δ2 − ε} is syndetic.

In order to prove the equivalence between reiteratively hypercyclic weighted shifts and
frequently hypercyclic weighted shifts on `p, we need a little bit more precise result. This
result and its proof are a direct adaptation of Theorem 8 in [6] to sets with upper Banach
density. We include here the proof of this adaptation for the sake of completeness.

Theorem 21. Let A ⊂ Z+ with Bd(A) = δ > 0, ε > 0 and Bk = A ∩ (A − k) where
k ≥ 1. Then there exist an increasing sequence (mi)i≥1 ⊂ N and an increasing sequence
(ki)i≥1 ⊂ N such that

1.
|A ∩ [mi,mi + ki[|

ki
−−−→
i→∞

δ;
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2.
|Bk ∩ [mi,mi + ki[|

ki
−−−→
i→∞

ηk for some ηk;

3. the set F := {k ∈ N : ηk > (1− ε)δ2} is syndetic.

Proof. Since Bd(A) = δ, there exists an increasing sequence (ni)i≥1 such that

|A ∩ [ni, ni + i[|
i

−−−→
i→∞

δ.

Since for any k ≥ 1, the set
( |Bk∩[ni,ni+i[|

i

)
i

belongs to the compact [0, 1], we can extract a

subsequence (nki)i≥1 such that for any k ≥ 1,
( |Bk∩[nki

,nki
+ki[

ki

)
i

converges to some ηk. We
denote by (mi)i≥1 the sequence (nki)i≥1.

Let R be a finite set such that for any k, l ∈ R, k > l, we have ηk−l ≤ (1 − ε)δ2. We
consider f(x) := |{k ∈ R : x ∈ A− k}|. We deduce that for any i ≥ 1∑

x∈[mi,mi+ki[

f(x) =
∑
k∈R

|(A− k) ∩ [mi,mi + ki[|

= |R||A ∩ [mi,mi + ki[|+O(1).

and thus
1

ki

∑
x∈[mi,mi+ki[

f(x) −−−→
i→∞

|R|δ.

If we now consider the square of f(x), we have

f(x)2 = |{k, l ∈ R : x ∈ (A− k) ∩ (A− l)}| = |{k, l ∈ R : x+ k ∈ A ∩ (A+ k − l)}|.

In the same way, we deduce that for any i ≥ 1∑
x∈[mi,mi+ki[

f(x)2

=
∑
k∈R

|A ∩ [mi,mi + ki[|+ 2
∑

k,l∈R, k>l

|Bk−l ∩ [mi,mi + ki[|+O(1)

= |R||A ∩ [mi,mi + ki[|+ 2
∑

k,l∈R, k>l

|Bk−l ∩ [mi,mi + ki[|+O(1)

and thus

1

ki

∑
x∈[mi,mi+ki[

f(x)2 −−−→
i→∞

|R|δ + 2
∑

k,l∈R, k>l

ηk−l ≤ |R|δ + (1− ε)|R|(|R| − 1)δ2.

We conclude that
(|R|δ)2 ≤ |R|δ + (1− ε)|R|(|R| − 1)δ2.

This inequality gives us the following condition on |R|:

|R| ≤ 1− δ(1− ε)
δε

.

In other words, there exists a maximal finite set R in the sense that for any n /∈ R, there
exists k ∈ R such that ηn−k > (1 − ε)δ2, i.e n − k ∈ F . We conclude that F + R = Z+

and in particular that F is syndetic.
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Therefore, in the vein of [6, Corollary 9] and following essentially the same proof we
obtain the following result:

Corollary 22. Let A ⊂ Z+ be a set with positive upper Banach density and (αn)n∈Z a
sequence of non-negative real numbers such that

∑
n αn = +∞. Suppose that there exist

some C > 0 and N ∈ Z ∪ {+∞} such that αn ≥ Cαn−1 for every n < N and αn = 0 for
every n ≥ N . If for any n ∈ A, we let

βn =
∑
m∈A

αm−n,

then the sequence (βn)n∈A is not bounded.

Proof. Let δ := Bd(A) and Bk = A∩(A−k) for any k ∈ Z. By Theorem 21, we know that
there exist an increasing sequence (mi)i≥1 ⊂ N and an increasing sequence (ki)i≥1 ⊂ N
such that for any k ≥ 1

1.
|Bk ∩ [mi,mi + ki[|

ki
−−−→
i→∞

ηk for some ηk;

2. the set F := {k ≥ 1 : ηk >
1
2
δ2} is syndetic.

