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Abstract
A weakly nonlinear stability analysis of an axisymmetric viscous liquid jet is performed. The calculation is based on
a small-amplitude perturbation method and restricted to second order. Contrary to the inviscid jet and the planar
viscous sheet cases studied by Yuen in 1968 [1] and Yang et al. in 2013 [2], respectively, a part of the solution results
from a polynomial approximation of Bessel functions. Results on interface shapes for a small wave number and initial
perturbation amplitude, four different Ohnesorge numbers, taking into account the approximate part or not, are used
to predict the influence of liquid viscosity on satellite drop formation and evaluate the influence of the approximation.
It is observed that the liquid viscosity has a retarding effect on satellite drop formation, in agreement with previous
experimental and numerical work. In addition, it is found that the approximate terms can be reasonably ignored,
providing a simpler viscous weakly nonlinear model for the description of the first nonlinearity growth in liquid jets.
The present work replaces the ILASS 2016 paper [3] by the authors on the same subject.
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Introduction
A liquid jet breaks up forming main and satellite drops. The present work is concerned with the influence of both
liquid viscosity and nonlinearities on satellite drop formation.
The first linear stability analysis of the capillary instability of a liquid jet in an ambient medium was conducted
by Rayleigh [4, 5], more than a century ago. In this reference work, the liquid is assumed inviscid and the ambient
medium is the vacuum. His analysis shows that, in order to destabilize the jet, the wavelength λ of a varicose surface
disturbance must be greater than the circumference of the undeformed circular jet cross section, as observed initially
by Savart and Plateau [6, 7]. Two associated amplitude growth rates correspond to such an unstable perturbation
wavelength, one being the opposite of the other, with the magnitude given by the well-known Rayleigh’s linear
dispersion relation for the inviscid jet in a vacuum.
The effect of liquid viscosity was then investigated by Weber [8], about fifty years later. The generalization of the
previous dispersion relation introduces a growth rate and viscosity dependent modified wave number making the
dispersion relation transcendental, yet numerically solvable, which is turned into a closed-form expression in the
long-wave approximation. Contrary to the inviscid case, there are two different real growth rates with opposite signs
for each unstable wavelength, with distinct absolute values below the corresponding inviscid one. This difference
leads to dispersion relation curves always lower than the inviscid ones, as expected by the classical damping effect
inferred from liquid viscosity.
Due to the linearity of the previous analysis, the interaction of disturbances with different wavelengths is not ac-
counted for, and the drops produced by the jet breakup are predicted to be monodisperse in size. In particular, with
no imposed perturbation, the most probable wavelength, i.e. the wavelength with maximum growth rate, is often
used to get a good approximation for the main drop size in liquid jet breakup.
The effect of nonlinearities was first studied by Yuen [1]. In his weakly nonlinear analysis of an inviscid jet in
a vacuum he described the jet interface shape up to order three at small initial deformation amplitude. Plotting
jet surface profiles for various wave numbers and a fixed small initial amplitude perturbation, he observed the
appearance of an undulation between the primary crests of the initial perturbation in the low wave number case.
This observation is considered today as the first prediction of the formation of satellite drops. Good agreement of
the predictions of his model with experimental results was found for the deviation of the jet surface shape from the
single sinusoidal one [9], the satellite drop size [10, 11] and the growth rate of the two first nonlinear harmonics
for wave numbers less than the fastest growing mode [12]. For larger wave numbers (more precisely, greater than
the fastest growing mode), Yuen’s model does not predict the formation of satellite drops, even though they are still
observed in the experiment [10]. This stands as one limitation of the weakly nonlinear stability analysis.
Based on Yuen’s model, the effect of liquid viscosity on the formation of drops was deduced. For inviscid jets,
satellite drops are predicted to become smaller when the wave number converges to the fastest growing mode. With
increasing viscosity, the fastest growing mode is shifted to lower wave numbers, and consequently the amplitude of
the undulation is reduced, while its wavelength is increased, as pointed out by Goedde & Yuen [13]. This qualitative
description is in agreement with experimental and numerical results showing that satellite drops can be completely
suppressed for sufficiently high Ohnesorge numbers [14].
Recently, the effect of both liquid viscosity and nonlinearities was combined for the study of a liquid sheet, the
planar counterpart of the axisymmetric jet, revealing a complicated influence of liquid viscosity on the nonlinear
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Figure 1. Sketch of the geometry of a capillary jet under varicose deformation.

