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Recurrence properties of hypercyclic operators *

J. Bes T Q. Menet! A. Perisband Y. Puig?¥

Abstract

We generalize the notions of hypercyclic operators, $-frequently hypercyclic op-
erators and frequently hypercyclic operators by introducing a new notion of hy-
percyclicity, called A-frequent hypercyclicity. We then state an A-Frequent Hyper-
cyclicity Criterion, inspired from the Hypercyclicity Criterion and the Frequent Hy-
percyclicity Criterion, and we show that this criterion characterizes the A-frequent
hypercyclicity for weighted shifts. We finish by investigating which kind of prop-
erties of density can have the sets N(z,U) = {n € N: T"z € U} for a given hyper-
cyclic operator and study the new notion of reiteratively hypercyclic operators.

1 Introduction

Our purpose is to study how ‘often’ the orbit of a vector under a linear operator can
meet arbitrary non-empty open sets. The (chaotic) dynamics of linear operators is a very
active topic of research, and the books [4] and [16] contain many of the recent advances.

Let X be a separable F-space (i.e., a metrizable and complete topological vector
space), L(X) the space of continuous linear operators on X, and T" € L(X). Given
r € X, its orbit under T is Orb(z,T) = {z,Tx,T%z,...}. We denote by N the set of
positive integers, by Z, the set of non-negative integers and for any x € X, any subset
V C Y, we denote the times set of Orb(x,T") hitting V' by

Nz, V)={n>0:T"'z € V}.
Given A C Z,, its upper and lower densities are defined, respectively, by

- AN|0,k AN|0,k
d(A) = lim sup 1400, and d(A) = liminf M
k—oo k—o0 k
The operator T is said to be hypercyclic if there exists x € X such that for any non-
empty open set V C X, N(z,V) is non-empty (or, equivalently since X has no isolated
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points, infinite). It is U-frequently hypercyclic if there exists x € X such that for any non-

empty open set V', N(z, V) is a set of positive upper density, and it is frequently hypercyclic

if there exists x € X such that for any non-empty open set V' C Y, N(x,V) is a set of

positive lower density. Frequently hypercyclic operators were introduced by Bayart and

Grivaux [2] while {U-frequently hypercyclic operators were introduced by Shkarin [20].
We generalize these notions of hypercyclicity as follows:

Definition 1. Let A C P(Zy) be a non-trivial hereditarily upward family of subsets of
Z, (ie.,0 ¢ Aand for any A € A, if AC B, then B € A). If, moreover,

(*) A contains a sequence (Ay) of disjoint sets such that for any j € Ay, any j' € Ay,
j # 3, we have |j' — j| > max{k, &'},

then we say that A is a hypercyclicity set. Given a non-trivial hereditarily upward family
A C P(Zy) and T € L(X), the operator T is called A-frequently hypercyclic if there
exists © € X such that for any non-empty open set V' C X, N(z,V) € A. Such a vector
x is called an A-frequently hypercyclic vector for T'.

An operator T is thus hypercyclic, U-frequently hypercyclic or frequently hypercyclic
if it is A-frequently hypercyclic, respectively, for A, (the family of infinite subsets of Z ),
for the set of positive upper density sets, or for the set of positive lower density sets. This
concept also generalizes the notions of (my)-hypercyclic operators introduced by Bayart
and Matheron [5].

For hypercyclic operators and frequently hypercyclic operators, we have at our disposal
the well-known Hypercyclicity Criterion [9] and the Frequent Hypercyclicity Criterion [10].
We generalize these criteria to the framework of A-frequently hypercyclic operators (Sec-
tion. In particular, we obtain a U-Frequent Hypercyclicity Criterion. The A-Frequent
Hypercyclicity Criterion also improves the Frequent Hypercyclicity Criterion. Indeed, we
know that the Frequent Hypercyclicity Criterion does not characterize frequently hyper-
cyclic operators because Bayart and Grivaux [3] have exhibited a frequently hypercyclic
weighted shift on ¢y that is neither chaotic nor mixing, whereas if T" satisfies the Frequent
Hypercyclicity Criterion, then 7" is mixing and chaotic. However, we succeed to show
that, in the case of weighted shifts on 7 or ¢y, the A-Frequent Hypercyclicity Criterion
characterizes the A-frequent hypercyclicity (Section and thus, in particular, an oper-
ator T' can satisfy the A-Frequent Hypercyclicity Criterion even if it is neither chaotic nor
mixing. This characterization of A-frequently hypercyclic weighted shifts complements
the characterization of hypercyclic weighted shifts [13] (18] and the recent characterization
of frequently hypercyclic weighted shifts on /7 and ¢ [6].

In Section [3| we will concentrate in A-frequently hypercyclic operators for families A
with positive Banach densities.

Definition 2. Let A C Z,, o := limsup,_,. |[AN[k+1,k+s]| and a5 := liminf, . |AN
[k + 1,k + s]|. The upper and lower Banach densities are defined respectively by
S as

Bd(A) = lim L and Bd(A) = lim —.

s—o0 8§ §—00 S

The above densities are well-defined for any set A C Z,. A proof of this fact can be
found in [19] and we have

Bd(A) < d(A) < d(A) < Bd(A). (1)
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For any choice of real numbers 0 <r; <ry <rz <ry <1, one can even find sets A such
that ~ B
M(A) = TI,C_Z(A) = T, d(A) =Ts3, Bd(A) = Ty4.

This result has been recently announced, and will appear in a joint paper by G. Grekos,
R. Jin and L. Misik.

Suppose we want to classify and study all the recurrence properties appearing when
N(z,U) has a lower or upper (Banach) density greater than 0 or equal to 1. We show
that only the following properties make sense.

e d(N(z,U)) >0, ie. T is frequently hypercyclic
. E(N(x, U)) > 0, i.e. T is U-frequently hypercyclic

e Bd(N(z,U)) >0, ie. T is reiteratively hypercyclic.

We then focus on the new notion of reiteratively hypercyclic operators. Obviously,
frequently hypercyclic operators are U-frequently hypercyclic and these in turn are re-
iteratively hypercyclic. In a recent article, Bayart and Ruzsa have shown the existence
of a U-frequently hypercyclic weighted backward shift on ¢y which is not frequently hy-
percyclic, see [6l, Theorem 5]. We complement this result by showing that reiterative
hypercyclicity is not equivalent to i-frequent hypercyclicity. More precisely, thanks to
the characterization of A-frequently hypercyclic weighted shifts, we show that there ex-
ists a reiteratively hypercyclic weighted backward shift on ¢y which is not U-frequently
hypercyclic (Theorem . On the other hand, Bayart and Ruzsa proved that frequent
hypercyclicity and i-frequent hypercyclicity are equivalent notions for backward shifts
on (P(Z) and ¢?(Z, ), see [6, Theorems 3-4]. We generalize this equivalence by showing
that every reiteratively hypercyclic weighted shift on ¢?(Z) or on ¢*(Z,) is frequently
hypercyclic (Theorem [23). In particular, we deduce that there exists some mixing op-
erator which is not reiteratively hypercyclic. Finally, we observe that any reiteratively
hypercyclic operator is topologically ergodic, i.e.