We remark that for any k ≥ 1, we have B−k = Bk + k and thus

|B−k ∩ [mi,mi + ki[|
ki

=
|Bk ∩ [mi − k,mi + ki − k[|

ki
−−−→
i→∞

ηk.

On the other hand, if we let FZ = (−F ) ∪ F , we deduce that the set FZ is syndetic.
Let (fj)j∈Z be an increasing enumeration of FZ and M ≥ 1 such that fj − fj−1 ≤ M for
any j ∈ Z. We deduce that for any fj < N , we have

αfj ≥
min(1, CM)

M

∑
fj−1<i≤fj

αi

and thus

∑
n∈FZ

αn =
∑

j:fj<N

αfj ≥
min(1, CM)

M

∑
n<N−M

αn =
min(1, CM)

M

(∑
n∈Z

αn −
N−1∑

n=N−M

αn

)
=∞,

where we consider
∑N−1

n=N−M αn = 0 if N = +∞.
We then consider the sequence (si)i≥1 defined by

si =
∑

n∈A∩[mi,mi+ki[

βn =
∑

n∈A∩[mi,mi+ki[
m∈A

αm−n.

If we arrange this sum according to the value k = m − n and if we keep only the terms
where k ∈ FZ, then we get for any l ≥ 1,

si ≥
∑

k∈FZ,|k|<l

αk |Bk ∩ [mi,mi + ki[| .
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We deduce that for any l ≥ 1

lim sup
i→∞

1

ki

∑
n∈A∩[mi,mi+ki[

βn = lim sup
i→∞

si
ki

≥
∑

k∈FZ,|k|<l

αk lim
i→∞

|Bk ∩ [mi,mi + ki[|
ki

≥
∑

k∈FZ,|k|<l

αkη|k| ≥
δ2

2

∑
k∈FZ,|k|<l

αk.

Since
∑

n∈FZ
αn = +∞, we conclude that the sequence (βn)n∈A cannot be bounded.

We can now prove the desired equivalence for weighted shifts on `p.

Theorem 23. Let Bw be a weighted shift on `p(Z) or on `p(Z+) with 1 ≤ p <∞. Then
Bw is reiteratively hypercyclic if and only if Bw is frequently hypercyclic.

Proof. We only prove this equivalence in the case of weighted shifts on `p(Z) since the
case of weighted shifts on `p(Z+) is similar and easier.

Let Bw be a reiteratively hypercyclic weighted shift on `p(Z). There exists a vector
x ∈ `p(Z+) such that the set

A :=

{
n ∈ Z+ : ‖Bn

wx− e0‖ ≤
1

2

}
has a positive upper Banach density. For any n ∈ A, we remark that we have |w1 · · ·wnxn−
1| ≤ 1

2
and

1

2p
≥
∑
m<n

|wm−n+1 · · ·w0w1 · · ·wm|p|xm|p +
∑
m>n

|wm−n+1 · · ·wm|p|xm|p

=
∑
m<n

|wm−n+1 · · ·w0|p|w1 · · ·wmxm|p +
∑
m>n

|w1 · · ·wmxm|p

|w1 · · ·wm−n|p

≥
∑

m<n,m∈A

|wm−n+1 · · ·w0|p|w1 · · ·wmxm|p +
∑

m>n,m∈A

|w1 · · ·wmxm|p

|w1 · · ·wm−n|p

≥ 1

2p

( ∑
m<n,m∈A

|wm−n+1 · · ·w0|p +
∑

m>n,m∈A

1

|w1 · · ·wm−n|p

)
.

We get for any n ∈ A∑
m<n,m∈A

|wm−n+1 · · ·w0|p ≤ 1 and
∑

m>n,m∈A

1

|w1 · · ·wm−n|p
≤ 1. (18)

Thanks to Corollary 22, we can deduce from (18) the convergence of series
∑

n≥1
1

|w0···wn|p

and
∑

n<0 |wn · · ·w0|p. Indeed, if we let αn = 0 for any n ≤ 0 and αn = 1
|w1···wn|p for any

n ≥ 1, we have αn ≥ Cαn−1 where C = inf{|wn|−p : n ≥ 1} is strictly positive since w is
bounded. Therefore, if

∑
n≥1

1
|w1···wn|p = ∞, we deduce from Corollary 22 with N = +∞

that the sequence (βn)n∈A is unbounded where

βn :=
∑
m∈A

αm−n =
∑

m>n,m∈A

αm−n =
∑

m>n,m∈A

1

|w1 · · ·wm−n|p
.
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This is a contradiction with (18).
On the other hand, if we let αn = 0 for any n ≥ 0 and αn = |wn+1 · · ·w0|p for any

n < 0, we have αn ≥ Cαn−1 for any n < 0 where C = inf{|wn|−p : n ≤ −1}. As previously,
we deduce from Corollary 22 with N = 0 that if

∑
n<0 |wn · · ·w0|p =∞ then the sequence

(
∑

m<n,m∈A |wm−n+1 · · ·w0|p)n∈A is unbounded which is a contradiction with (18).