sheet stability [2]. In a 2016 ILASS paper [3], the jet geometry was considered by the present authors, introducing
the need for a polynomial approximation of one part of the viscous contribution, that could not be fully solved
analytically, due to the presence of Bessel function products with different arguments. However, in this weakly
nonlinear analysis, the two values of growth rates were incorrectly taken, as real numbers of the same absolute
value but opposite signs, like in the inviscid case.
Here, we revisit our weakly nonlinear model of the temporal instability of a viscous jet in a vacuum to gain insight into
the role of the jet liquid viscosity on satellite drop formation. The expansion of the jet interface shape is restricted to
second order terms in the small initial perturbation amplitude, the second-order solution being sufficient to predict
satellite drop formation [3]. In the following section we derive the equations of motion, as well as their boundary
and initial conditions. Thereafter we solve the equations derived in the sequence of the order and present our
method of approximation of one part of the viscous contribution containing products of Bessel functions with different
arguments. Results on surface shapes are then presented and the effect of both the liquid viscosity and the level of
approximation discussed by comparison to the inviscid solution of Yuen [1]. The paper ends with the conclusions.

Formulation of the problem
We study the weakly nonlinear temporal instability of a viscous liquid jet as sketched in Figure 1. The jet is assumed
to be axisymmetric around the z axis of the cylindrical coordinate system. The liquid is treated as incompressible and
Newtonian. The dynamic influence from the ambient air is neglected, i.e. we treat the ambience as a vacuum. Body
forces are not accounted for, since Froude numbers are large. The problem is formulated in cylindrical coordinates
to account for its geometry.
The flow variables and equations are adimensionalized with the undeformed jet radius a, the capillary time scale
(ρa3/σ)1/2 and the capillary pressure σ/a for length, time and pressure, respectively. Here, ρ is the liquid density
and σ the air-liquid interfacial tension. The jet surface is described as a place where rs(t, z) = 1 + η(t, z), where η
is the non-dimensional deformation against the undisturbed cylindrical shape (cf. Figure 1).
For the problem at hand, the equation of continuity and the two components of the momentum equation in the radial
(r) and axial (z) directions read
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where Oh = µ/(σaρ)1/2 is the Ohnesorge number, the characteristic dimensionless parameter distinguishing the
viscous from the inviscid case, with the liquid dynamic viscosity µ. The closed set of the above equations must be
solved subject to initial and boundary conditions. The kinematic boundary condition states that the material rate
of deformation of the jet surface equals the radial velocity component at the place of the deformed surface. The
kinematic boundary condition therefore reads

ur =
Dη

Dt
=
∂η

∂t
+ uz

∂η

∂z
at r = 1 + η (4)

The first dynamic boundary condition states that the shear stress parallel to the jet surface is zero, since the ambient
gas phase dynamic viscosity is very small, so that momentum cannot be transferred across the jet boundary at an
appreciable rate. The second dynamic boundary condition states that the stress normal to the jet surface, composed
from the flow-induced pressure and a viscous contribution, differs across the interface by the contribution due to the
surface tension. The zero-shear stress boundary condition reads

(~n · τ)× ~n = ~0 at r = 1 + η (5)

where the outward unit normal vector ~n is given as ~n =

(
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∂η
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~ez

)
/

√
1 +

(
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)2

and the viscous extra stress

tensor τ in (5) is the one for the incompressible Newtonian fluid. The corresponding normal stress boundary
condition reads

−p+Oh (~n · τ) · ~n+
(
~∇ · ~n

)
= 0 at r = 1 + η (6)
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We obtain the divergence of the normal unit vector in this equation as
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at r = 1 + η (7)