NUV):={n>0; T"UNV # 0}

is syndetic (has bounded gaps) for any U,V non-empty open sets. Since topologically
ergodic operators are weakly mixing [15], we deduce that any reiteratively hypercyclic
operator T' is weakly mixing.

2 A-frequently hypercyclic operators

The definition of A-frequently hypercyclic operators justifies the property (*) of hyper-
cyclicity sets (Definition [I)). Indeed, the fact that A is non-trivial provides that, for any
non-empty open set V', N(z, V) is at least non-empty. The hereditarily upward condition
implies that, for any non-empty open sets U C V, if N(z,U) € A, then N(z,V) € A.
In particular, if X is a topological vector space with a countable open basis (U,),>1, we
deduce that in order to prove that a vector = is A-frequently hypercyclic, it is sufficient
to prove that N(z,U,) € A for each n > 1. Finally, condition (*) is necessary for the
existence of A-frequently hypercyclic operators on Banach spaces.

Proposition 3. Let X be a separable Banach space, X # {0}, let A C P(Zy) be a non-
trivial hereditarily upward family, and let T € L(X). If T is A-frequently hypercyclic,
then A is a hypercyclicity set.



Proof. Since X # {0} and T is A-frequently hypercyclic, the norm of T" is bigger than 1.
Let K = ||T|| > 1 and = an A-frequently hypercyclic vector for T'. We first show that for
any n > 1, any C' > 0, there exist y € X and € < 1 such that if A := N(z, B(0,C)) and
B := N(z,B(y,¢)), then d(A, B) > n and for any j # j' € B, |j — j'| > n.

If j € A, then | T7z|| < C and we have ||T"z|| < CK" ! forany j <i<j+n—1. In
particular, if ||y|| > CK" !+ 1, we deduce that for any j <i < j+n — 1, we have i ¢ B.
Therefore, we consider a vector y € Orb(x,T) such that ||y|| > CK""! 4+ 1 and such that
for any 0 < i < n—1, |T?%]| > C + K" '. Such a vector exists because otherwise the
orbit of x would not be dense. We thus have that for any 0 <7 <n —1,if 5 € B, then

|77 ]| > [Tyl = | T(T72 = y)l| > (C+ K" — K" Y[ T2 —y|| > C.
We deduce that for any 0 <i <n—1,if j € B, then j+1i ¢ A and we thus conclude that
d(A,B) > n.
Now, since y € Orb(z,T'), the vector y is not periodic and there thus exists 0 < n <1

such that for any 1 < <n—1, |T'y —y|| > n. If we let ¢ := then we have for
any 7 € Byany 1 <1< n—1,

T4z —y|| > Ty —yl| = |T(Tx —y)|| >n— K" 'e >e.

_n
1+K”*1 )

Hence, for any j,j’ € B, j # j', we have |j — j/| > n.

We conclude that there exists a sequence (yx) C X, an increasing sequence (Cy) and
a sequence (e;) such that if Ay := N(z, B(0,C%)) and By, := N(z, B(yk,€x)), then for any
k>1,d(Ax, Bx) > k, By C Agy1 and for any j # j' € By, |j— 7’| > k. Since the sequence
(Ay) is increasing, we deduce that the sequence (By) C A satisfies the desired property.
Indeed, if j € By, j' € By and k > K, then we know that j' € Ay and thus |j — j/| > k,
and if j,j' € By with j # 5/, we know that |j — j'| > k by definition of Bj. O

Nevertheless, if X is not a Banach space, it is possible that there exist a family A and
an operator 7" on X such that T is A-frequently hypercyclic and A is not a hypercyclicity
set.

Example 4. Let ¢ : N — N such that for any 7,7 > 1, there exists n > 1 satisfying
(¢(n +1),6(n 4+ 2)) = (i,7). For any k > 1, we let (k) = S5, ¢(1), A, = {i(n) :
¢(n+1) =k} and A = {B : B 2O A for some k}. Since d(Ay, Ap) = min(k, k'), we
deduce that A does not contain a sequence (By) of disjoint sets such that for any j € By,
any j' € By, j # j', we have |j' — j| > max{k,k'}. Nevertheless, if we consider the
forward shift S on w and a dense sequence (xj)g>1 C w such that for any k > 1,

k> d(zg) := sup{i > 0 : x4 (i) # 0},

then the vector z =3 7 Svn) Ty(n+1) is an A-frequently hypercyclic vector for the back-
ward shift on w.

2.1 A-Frequent Hypercyclicity Criterion

For the hypercyclic operators and the frequently hypercyclic operators on F-spaces, we
have at our disposal the well-known Hypercyclicity Criterion [9] and the Frequent Hyper-
cyclicity Criterion [I0]. We show in this section how to generalize these criteria to the
notion of A-frequent hypercyclicity.

We recall that a F-space is a topological vector space whose the topology is induced by
a complete translation-invariant metric. In fact, if X is a F-space, there exists a complete
translation-invariant metric d such that ||z|| = d(x,0) is a F-norm.
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Definition 5. Let X be a vector space. A map || - || from X to R* is a F-norm if for any
r,y € X, any A € K,

Lz +yll < llefl +llyll;

2. || Azf] <z if [N < 1;
3. limyo ||[Az] = 0;

4. ||z|| = 0 implies z = 0.

An interesting property about F-norms following from 1. and 2. is that for any z € X,
any A € K, we have
Az < (1Al + 1)][=]]. (2)

The Hypercyclicity Criterion and the Frequent Hypercyclicity Criterion can be stated
as follows.

Theorem 6 (Hypercyclicity Criterion [9]). Let X be a separable F-space and T € L(X).
If there are dense subsets Xo C X, Yo C X, an increasing sequence (ny)g>1 of positive
integers and maps Sy, : Yo — X, such that for any x € Xy, y € Y,

1. T x — 0,
2. Spy — 0,
3. T™ S,y = v,
then T is weakly mixing and thus hypercyclic.

Theorem 7 (Frequent Hypercyclicity Criterion [10]). Let X be a separable F-space and
T € L(X). If there are a dense subset Yo CY and S, : Yo — X, n > 0 such that for each
y € Yo,

1. 377 0 Spy converges unconditionally in X,
2. Zi:o T*Sy_ny converges unconditionally in'Y , uniformly in k > 0,
83 T*Si ny converges unconditionally in'Y , uniformly in k > 0,
4. TSy =y,

then T is frequently hypercyclic.