Finally, we get the desired result since the convergence of series
∑

n≥1
1

|w0···wn|p and∑
n<0 |wn · · ·w0|p implies that Bw is frequently hypercyclic ([6, Theorem 3])

This equivalence for weighted shifts on `p(Z+) implies that there exists some mixing
operator which is not reiteratively hypercyclic. Indeed, we know that a weighted shift Bw

on `p(Z+) is mixing if and only if
∏∞

k=1 |wk| tends to infinity [11]. Therefore, the weighted

backward shift Bw with wn =
(
(n + 1)/n)

1
p is a mixing operator on `p(Z+) which is not

frequently hypercyclic and thus not reiteratively hypercyclic (Theorem 23).

Theorem 24. There exists some mixing operator which is not reiteratively hypercyclic.

Thanks to Grosse-Erdmann and Peris [14], we know that every frequently hypercyclic
operator is weakly mixing. We observe that every reiteratively hypercyclic operator is
topologically ergodic (thus, weakly mixing [15]). See also [1].

Proposition 25. Let X be a separable F -space and T ∈ L(X). If T is reiteratively
hypercyclic, then T is topologically ergodic.

Proof. Let U, V non-empty open sets in X and n ∈ N(U, V ). We consider the non-empty
open set Un := U ∩ T−n(V ). Let x ∈ X such that Bd (N(x, Un)) > 0. We remark that

N(x, Un)−N(x, Un) + n ⊆ N(U, V ).

Indeed, if s1, s2 ∈ N(x, Un), then

T s2x ∈ U and T s1−s2+n(T s2x) = T n(T s1x) ∈ V

On the other hand, we know that if A is a set with positive upper Banach density, then
A−A is syndetic [12, Proposition 3.19]. We conclude that N(x, Un)−N(x, Un) is syndetic
and thus N(U, V ) is also syndetic.

References

[1] C. Badea and S. Grivaux, Unimodular eigenvalues, uniformly distributed sequences
and linear dynamics, Advances in Math. 211 (2007) 766-793.

[2] F. Bayart and S. Grivaux, Frequently hypercyclic operators, Trans. Amer. Math. Soc.
358 (2006), 5083-5117.

[3] F. Bayart and S. Grivaux, Invariant Gaussian measures for operators on Banach
spaces and linear dynamics, Proc. Lond. Math. Soc. (3) 94 (2007), 181–210.
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[8] L. Bernal-González and K.-G. Grosse-Erdmann, The Hypercyclicity Criterion for
sequences of operators, Studia Math. 157 (2003), 17–32.

[9] J. Bès and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999),
94–112.

[10] A. Bonilla and K.-G. Grosse-Erdmann, Frequently hypercyclic operators and vectors,
Ergodic Theory Dynam. Systems 27 (2007), 383–404. Erratum: Ergodic Theory
Dynam. Systems 29 (2009), 1993–1994.

[11] G. Costakis and M. Sambarino, Topologically mixing hypercyclic operators, Proc.
Amer. Math. Soc. 132 (2004), 385–389.

[12] H. Furstenberg, Recurrence in ergodic Theory and combinatorial number Theory,
Princeton university press, Princeton, N.J., 1981.

[13] K.-G. Grosse-Erdmann Hypercyclic and chaotic weighted shifts, Studia Math. 139
(2000), 47–68.

[14] K.-G. Grosse-Erdmann and A. Peris, Frequently dense orbits, C. R. Math. Acad. Sci.
Paris 341 (2005), 123–128.

[15] K.-G. Grosse-Erdmann and A. Peris, Weakly mixing operators on topological vector
spaces, RACSAM 104 (2), 2010, 413-426.

[16] K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear chaos, Universitext,
Springer, London, 2011.

[17] M. Pollicott, K. Schmidt, Ergodic theory of Zd-actions, London Math. Soc. Lecture
Note Series 228 .

[18] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), 993–
1004.

[19] T. Salat and V. Toma, A classical Olivier’s theorem and statistical convergence, Ann.
Math. Blaise Pascal 10 (2003), 305–313.

[20] S. Shkarin, On the spectrum of frequently hypercyclic operators, Proc. Amer. Math.
Soc. 137 (2009), 123-134.

24

View publication statsView publication stats

https://www.researchgate.net/publication/266560668