The initial surface disturbance is assumed to be purely sinusoidal with the amplitude η0 and wave number k =
2πa/λ. With this assumption, volume conservation leads to the following expression for the initial non-dimensional
jet shape [1]:

rs(0, z) = 1 + η(0, z) = η0 cos kz +
(
1− η20/2

)1/2
= 1 + η0 cos kz − 1

4
η20 −

1

32
η40 − . . . (8)

As usual in weakly nonlinear analysis, the initial deformation amplitude is assumed to be small, i.e. η0 � 1.
For analyzing these equations in a weakly nonlinear form, the two velocity components and the pressure in the flow
field, as well as the deformed interface shape, are expanded into power series with respect to the parameter η0.
This means that we formulate the dependencies as for, e.g., the radial velocity, pressure and jet shape:

ur = ur1η0 + ur2η
2
0 + . . . ; p = p1η0 + p2η

2
0 + . . . ; rs = 1 + η1η0 + η2η

2
0 + . . . (9)

Furthermore, one important difference between the linear analysis and the present weakly nonlinear one is that the
boundary conditions are satisfied on the deformed jet surface, not on the undeformed, circular cylindrical shape.
For doing this, but still allowing for the functions in the boundary conditions to be evaluated on the undeformed jet
surface, their values on the deformed shape are represented by Taylor expansions, such as
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Substituting these approaches into the flow equations (1) - (3) and into the boundary conditions (4), (5) and (6),
and representing the flow properties and their derivatives as given in (9), we obtain sets of first and second order
equations of motion with the boundary conditions consisting of all the terms with the deformation parameter η0 to
the first and second powers, respectively.

First-order equations
To obtain the first-order equations we collect all the terms in the above expansions with the parameter η0 to the first
power. The first-order continuity and momentum equations read
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For the boundary conditions of first order we obtain
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Furthermore, the initial conditions of first order are
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Second-order equations
To obtain the second-order equations we collect all the terms in the above expansions with the parameter η0 to the
second power. The second-order continuity and momentum equations read
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The boundary conditions of second order at r = 1 are
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Furthermore, the initial conditions of second order are

η2(0, z) = −1/4 and
∂η2
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(0, z) = 0 (24)

Solving these sets of equations will reveal the weakly nonlinear role of the viscous stresses in the jet liquid on the
capillary instability of a Newtonian viscous liquid jet in a vacuum.

Solutions of the governing equations
First-order solutions
The first-order equations describe the linear problem. They exhibit well known solutions expected to be recovered
by our equations. In particular, we expect to recover the special form of the dispersion relation of the viscous jet first
presented by Weber [8] without the ambient gas influence.
Since we are looking at two-dimensional flow fields, for determining the first-order velocity and pressure fields we
apply the method of the Stokesian stream function. The stream function ψ represents the liquid motion due to the
disturbance from the cylindrical form of the jet. The stream function is defined by its relations to the two velocity
components ur1 and uz1 as per [15]
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∂z
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(25)

Using this definition of the velocity components as derivatives of the stream function, the resulting first-order velocity
field satisfies the continuity equation identically.
The first-order interface deformation is assumed to remain sinusoidal. η1 is thus searched under the form

η1 = η̂1 exp (ikz − α1t) (26)

with α1 the first-order angular frequency of the jet problem.
Taking the curl of the momentum equation in a vector form based on (12) and (13), we obtain the equation(
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for the stream function. The solution of (27) for a flow field containing the position r = 0 reads [16]

ψ(r, z, t) = [C1rI1(kr) + C3rI1(lr)] exp (ikz − α1t) (28)

where l2 = k2 − α1/Oh. The two constants C1 and C3 are determined by the kinematic and the dynamic zero
tangential stress boundary conditions (14) and (15) and read

C1 = − iα1η̂1
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k

l2 − k2 = − i2η̂1Oh k
I1(l)

(29)

With these constants, the stream function of the disturbance is known, but the angular frequency α1 remains to be
determined. From the stream function we may calculate the velocity field in the jet due to the disturbance as

ur1 = −ik [C1I1(kr) + C3I1(lr)] exp (ikz − α1t) (30)

uz1 = [C1kI0(kr) + C3lI0(lr)] exp (ikz − α1t) (31)