Remark 8. Let (2, x)n>0ker C X. A collection of series Y > x,x, k € I, is said to be
unconditionally convergent uniformly in k € I if for any € > 0, there exists NV > 1 such
that for any k& € I, any finite set F' C [N, oo],

H Z Trn|l <€,
ner
where || - || is a F-norm inducing the topology of X.

We adapt the Hypercyclicity Criterion and the Frequent Hypercyclicity Criterion to
the notion of A-frequent hypercyclicity.



Theorem 9 (A-Frequent Hypercyclicity Criterion). Let X be a separable F-space, T €
L(X) and A a hypercyclicity set. If there exist a dense subset Yo C X, S, : Yo — X,
n > 0, and disjoint sets A, € A, k > 1, such that for each y € Yy,

1. there exists kg > 1 such that ZneAk Sny converges unconditionally in X, uniformly
m k > ]i]o,

2. for any ko > 1, any € > 0, there exists k > ko such that for any finite set F C Ay,
any n € Uz, A, n ¢ F, we have

[y
i€eF

and such that for any 6 > 0, there exists lo > 1 such that for any finite set F' C Ay,
any n € sy, A, n ¢ F, we have

[srmso
i€F

‘Sa,

| <.

8. sup,ea, |1T"Sny —yll = 0 as k — oo,
then T is A-frequently hypercyclic.

Proof. Let (y;) C Yo be a dense sequence and || - || a F-norm inducing the topology of X.
Without loss of generality, we can suppose that T satisfies the A-Frequent Hypercyclicity
Criterion for Yy = {y; : | > 1} and for a sequence (4;) C A of disjoint sets with
Ag C [k, 00[. Indeed, it suffices to consider a subsequence of the initial sequence (Ay) such
that 2. remains satisfied for any vector y;. We then construct recursively an increasing
sequence (k;) such that for any [ > 1,

i. for any finite set F' C [k, 00[, any j <[,

|y s

nEFﬂAk].

1
< Ta7°?
— 2!

ii. for any finite set F' C Ay, any n € ;> Ax,

ieF\{n}
iii. for any j </, any finite set F' C Ay, any n € Ay,

|5 s
i€l

1
< 'RYE
— (2!

iv. for any n € Ay,,

n 1
HT Sni —yzH < o



Property i. follows from 1., property ii. and property iii. from 2., and property iv. from
3. Moreover, since we suppose Ay C [k, oo[, property i. implies that for any finite set F,

for any 7 > 1, we have
| 5 s

nEFﬂAk

(3)

J2J

We write A := J, Ay, and for any n € A, we let 2, = y; if n € Aj,. We then consider
the vector x := Zne 4 SnZn. We show that z is well-defined and that z is an A-frequently
hypercyclic vector. Let [ > 1 and F' be a finite subset of [k;, co[. We deduce from i. and

that

I PR

n FﬂAk

H 3 Sz
FNA

ne

l
: Z |z, 5

= 121+Z 21—21_%0
Jj=1 Jj=l+1

We conclude that the vector x is well-defined. To show that x is A-frequently hypercyclic,
it is sufficient to prove that there exists a sequence C; tending to 0 such that for any [ > 1,
any n € Ag,,

IT"2 — ]l < i

Let [ > 1 and n € Ay,. We decompose T"z — y; as follows:
Ty —y = ZT”Sizi + ZT”Sizi +T"Sy — yi-
i€A i€A
<n 1>n
We already know by iv. that ||T"S,y — ul| < 5. Let m > n. We also have
> TMSiz=3 >, TSws=3 3 T"Sw;
icA =1 i€Ay, =1 icFy,

n<i<m n<i<m

where Fy, = Ag, N]n,m]. We know by ii. that for any j > 1,

| > s, s
i€ F; k
and by iii. that for any 7 < [,
H > TS, zzl
i€ F; k
We deduce that
H ZT”SZ L and thus HZT”SZ <L
Z 2 i€EA L 2 -
n<z<m >n



Similarly, we get, with Fy, = Ag, N[0, n],

1
TSz = | TS| < ==
DRES > 3 msul <
We conclude that for any [ > 1, any n € Ay,,
" 1 1
1T~ ull < 575 + 505 +
which concludes the proof. O]

We now compare the A-Frequent Hypercyclicity Criterion with the Hypercyclicity
Criterion and the Frequent Hypercyclicity Criterion.

Theorem 10. Let X be a separable F-space and T € L(X). If T satisfies the Hyper-
cyclicity Criterion, then T satisfies the As-Frequent Hypercyclicity Criterion.

Proof. Suppose that T satisfies the Hypercyclicity Criterion for (ny), (S,,), Xo and Yj.
Since Xy is dense, we can suppose without loss of generality that S, (Yo) C X, for any
k> 1. Let (y;) be a dense sequence in Yj. There exists a subsequence (my) C (n) such
that for any 7, k < [, we have

1 1 1
1Smyill < 50 1T Smysll < 750 1T Smyysll < 5 and | T™Sn,y; =yl <
l l l

12’
Therefore, one has that T satisfies the A-Frequent Hypercyclicity Criterion for A, =
{mpi :j € N} k € N, where p; =2 < ps =3 < ... is the increasing enumeration of the

prime numbers, and Yy = {y; : j € N}. O

Theorem 11. Let X be a separable F-space, T € L(X) and A a hypercyclicity set.
If T satisfies the Frequent Hypercyclicity Criterion, then T satisfies the A-Frequent Hy-
percyclicity Criterion for any sequence (Ag)i>1 € AY of disjoint sets such that for any
Jj € Ax, any j' € Ay, j # j', we have |j’ — j| > max{k, k'}.

Proof. Suppose that T satisfies the Frequent Hypercyclicity Criterion for Yy and (S,).
Let € > 0 and y € Y;. We then know that there exists NV > 1 such that for any finite set
F C [N, 0], we have

‘ > Sy ‘ <
ner
> T'“Sk_ny‘ <e,
n€FN[0,k]
’ <e,
neFr

e forany n > N, [|[T"S,y —y|| < e.