The pressure due to the disturbance in the liquid field is obtained by integrating one component of the momentum
equation. For this, the z component is the right choice since it offers an easy integration with respect to the z
coordinate. The result is

p1 = −iα1C1I0(kr) exp (ikz − α1t) + f(t, r) (32)
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where f(t, r) must be equal to zero to satisfy the boundary condition (16). The dispersion relation of the jet is now
found by introducing the velocity field and the pressure in the jet into the dynamic zero normal stress boundary
condition (16). The result is the well-known relation

α2
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2Oh

[
1− 1
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l2 − k2
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which was first presented by Weber [8]. For zero liquid viscosity (Oh → 0), this relation reduces to the result of
Rayleigh [4] for the inviscid jet in a vacuum.
For disturbance wave numbers 0 ≤ k ≤ 1, the relation (33) has two real solutions α+

1 and α−
1 , one positive and one

negative, where, due to the formulation of the time dependency by the exponential function, the unstable behaviour
of the jet is associated with the negative one. Note that this is the main point of difference from our previous version
of the analysis [3], where the two solutions were incorrectly assumed to be of same absolute value like in the inviscid
case. For wave numbers k > 1, the relation has two conjugate complex roots with a positive real part. The two
values of α1 represent two waves on the jet surface travelling in different directions and with different phase velocity.
Accounting for both these waves, we formulate the first-order jet surface shape as
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(
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(
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1 t
)

(34)

The first-order initial conditions (17) require that initially the jet surface is governed by the function cos kz and is at
rest. For the amplitudes η̂+1 and η̂−1 these conditions reveal the equations
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so that the amplitudes are known. The first-order stream function, velocity components and pressure are then
obtained. As an example, the radial velocity component reads
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where the modified wave number l appearing in the coefficients C1 and C3 was formulated with the two different
values of α1 and denoted with the superscripts corresponding to their signs. And analogously, the axial velocity
component reads:

uz1(r, z, t) =: iη̂+1 f
+
z (r) exp

(
ikz − α+

1 t
)

+ iη̂−1 f
−
z (r) exp

(
ikz − α−

1 t
)

(37)

For zero liquid viscosity, as already stressed, the two solutions of α1 exhibit the same absolute value, but have
different signs. Furthermore the two amplitudes of the first-order jet surface shape in (35) assume the same value
of 1/2. The two velocity components, pressure and jet surface shape therefore reduce to the inviscid solutions by
Yuen [1]. E.g., the inviscid first-order radial velocity component and pressure read

ur1,0(r, z, t) = α1
I1(kr)

I1(k)
exp (ikz) sinhα1t; p1,0(r, z, t) = −α2

1
I0(kr)

kI1(k)
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This serves as a validation of the first-order viscous solution. The respective real solutions arise by reducing the
exponential functions exp(ikz) to their real parts.

Second-order solutions
We now proceed to the second-order equations. e.g., the second-order solutions for the radial velocity component
and the jet surface shape are sought under the forms

ur2(r, z, t) = u+
r21(r)e2ikz−2α+

1 t + u−
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2 t (40)

These forms result from the mathematical structures of the second-order equations of motion (18) - (20), with the
nonlinear terms of first order involved, and the boundary conditions (21) - (23). We look at wave numbers k < 1
yielding linear instability.
The various contributions to the second-order solutions are now determined. Looking at the second-order equations
of motion (18) - (20) we see that it is convenient to eliminate the second-order velocities from the momentum
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equations using the continuity equation (18) to obtain a differential equation for the second-order pressure p21. The
result is the equation

∆p21 = −div
[(
~v1 · ~∇

)
~v1
]

(41)

In this equation ~v1 represents the first-order velocity field. Using the Lamé identity for the convective derivative of
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This is a Poisson equation for the total pressure P21 := p21 + ~v21/2. The structure of the solution in terms of
its dependency on the axial coordinate and on time is determined by ~v21/2 and by the terms on the right of (42).
Both groups of terms contain exponential functions of twice the two rates of growth or decay, −2α+
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1 ,

and the sum of the two rates, −(α+
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1 ), each multiplied by time. In view of the limited space, we present the
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for the dependency of time represented here. The solutions may be composed from the general solutions of the
homogeneous equations and the particular solutions of the inhomogeneous equations. The final form of the solution,
formulated for the pressure contribution p+21, reads
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the second-order pressure field and the equations of motion (18) and (19), the corresponding second-order contri-
butions to the two velocity components are determined. The differential equation (19) for ur2 yields the solution
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of the Bessel functions in the right-hand side of the radial velocity component differential equation (not reported
here). From the velocity ur21 and the continuity equation (18), the contributions to uz21 are determined easily. The
part depending on exp(−2α+