In particular, we deduce that for any k£ > 0, any finite subset F' C Z,, if d(F,k) > N,

then
IS
nekF

Let (Ag) C A be a sequence of disjoint sets such that for any j € Ay, any j' € Ap, j # 7/,
we have |j" — j| > max{k,k'}. We deduce that the operator T" satisfies the assertions 2.
and 3. of the A-Frequent Hypercyclicity Criterion for the sequence (Ay). It is obvious
that T satisfies the assertion 1. of the A-Frequent Hypercyclicity Criterion and since for
any N > 1, there exists ko such that for any k > ko, Ay N[0, N] =0, we conclude that T
also satisfies the assertion 4. of the A-Frequent Hypercyclicity Criterion for the sequence
(Ar). [

‘ < H Z TkSk:—(k—n)yH + H Z Tk5k+(n—k)yH < 2e.
neFN[0,k[ n oo

In particular, we deduce the following result from Theorem [I1}
Corollary 12. Let X be a separable F-space and T € L(X). If T satisfies the Frequent
Hypercyclicity Criterion, then T is A-frequently hypercyclic for any hypercyclicity set A.
2.2 Characterization of A-frequently hypercyclic weighted shifts

Weighted shifts are one of the most important family of operators in linear dynamics.
The goal of this section consists in showing how we can apply the A- Hypercyclicity
Criterion in order to characterize the A-frequently hypercyclic weighted shifts on (?(Z. )
(1 <p<o0)oroncy(Zy).

Theorem 13. Let A be a hypercyclicity set and B, a weighted shift on X where X =
P(Zy) (1 <p<o0) orco(Zy). The following assertions are equivalent:

1) By, is A-frequently hypercyclic,
2) B, satisfies the A-Frequent Hypercyclicity Criterion,
3) there is a sequence (Ay)g>1 C A of disjoints sets such that
i. foranyj € Ag, any j' € Ay, j # j', we have |j' — j| > max{k, k'}.

1. forany k' >0, any k > K,

Z HV o eX and Z H”ei — k=00 0:

neAL+k’

iii. there exists a family (Cyy)gi>1 such that for any k' >0, any k > k', any 1 > 1,

sup
JEA

(& +k’
H = < Chy

I/ 1 Wotk!

and such that sup, Cy; converges to 0 when k — oo and, for any k > 0, Cy,
converges to 0 when | — oo.

Remark 14. In the statement of this theorem and the rest of this section, for any A C Z,,
any j € Zi, we denote by > _, ; the series Zne(A _jnn and by Zneij the series

Zne(j_ Ay We also suppose by convention that HV:1 w, = 1.



Proof. 3) = 2). Let S((zn)n>0) = (0,22, 2. ..). We show that B, satisfies the A-

7wy ? wy?

Frequent Hypercyclicity Criterion for the set Yy = span{e; : £ > 0}, the maps (S™),>0
and the sets Ay given by the assertion 3). We notice that for any z € Yp, any n > 1, any
finite set ' C Z., we have

Z B'S'z = Z By + Z STy = Z B.x+ Z S'z. (4)
1€F\{n} éiﬁ gl;: ien—F i€F—n

We prove that B, satisfies each assumption of the A-Frequent Hypercyclicity Criterion
for any vector ey:

1. Let ¥/ > 0. For any k > k', we deduce from ii. that

y
ZSW—Z e Hw”' Z Hylwy €

w
nEAg neAy HV 1 Ptk v=1 neAL+k

In particular, each series ) A, S"eys converges unconditionally and since ) AL S™eyr
tends to 0 as k — oo by ii., we deduce that ) _ 4, S"ey converges unconditionally,
uniformly in k& > &'

2. Let ¥ > 0, kg > 0 and € > 0. For any k > k’, we deduce from i. that for any
j € Ul Al7
Z Bgek/ =0

nej—Ag

and if j € A;, we deduce from iii. that

H Z S"ep

TLGAk—]

< Chy.

Since sup; Cx; — 0 when k — oo, there exists k£ > max{k’, ko} such that we have
for any j € U, A1, | X2,ca,j S"ew|l < . On the other hand, since Cy; converges
to 0 when [ — 0, for any § > 0, there exists [y > 1 such that for any [ > [y, we have
Cry < 6. We conclude by using .

3. Obvious.

2) = 1) follows from Theorem [9]

1) = 3). Let x be an A-frequently hypercyclic vector for B,,. For any k > 1, any C}, > 0,
any ¢, > 0, there exists A, € A such that for any n € Ay,

Hng — (Cy + ) Ek: ekH < e

k'=0

We will fix Cy and g, later but we already suppose that (C}) is an increasing sequence
tending to oo and (ey) is a decreasing sequence tending to 0. We first notice that for any

n € Ay, any k' > k, we have
n
‘ H Wy k! Tp4-k!

v=1

< €k (5)

10



and for any 0 < k&’ < k, we have

n
‘ ku+k'$n+k' — (Ck + 5k)‘ < &k

v=1
and thus .
Ck < ’ H wy+k/xn+k/‘ < Ck -+ ZEk. (6)
v=1

We show that the sequence (Ay)r>1 satisfies i., ii. and iii. for a good choice of (C)) and

(ex):
1. We show that the sets (Ax) are disjoints and that for any j € Ay, any j' € Ay,
J # 7', we have |j" — j| > max{k, k'}.
Let 1 < kK < k and j € A,. We have to show that for any 0 < n < k, we
have j+n ¢ Ay and j —n ¢ Ap. Let 0 < n < k. We know by @ that
‘ Hi:l wy+ka§j+k’ > (). We deduce that

jtn

H Wygk—nTjrk| > C Oglli,gk 131<1£ jw, | (7)
v=1 o B

and
j—n

H Wytk+nTj+k ‘ >

v=1

On the other hand, we also know by and @ that for any m € Ay, any [ > 0,

Ch

-,
Maxg<p/ <k MaXg<p <o Wy |"

(8)

‘ H wl,meH‘ < Ck/ + 2€k/. (9)
v=1

In particular, if j +n € Ay, we would have, for [ = k —n,

j+n
Hwy+k7nxj+k-‘ < Ck/ + 2e < Ck,1 + 2¢e1. (10)

v=1

We then deduce from and that if we suppose

Cr—1 + 21

. . /)
ming<, < min, <y |w, |"

Ck>

(11)

then for any &' < k, any 0 < n < k, we have j +n ¢ Ap. On the other hand, if we
suppose that j —n € Ay, then we would have by @ for | =k +n,

j—n
Hwy+k+nxj+k‘ < Ck/ + 25k’ S Ckfl + 261. (12)
v=1

Hence, if we suppose

Cie> (Coa +221) Jmas, g, o™ 13

11



then, by and , we deduce that for any &' < k, any 0 < n < k, we have
j—n ¢ Ap and thus d(Ay, Ag) > k.

If k£ = K/, it suffices to show that for any j € Ay, any 1 <n < k, we have j —n ¢ Aj.
By , we know that for any m € Ay, any [ > k,

‘ H wu+lxm+l‘ < €k
v=1

If j —n € A, we would thus have, for [ = k + n,

’ <ep<el (14)

v=1

We deduce from and that if

Cy > e, max max |w,|" (15)
0<n/<k k<v<2k

then j —n ¢ Ay for any 1 <n <k.

The property i. is thus satisfied if we choose (C}) such that Conditions , and
are satisfied. For the sequence (g;), we can consider any decreasing sequence
tending to 0.

2. Let k' > 0. We know by @ that for any k& > k', any n € A,

1 | Zntr|
HZ:l |wu+k’| Ok

Hence, we have

H Z HV 1 Wy

n€A,+k’

nEA HIT/LZI ’wy+k/|

3. We show that for any & > 0, any k& > £/, any [ > 1, any j € A;, we have

’ ‘ Z e — TN 1

w /
neA,— ] =1 Ptk

< €].

12



Let k > k" >0,1>1and j € A;. We have, by definition of Aj,

g > BJ T — (Cl + 8[ 6[/ ‘ > H E <Hwy+n>x]+nen
n=Il+1 v=1
00 J
> E ( H wu+n+k’) Tjyn4k!Entk!
n=Il+1 v=1
J
> E (H wu+n+k'>$j+n+k'€n+k' H by 1.
ne€Ar—j v=1
J
= E ( H wVJrnfjJrk’) Tntk'€n—j4k
neA, v=1
n>j
o Hz/ 1 Wy +k/
- Tntk'Cn—j4k'
neAy V 1 wll+kl
n>j
Ck
b —( by ©
neAy Hl/ 1 Wyt
n>j
B Z w €n+k,H.
!
neA,— ] =1 Ptk
We deduce that
H Z Entk! H €l
= o
w
nedn ]HV 1 Wyt k
and since
£l £l
sup—<——>0 and — —— 0,
Ck Ck k—o00 L l—o0

we obtain the desired result.

[]

An important result of Bayart and Ruzsa [0] about frequently hypercyclic weighted
shifts on P is that a weighted shift B, on (P is frequently hypercyclic if and only if B,, is
chaotic and thus if and only if

Z - 1|wy—|p < 0. (16)

However, we know that this equivalence is false for weighted shifts on ¢y. Indeed, Bayart
and Grivaux [3] have exhibited a frequently hypercyclic weighted shift on ¢y that is neither
chaotic nor mixing. The characterization of frequently hypercyclic weighted shifts that
we obtain in term of weights is not satisfactory in the case of the spaces ¢ if we compare
it with the characterization obtained by Bayart and Ruzsa. However, in the case of
frequently hypercyclic weighted shifts on ¢j, the obtained characterization is similar to
the characterization given in [6].

Thanks to the counterexample of Bayart and Grivaux, we also know that the Frequent
Hypercyclicity Criterion does not characterize frequently hypercyclic operators, because

13



if T satisfies the Frequent Hypercyclicity Criterion, then 7" is mixing and chaotic. How-
ever, the characterization given by Theorem [13| tells us that each frequently hypercyclic
weighted shift on ¢ satisfies the A-Frequent Hypercyclicity Criterion when A is the family
of positive lower density sets. A direct consequence is the existence of operators that are
neither mixing nor chaotic and that satisfy the A-Frequent Hypercyclicity Criterion when
A is the family of positive lower density sets. One can thus wonder if the A-Frequent
Hypercyclicity Criterion characterizes the frequently hypercyclic operators when A is the
set of positive lower density sets.

3 Banach densities and reiterative hypercyclicity

The purpose of this section is to analyze which kind of properties of density can have
the sets N(z,U) and classify the hypercyclic operators accordingly to these properties.
We first remark that there does not exist A-frequently hypercyclic operators if A is the
family of sets with positive lower Banach density or if A is the family of sets with upper
Banach density equal to 1.

Proposition 15. Let X # {0} be a F-space. If A is the family of sets with positive lower
Banach density, then X does not support an A-frequently hypercyclic operator.

Proof. Assume towards a contradiction that there exists an A-frequently hypercyclic op-
erator T on X. Let x € X be an A-frequently hypercyclic vector for T

Take U,V non-empty open sets such that x € U, 0 € V and U NV = (. If we denote
the maximum gap of N(x,U) as m, then by continuity there exists W a neighbourhood
of zero such that T7(W) C V,j = 0,1,...,m. Let n such that T"x € W. We deduce
that 7"z € V for any 0 < j < m and therefore {n,n+1,...,n+m} ¢ N(x,U) which
is a contradiction since this implies that there are gaps in N(z,U) with length greater
than m. O]

Proposition 16. Let X # {0} be a F-space. If A is the family of sets with upper Banach
density equals to 1, then X does not support an A-frequently hypercyclic operator.

Proof. Assume towards a contradiction that there exists an A-frequently hypercyclic op-
erator 7' on X. Let x € X be an A-frequently hypercyclic operator. This implies that
for every non-empty open set U, there exists n such that n,n+1 € N(z,U) and thus for
every non-empty open set U, we have

T(U)NU # 0. (17)

Let z # y € X such that Tz = y. Since X is metrizable, there exists open neighborhoods
Vy, V. of y and z respectively, such that V, NV, = 0. On the other hand, by continuity
of T' there exists an open neighborhood of z denoted V,, such that T'(V,) C V,. Let

V., =V.NV,. We get that V,is a non-empty open set and since 7T’ (Vz) C Vj,, we conclude
that T'(V,) NV, = (0. This is a contradiction with condition (L7). O

We deduce from Proposition , Proposition and that there are only three
possibilities:

1. T is frequently hypercyclic i.e. d(N(z,U)) > 0;

2. T is Y-frequently hypercyclic i.e. d(N(z,U)) > 0;

14



3. T is reiteratively hypercyclic i.e. Bd(N(z,U)) > 0.
Obviously, for any operator T', we have
frequently hypercyclic = i-frequently hypercyclic = reiteratively hypercyclic.

In the case of weighted shifts on 7, we have even an equivalence between frequent hyper-
cyclicity and U-frequent hypercyclicity [6]. Nevertheless, this equivalence is false in general
and in particular for weighted shifts on ¢y [6]. Thanks to weighted shifts on ¢, we can
also show that there is not, in general, an equivalence between reiterative hypercyclicity
and U-frequent hypercyclicity.

Theorem 17. There exists some reiteratively hypercyclic weighted shift on co(Z.) that is
not U-frequently hypercyclic.