1 t) reads

u+
z21 =

i

2k

{
D+

212m+I0(2m+r) +
2kC+

21

α+
1

I0(2kr) +

I−1∑
i=1

2(i+ 1)ζ+2i+1r
2i

}
e2ikz−2α+

1 t (45)

The coefficients C+
21 and D+

21, as well as the amplitudes P̂+
21, F̂+

21 and Ĝ+
21 (see equation (40)) are unknown con-

stants, which are determined using the three boundary conditions of the second-order problem. The terms de-
pending on exp(−2α−

1 t) and exp(−(α−
1 + α+

1 )t, and thus the amplitudes P̂−
21, F̂−

21, Ĝ−
21, P̂±

21, F̂±
21, Ĝ±

21 are obtained
following the same method.
The second parts of the second-order solutions, with subscripts 22, which depend on time through the frequency α2

of the second-order problem, are directly deduced from the equations for the linear problem, since they are of the
same structure as for first order, with the wave number k replaced by 2k, the angular frequency α1 by α2, and the
deformation amplitude η̂1 by η̂22. The frequency α2 is therefore obtained as a solution of a dispersion relation which
is formally equal to the first order relation (33), but formulated with double the wave number. The only unknown
remaining is therefore the amplitude η̂22. e.g., the equation for the radial velocity component with subscripts 22 read

ur22(r, z, t) = η̂p22

[(
8k2Oh− αp2

) I1(2kr)

I1(2k)
− 8k2Oh

I1(mp
2r)

I1(mp
2)

]
exp (2ikz − αp2t) + (46)

+ η̂m22

[(
8k2Oh− αm2

) I1(2kr)

I1(2k)
− 8k2Oh

I1(mm
2 r)

I1(mm
2 )

]
exp (2ikz − αm2 t)

where we have defined m2
2 = 4k2 − α2/Oh and denote the two solutions of the dispersion relation for α2 by

superscripts p and m, since they may be either real or (conjugate) complex, depending on the wave number k.
In the case of the real solutions, the superscripts denote the positive and negative values, and for the complex
solutions they denote the positive and negative imaginary parts. The real part is positive for all the wave numbers
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Figure 2. Surface shapes for various Ohnesorge numbers: a) Oh = 0 (inviscid case), b) Oh = 0.03, c) Oh = 0.1, d) Oh = 1 for
discrete times t = [0,∆t, 2∆t, . . . , tu, tu + ∆t] with ∆t = tu/10. The value of tu is indicated in each figure. Disturbance wave

number k = 0.3 and initial deformation amplitude η0 = 0.01. Lines are drawn as solid for surface shapes taking into account the
approximate viscous contribution with I = 6 and as dashed for neglecting it.

1 ≤ 2k ≤ 2. The values of η̂p22 and η̂m22 are deduced from the two initial conditions. From the first-order and second-
order contributions we finally construct the description of the velocity components, the pressure, and the deformed
jet surface to second order as defined in Eq. (9). For example, the deformed jet surface to second order reads:

rs(z, t) = 1 + η(z, t) = 1 + η0η1(z, t) + η20η2(z, t) (47)

where

η1(z, t) =
(
η̂+1 e−α

+
1 t + η̂−1 e−α

−
1 t
)

cos kz (48)

and

η2(z, t) =
1

2

(
η̂p22 e

−αp
2t + η̂m22 e

−αm
2 t + F̂+

21 e
−2α+

1 t + F̂−
21 e

−2α−1 t + F̂±
21 e

−(α−1 +α+
1 )t
)

cos 2kz + (49)

− 1

4
e−2(α−1 +α+

1 )t
(
η̂−1 eα

+
1 t + η̂+1 eα

−
1 t
)2

(50)

The problem of second-order weakly nonlinear viscous jet instability is thus fully solved. From our above equations,
the inviscid solution of Yuen [1] is retrieved for zero liquid viscosity (Oh→ 0).