Proof. Let S := UJJZI]HOJ' — 7,1107 4 j[. We consider the weighted sequence w given by
2 itkelsS
k-1
wp =9 [Jw,' ifke(S+1\S
v=1
1 otherwise.

In particular, we deduce from the definition that []_, w, = 1 if and only if n ¢ S, and
IT)_, w, > 27 if and only if |n — j,n] C S.

We first show that B, is reiteratively hypercyclic by using Theorem [13] To this end,
we have to construct a sequence (Ag)r>; of disjoints sets with positive upper Banach
density such that

i. for any j € Ay, any j' € Ay, j # 7', we have |j' — j| > max{k, k'}.

ii. for any &' >0, any k > k/,

n

n€A,+k’
H w, —— oo and sup —
neA,+k' Hl,:1 Wy

1 k—o0

v=1

iii. there exists a family (C;)x,>1 such that for any &' > 0, any k > K/, any [ > 1,

1
sup sup = < Cyy
JEA nEAL—] Hl,zl Wy k!

and such that sup, C; converges to 0 when £ — oo and, for any £ > 0, C}; converges
to 0 when [ — oo.

Let ¢ : N — N such that for any & > 1, we have #{j > 1:¢(j) =k} =oc0. We
construct a sequence of sets (F});>1 such that if Ay := [y [}, then the sequence
(Ag)r>1 satisfies the desired properties.

Let Fy = {0}. If we have already constructed Fi,---, F; and ¢(j + 1) = k, then we
let Fjq = {107 + 10%1 : 1 € [0, o[} where jo and [, are positive integers satisfying

1) lo>j+1;

15



2) 1070 > k + max;<,<; ¢(n) + max ( ! o Fn);

3) jo>j+1and jo— k> 10%];

4) jo > max ( . Fn) + maxi<p<; ¢(n) + 2k.

Let Ay := U¢>(j)=k F;. We first remark that for any real number s > 1, any k£ > 1,

ayp = limsup |4, N[+ 1,1+ ]| > limsup [|F; N [minFj + 1, min Fj + s||

Freo j—00.6(j)=k
s
> limsup min{{—J ,j} by 1)
j—00.0(i) =k 102+
s
- hO?kJ '
We deduce that for any £ > 1
— o) | 1
Bd(Ay) : Sll)rgo L2 slgIolo . o 0.

Moreover, the sets Ay are disjoint since it follows from 2) that the sets F}; are disjoint.
In fact, 2) implies that for any j € A, any 7' € Ay, j # j', we have |j' — j| > max{k, k'}.
Indeed if j € Ay, there exists n > 1 such that j € F,, and ¢(n) = k, and if j' € Ay, there
exists n’ > 1 such that j' € F,, and ¢(n’) = k’. Therefore, if n = n/, we have k = k' and
|7 — 4’| is a non-zero multiple of 10%* > k. On the other hand, if n # n/, we can assume
without loss of generality that n’ < n and we deduce from 2) that

7 =74 >k+ ax d(m) > k+ ¢(n') =k + k' > max{k, k'}.
Sm<n
It remains to prove that the sets A, satisfy Condition ii. and iii. of Theorem [13]
Condition ii. is satisfied because for any k& > 1, any j > 1 with ¢(j) = k, it follows

from 3) that F; C [10%,10% + jo — k[ for some jo > j. Therefore, for any k&’ < k, we have
F; + k' C [10%,10% + jo[ and thus, by definition of w, for any n € F; + k’, we have

[[w >2°>2.
v=1
Since each F is finite, we then get, by definition of Ay, for any &' < k

n
nGAk-HC’
T "%, o
v=1

and since min(¢~*({k})) — oo as k — oo, we get

sup r
n€AL+k’ Hyzl Wy

Finally, for any &' > 0, any k > k’, any j > 1 such that ¢(j) =k, if n=m —m/ > 1
with m € F; and m’ € F/, we have two possibilities either j = 5" or j > j'. If j = j, we
deduce from the definition of F; that n = {10?* for some [ > 1 and thus

n n+k’ 2k
wl/+k’ - k! fall 2k’ el .
v=1 Hl/:l wV
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On the other hand, if j > j', we deduce from 4) that
€ [107° + 2k + ¢(j) — Jjo, 107 + jo — k[

for some jo > 1 and thus n + k" € [10%° + 2k + ¢(5') — jo, 107 + jo[. We conclude that

n n+k' 2k+¢(j")
[ w, _ 2 -,
lel-i-k’ = H Y L w > ok’ > 2k+¢(] )
v=1 "V

Let Cix :=2"% and Gy, := 2~ (k+0 if | £ 1. We deduce that for any &' > 0, any k > &/,

any | > 1, we have

1
sup max —p——— < Oy
m'eA; n€A—m | || Wyt

and we remark that sup, Cy; = 27% converges to 0 when k — oo and, for any k > 0,
C, converges to 0 when | — oo. Condition iii. of Theorem is thus satisfied and we
conclude that B, is reiteratively hypercyclic.

We now show that B, is not U-frequently hypercyclic. Assume that B, is U-frequently
hypercyclic. We then deduce from Theorem that there exists a set A with positive
upper density such that

2T

nEA

In other words, we have d(A) > 0 and

neA
H w, ==

Let Dj :={n>1:]]_, w, > 2}. We remark that d(A) < d(D;). In order to prove that
By, is not U-frequently hypercyclic, it is thus sufficient to prove that d(Dj) — 0 when
j — oo. To this end, we will need the following fact.

Fact 1. Let S := Uj,lzl]lloj — 4,010 + 4. Letk > 1,1 > 1 and n > 0 such that
10" < k < 10" Ifm e {110F 4+ 377 107,110% — 377 (107}, then

either m & S or m €]lo10°° — jo, [o10° + jo[ for some jo > k.

Thanks to Fact 1, we can show that
—{n>1: Hwy > 927} C U | 1110* — 31k, 110% + 31k[:= E;.
k>[ ]l>1
Let n ¢ E;. We want to show that n ¢ D,. In other words, we have to show that
Jn—j,n]NS¢#0D.

We first remark that Jn — j,n]N]I10* — k, 110 + k[= 0 for any k > [£] and any [ > 1.

Indeed, if [n — j, n)N]110* — k, 110% + k[# 0, then n > [10* —k and n—j < [10* + k. Hence,

110F =31k <n=(n—j)+j <110"+k+j <I10* + 31k
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and thus n € EF;, which is a contradiction.
Assume that |n — j,n] C S and let

>1

We deduce from the above reasoning that ky < [45]. We consider m €]n—j,n] and [y > 1
such that

m E]loloko — ko, loloko + ko[
Let n > 0 such that 107! < ky < 10", m; := [p10%0 — Z?:o 107 and mso = [,10% 4
>0 107, Since m €]n — j,n], m € [my, my] and

mog—mi;+1< 3(10)” < ?)Oko < j,

we deduce that either my €]n — j,n] or my €|n — j,n|. Therefore m; or my belongs to S
and we deduce from Fact 1 that m; or my belongs to |l 10F — Ey, 1, 10% + k1| for some
ki1 > ko and some [; > 1 which is a contradiction with the definition of k.