Results and discussion
With the presently developed viscous weakly nonlinear model, the influence of viscosity on the phenomenon of
satellite drop formation is investigated. Satellite drop formation is here identified by the appearance of an undulation,
i.e., a local maximum between two consecutive crests, prior to jet breakup (η = −1). Based on the second-order
representation of the jet surface in (47), the undulation occurs as soon as 4η2η0/η1 = 1. We denote the time
for which the previous relation is satisfied as tu. Like in the inviscid case [1], the undulation is not predicted for
wave numbers greater than the fastest growing mode. Since the latter decreases with increasing liquid viscosity, a
relatively small value of k is selected to allow for comparison between different values of the Ohnesorge number.
The initial deformation amplitude is imposed too, since its influence on the jet surface wave does not depend on the
liquid viscosity and has already been studied by Yuen [1]. Jet surface shapes are thus calculated for a fixed wave
number k = 0.3 and initial deformation amplitude η0 = 0.01.
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In Figure 2, jet surface shapes are drawn at different times for four selected Ohnesorge numbers: 0 (inviscid case),
0.03, 0.1 and 1. For all these values, the non-dimensional fastest growing mode, given as [2 (1 + 3Oh)]−1/2 by the
long-wave approximation [8], remains greater than 0.3, which means that the formation of an undulation is expected
by the viscous model. For each case, the time increment between two consecutive shapes is ∆t = tu/10, the first
time is 0 and the last time is tu+∆t. Solid lines represent the viscous solutions for which the approximate terms are
considered up to order I = 6, whereas dashed lines correspond to the solutions for which the approximate terms
are omitted.
The comparison between jet surfaces drawn for different Ohnesorge numbers reveals a retarding effect of the jet
liquid viscosity on the apparition of the undulation. This is in agreement with experimental [13] and numerical [14]
results, where it is found that satellite droplets are fewer with jets of more viscous liquids. Moreover, the comparison
between solutions of different levels of approximation shows that the solution neglecting the viscous term on the
right-hand side of equation (42) is enough to represent the jet surface shape for the wave number investigated. This
result allows us to simplify the viscous model by ignoring the approximate terms.
These first results will be completed in the next future by considering the effect of the surrounding ambient medium
and liquid viscoelasticity.

Conclusions
A weakly nonlinear stability analysis of a viscous Newtonian liquid jet in a vacuum was performed. By including
the viscous stresses in the liquid, the model complements the results of Yuen [1] for the inviscid case and Yang
and co-authors [2] for a plane viscous liquid sheet. In a weakly nonlinear analysis, velocity, pressure and jet
surface shape are expanded in series with respect to a small deformation parameter, here the initial amplitude of
the jet deformation, yielding a set of equations with different powers of the parameter. Our analysis is restricted to
second order for the sake of simplicity, in a first attempt to solve the viscous jet problem. The first-order solution
corresponds to the linear one first derived by Weber [8] which converges to Rayleigh’s solution for the inviscid
case [4]. The second-order solution represents the nonlinear influence from the first-order fields and is obtained by
solving a Poisson equation for the second-order pressure field. A polynomial approximation was used to take into
account the viscous terms on the right hand side of this equation, leading to a viscous model with an approximation
representing a part of the viscous influence. At vanishing Ohnesorge number of the jet, our equations reduce
to Yuen’s inviscid results [1]. Varying the jet Ohnesorge number between 0.03 and 1 reveals a retarding effect
of the viscosity on the formation of the undulation, thus on satellite drop formation in liquid jet breakup. This is in
agreement with the experiment [13, 17]. The influence of the level of approximation was also explored by comparing
the solutions with and without the approximate part. The results suggest that the approximate part can be ignored,
thus yielding a simpler viscous weakly nonlinear model of capillary liquid jet instability. The analysis will be carried
further to include the influence from a gaseous ambient medium and viscoelastic liquid behaviour.
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