If N € [10™, 10™ " with m > 1, we thus deduce that

#(D; N[, N]) _ #(D; 0L, 10m)

N - 10m
m : m+1—k
< #(EJ N [1, 10m+1]) < Zk:(%{ﬂ 62k10
620 (9(33—0} +1)10mH T — gm — 10
- 81 Tom

<8 (9 H—Ow + 1> 101467,

where the third inequality follows from the fact that for any [3]—01 < k <m—1, there is less
than 10™*1=* intervals of the form JI10¥ — 31k, [10% + 31k[ with [ > 1 in E; N[1,10™1], 9
intervals of the form |110™ —31m, [10™ + 31m/ and the interval ]10™"! —31(m+1), 10m*1].
We deduce that d(D;) — 0 as j — oo and we thus conclude that B, is not U-frequently
hypercyclic.

We finish this proof by giving the proof of Fact 1.
Proof of Fact 1. We first assume that m = [10% + Z?:o 107. If m € S, then there exists
lo > 1 and jyo > 1 such that m €]l107 — jo, o100 + jo[. Therefore, it suffices to prove
that m ¢]0;107* — j;,1,107* + jy[ for any 1 < j; < k, any [; > 1.

If n+1<j; <k, then [10¥7110" < m < (110¥771 4+ 1)107* and we remark that

m > 110% 4+ 10" > 110* 7110 + 4

and . | | |
m <1107 + 107 — 10771 < (11047 + 1)107* — jy.

Hence m €]1;10°t — j;, 11107t + j;[ for any n+ 1 < j; < k and any /; > 1. On the other
hand, if 1 < j; < n then
(20577 4+ 3 " 10777107 < m < (110F9 ) T 10771 + 1)107.
J=j1 J=j1
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However,

m > 110% + Z 107 4+ 10711 > (”Okfﬁ + Z 103'*]'1)103’1 + 71
J=i J=i
and

m <1107+ 107 4+ 107 — 10771 < (110779 ) 10779 4+ 1)107 — iy
J=7J1 J=J1

So we conclude that m ¢]l; 107 — j;, ;107 + j;[ for any 1 < j; < k and any [; > 1.

If we assume that m = [10F — > o107 and m € S, we can show similarly that
m &]l,10°0 — 41, 11107t + j;[ for any 1 < j; < k and any ; > 1. This concludes the proof.
UJ

In the case of weighted shifts on ¢?(Z) or ¢?(Z,), we can generalize the equivalence
obtained by Bayart and Ruzsa [6] by showing that every reiteratively hypercyclic weighted
shift on (P(Z) or ¢P(Zy) is frequently hypercyclic. The proof of the characterization
obtained by Bayart and Ruzsa is based on the fact that if A is a set with upper density
d(A) =0 > 0and 0, = d(AN(A—k)), then the set F = {k : 6, > (1—¢)d?} is syndetic [6,
Theorem 8]. We remark that this result can be extended to sets with positive upper
Banach density thanks to following two Theorems.

Theorem 18. (Furstenberg Correspondence principle [I7, Theorem 0.2 |) Given a sub-
set A C Z of positive upper Banach density, there exists a measure-preserving system

(X,8,u,T) and a set E € B such that u(E) = Bd(A) and
Bd(AN(A=n)n---N(A=m)) > p(ENT ™MEN---NT ™E)
for any integer nq, ..., ng.

Theorem 19. ([7, Theorem 3.1]) For every measure-preserving system (X, B, u,T), any
e>0and A€ B theset {n € Z : u(ANT"A) > u(A)? — e} is syndetic.

We directly deduce from these theorems the following generalization of result of Bayart
and Rusza.

Theorem 20. Let A C Z be a set with positive upper Banach density equal to d and
e €]0,1[. For any k € Z, let By = AN (A — k) with upper Banach density equal to Jy.
Then the set {k € Z : &, > 6> — &} is syndetic.

In order to prove the equivalence between reiteratively hypercyclic weighted shifts and
frequently hypercyclic weighted shifts on P, we need a little bit more precise result. This
result and its proof are a direct adaptation of Theorem 8 in [6] to sets with upper Banach
density. We include here the proof of this adaptation for the sake of completeness.

Theorem 21. Let A C Z, with Bd(A) =0 >0, ¢ > 0 and By, = AN (A — k) where
k > 1. Then there exist an increasing sequence (m;);>1 C N and an increasing sequence

(ki)i21 C N such that

]{?7; 1—00

1
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k‘i 1—00

3. the set F:={k € N:n > (1 —¢)d%} is syndetic.

2

M for some ny;

Proof. Since Bd(A) = 4, there exists an increasing sequence (n;);>; such that

AN [ng,n; + 1

7 1—»00

5 9.

Since for any k£ > 1, the set (M)Z belongs to the compact [0, 1], we can extract a
( | BkN[ng, ,nki-i-/ﬂ[)
k.

7

subsequence (ny, );>1 such that for any k& > 1,
denote by (m;);>1 the sequence (ny,)i>1.

Let R be a finite set such that for any k,1 € R, k > [, we have ny_; < (1 — ). We
consider f(z) :=|{k € R:xz € A— k}|. We deduce that for any i > 1

ST f@) =S 1A k) O e+ k]

we[mi,mﬂrki[ kER

= |R||AN [m;,m; + k]| + O(1).

; converges to some 7. We

and thus .

- > flw) — RIS,

i 1—00
xe[mi,miJrki[

If we now consider the square of f(x), we have
f@P=HkilecR:2c(A-kNA-D}={klceR: 2 +kcAN(A+k—1)}.

In the same way, we deduce that for any 2 > 1

> f@)?

xe[mi,mﬁ—ki[

=> AN [mimi+ k[l +2 > [Beo N [mi,mg + kil + O(1)

keER EJlER, k>1
= [RIIAN[m,m; + K| +2 > [Bey N [mi,mi + kil + O(1)
EJIER, k>I

and thus

1
=Y f@P == |RS+2 Y met SIRIG+ (1 o) RI(R| - 1)
b welmg,mitks| kJER, k>l

We conclude that
(IR|9)* < [R[6 + (1 — )| R|(|R] — 1)5°.
This inequality gives us the following condition on |R|:
1-0(1—¢)
de '
In other words, there exists a maximal finite set R in the sense that for any n ¢ R, there

exists k € R such that 7, 5 > (1 —¢)d?, i.en —k € F. We conclude that ' + R = Z,
and in particular that F' is syndetic. O]

|R| <
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Therefore, in the vein of [0, Corollary 9] and following essentially the same proof we
obtain the following result:

Corollary 22. Let A C Z, be a set with positive upper Banach density and (o,)nez @
sequence of non-negative real numbers such that ) o, = +00. Suppose that there exist
some C' >0 and N € Z U {+oc} such that o,, > Cav,—y for everyn < N and a,, = 0 for
everyn > N. If for any n € A, we let

= § Om—n,

then the sequence (5,)nea is not bounded.

Proof. Let § := Bd(A) and By, = AN(A—k) for any k € Z. By Theorem , we know that
there exist an increasing sequence (m;);>1 C N and an increasing sequence (k;);>; C N
such that for any £ > 1

k?i 1—+00

1.

> Mg for some ny;

2. the set F:={k > 1:m, > 16} is syndetic.
We remark that for any &k > 1, we have B_, = By + k and thus

T -
On the other hand, if we let F, = (—F) U F, we deduce that the set Fy is syndetic.

Let (f;);ez be an increasing enumeration of £ and M > 1 such that f; — f;_; < M for
any j € Z. We deduce that for any f; < N, we have

min(1, CM
afj Z Z az

f] 1<Z<fj
and thus
N-1
min( min( CM)
g = g ap, > ————" g oy = ———= g Qy — g a, ) = o0,
nekFy Jifi<N n<N-—-M neZ n=N-M

where we consider 25;1\1[7 o = 01if N = +o00.
We then consider the sequence (s;);>1 defined by

Si = Z Bn - Z Om—n-

n€AN[m;,m;+k;| neAN[m;,m;+k;|
meA

If we arrange this sum according to the value £ = m — n and if we keep only the terms
where k € Fy, then we get for any [ > 1,

S; > Z ak|Bkﬂ[mZ,mz+/ﬁH

kEFy,|k|<l
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We deduce that for any [ > 1

1 i
lim sup — Z B, = limsup il

i—00 7 ne An[ma,mi+ki| i—00 i

keFy,|k|<l
(52
> g QMK = 5 E Q.
keFy,|k|<i ke Fy,|k|<!

Since ), . F, On = +00, we conclude that the sequence (Bn)nea cannot be bounded. [
We can now prove the desired equivalence for weighted shifts on /7.

Theorem 23. Let B, be a weighted shift on (P(Z) or on (*(Zy) with 1 < p < oo. Then
By, is reiteratively hypercyclic if and only if B, is frequently hypercyclic.

Proof. We only prove this equivalence in the case of weighted shifts on ¢(Z) since the
case of weighted shifts on (P(Z. ) is similar and easier.

Let B, be a reiteratively hypercyclic weighted shift on ¢?(Z). There exists a vector
x € (P(Z, ) such that the set

1
A= {n €Zy :||Bpxr — el < 5}

has a positive upper Banach density. For any n € A, we remark that we have |w; - - - w2, —
1] <1 and
1 > Pl [P Pl |P
o 2 D w1 wows -+ Wi Pl ) (W g1 WP |
m<n m>n

e p
= Z |wm—n+1 .. .wo‘p|wl .. 'wmxm‘p + Z |w1 U)ml'm’
w1+ WP

m<n m>n
W1+ W Lo |P
m<n,meA m>n,mcA wy Wm—n
1 ) 1
Zo | 2 lwemwewl ) [or - wmal )
m<n,meA m>n,mecA w1 Wm—n

We get for any n € A

1
Z | W1+~ wolP <1 and Z — <1 (18)

W1 W [P
m<n,meA m>n,m€A| 1 m n|

Thanks to Corollary , we can deduce from the convergence of series » L

n>1 |w0---wn|P

and > o |wy - --wolP. Indeed, if we let oy, = 0 for any n < 0 and a,, = 7 for any

|w1...wn
n > 1, we have a,, > Cay,—1 where C' = inf{|w,|™ : n > 1} is strictly positive since w is

bounded. Therefore, if Y° ., —=— = 0o, we deduce from Corollary [22| with N = 400

n21 |wy-wnlP
that the sequence (,)nea is unbounded where

1
ﬁnizzam—n: Z Om—n = Z m

meA m>n,meA m>n,meA
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This is a contradiction with (L8]).

On the other hand, if we let o,, = 0 for any n > 0 and «,, = w41 - - - wp|? for any
n < 0, we have a, > Cay,_1 for any n < 0 where C' = inf{|w,|™ : n < —1}. As previously,
we deduce from Corollary 22| with N = 0 that if ) _ |wy, - - - wo[P = 0o then the sequence
(X menmen [Wm—nt1 - wol")nea is unbounded which is a contradiction with (18)).

Finally, we get the desired result since the convergence of series > and

1
n>1 Tuwg-wn|P

Y neo |Wn - - wol? implies that B, is frequently hypercyclic ([6, Theorem 3}) O

This equivalence for weighted shifts on ¢?(Z,) implies that there exists some mixing
operator which is not reiteratively hypercyclic. Indeed, we know that a weighted shift B,
on (P(Z. ) is mixing if and only if [[;~, |w| tends to infinity [I1]. Therefore, the weighted

backward shift B,, with w, = ((n+ 1)/n)% is a mixing operator on ¢?(Z,) which is not
frequently hypercyclic and thus not reiteratively hypercyclic (Theorem .

Theorem 24. There exists some mizing operator which is not reiteratively hypercyclic.

Thanks to Grosse-Erdmann and Peris [14], we know that every frequently hypercyclic
operator is weakly mixing. We observe that every reiteratively hypercyclic operator is
topologically ergodic (thus, weakly mixing [15]). See also [I].

Proposition 25. Let X be a separable F-space and T € L(X). If T is reiteratively
hypercyclic, then T s topologically ergodic.

Proof. Let U,V non-empty open sets in X and n € N (U, V). We consider the non-empty
open set U, :=UNT™(V). Let x € X such that Bd (N (x,U,)) > 0. We remark that

N(z,U,) — N(z,U,) +n C N(U,V).
Indeed, if s1, 89 € N(z,U,), then
Ts2z € U and TH52+"(T%2g) = T(Tz) € V

On the other hand, we know that if A is a set with positive upper Banach density, then
A— A is syndetic [12, Proposition 3.19]. We conclude that N (x, U, )— N (x, U,) is syndetic
and thus N (U, V) is also syndetic. O
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