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Abstract 

The present paper deals with the influence of fuel properties on the spray behaviour. This influence was studied 

experimentally using a common rail injection system from a medium speed diesel engine. The experiments have 

been performed with diesel fuel (EN-590) and heavy fuel oil (RMG 180) on a constant volume chamber at room 

temperature. Comparison of the spray characteristics shows that the heavy fuel oil penetrates deeper in the 

chamber. However, the diesel spray has a bigger cone angle. These results formed the basis for a further 

development of the 1D-model [1] to predict the spray penetration by considering the fuel properties and temperature. 
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Introduction 

The dependency of mixture formation on fuel properties is known and investigated by several researchers e.g. [2-

5]. In [2] different biodiesel blends (B5, B10, B20 and B50) in diesel fuel, pure biodiesel (B100) and diesel fuel were 

experimentally examined in a cold chamber (room temperature) and on a single-cylinder diesel engine. The study 

shows that the physical properties of biodiesel and its blends influence the spray breakup as well as the emissions 

output. It was also noticed that the bigger the proportion of the biodiesel the longer the spray tip penetration. This 

result agrees with those in [3]-[5] and [14]. In [14] leads an increase in the fuel density to increase the spray length 

and decrease in the spray cone angle in the fully developed zone. A similar influence has the fuel viscosity in the 

same zone. Besides the influence on the spray development, the fuel physical properties affect the hydraulic 

behaviour of the injector and thus on the injection rate and injection duration. Increasing the fuel density leads to a 

higher injection rate [12], [14-15], which can be theoretically concluded from Bernoulli’s equation. Viscosity influence 

on the hydraulic behaviour of the injector is more complicated which causes a discrepancy in literature. For too 

small injection quantities the dynamic of the injector needle is affected by fuel viscosity which changes the injection 

rate shape and timing [16]. If the injector needle reaches its highest position than the close curve depends on the 

viscosity [17]. This phenomenon could not be noticed in [15] and [18].  

The introduction of the IMO-TIER-III emission legislation demands a drastic reduction of NOx-emission within the 

NOx Emission Control Areas (NECAs). The demanded reduction can only be made by developing and introducing 

novel technologies for ship diesel engines. The discussed strategies for NOx-reduction is based on different 

technologies from automotive sector which usually can be realized only by the use of distillate fuels. Outside these 

control areas, IMO-TIER-II limits are applied and in force. This legislation can be achieved by utilizing engine internal 

measures such as miller cycle combined with high pressure intake air, heavy fuel oil and common rail injection 

system. HFO and the distillate fuels have different physical properties which affect the spray structure, and thus, 

the combustion and the emission formation as well. Therefore, the relationship between the physical properties of 

the fuel and the development of spray structure has been experimentally investigated using HFO (RMG 180) and 

diesel fuel (EN-590). Table 1 presents the corresponding physical properties of the HFO (RMG 180) and the diesel 

fuel. 

Experimental setup 

Injection experiments were carried out using a large engine solenoid valve CR-injector with integrated fuel reservoir 

and a nozzle containing eight cylindrical holes. The injector can be operated with both distillate fuel as well as heavy 

fuel oil (HFO). Injection rate measurements were performed using an injection rate analyser [7] (based on BOSCH-

principle [8]), Figure 1. Fuel spray characteristics were quantified using a high-pressure/high-temperature chamber 

[9] with optical access, Figure 1. The chamber can be operated at a constant flow of nitrogen at temperatures and 

pressures up to 900 K and 40 bar. For optical accessibility the chamber is equipped with three windows while the 

injector was mounted with a customized flange to achieve a full frame of one injection jet for analysis with a 

maximum length of 130 mm. The other injection jets were hidden using a deflection cap that was mounted on the 

injector tip.  
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The injector was operated with diesel fuel (DF) according to DIN EN-590 specification and with heavy fuel oil 

(RMG 180), Table 1. In order to assure a typical injection viscosity during heavy fuel oil operation the fuel system 

was heated properly using electrical heating. Furthermore, the injector temperature was controlled using heated oil 

in the area of the nozzle. 

For quantification of the spray characteristics in terms of spray penetration and spray cone angle image sequences 

were taken at cold chamber conditions (room temperature) using a Phantom V7.2 high-speed camera. The images 

have a resolution of 800x300 px and were recorded at a frame frequency of up to 12820 kHz and shutter times ≤ 

5 µs. For proper lightning of the injection jet two xenon flashes were mounted orthogonally to the camera, Figure 2. 

Injection and camera were controlled via a main test bench computer. To avoid shot-to-shot deviations results of at 

least 10 injections were averaged. Jet volume was calculated through a numeric rotation of the jet profile defined 

by the measured spray penetration and spray cone angle. The operating pints used in the current study to validate 

and modify the spray model are shown in Table 2. 

 

Table 1. Test fuel properties during injection tests. *values from DIN EN 590 fuel specification 

 DF (EN 590) HFO (RMG 180) 

Density [kg/m³] 820 – 845 (15 °C)* 995 (50 °C) 

Viscosity [cSt] < 4,5 (40 °C)* 12 (120 °C) 

Operation temperature [°C] 40 120 

   

Table 2. Test Matrix 

pInj in bar 𝜌𝑔 in kg/m³ 𝑇𝑔 in K 

800 22 and 33 293 

1600 22 and 33 293 

1800 22 and 33 293 

 

 

Figure 1. (Left) Injection rate analyser, (Right) high-pressure/high-temperature injection chamber 

 

Figure 2. (Left) Schematic layout of scatter light measurements, (Right) definition of jet parameters 

1D-modell to predict the spray tip penetration 

The empiric model in [1] bases on two phenomena, which were noticed in a framework of an experimentally analysis 

of the mixture formation at medium speed diesel engines [6]. First, it has been noticed that the spray penetration 

from a nozzle hole depends only on the gas density and the cumulated injected mass, Figure 3. Furthermore, the 
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correlation between the spray penetration and the cumulated injected mass proves to be valid regardless of the 

injection pressure, the nozzle holder and the nozzle geometry [1]. The left diagram in Figure 3 reveals the known 

influence of the injection pressure on spray length. Rising the injection pressure leads to a faster penetration. If the 

penetration was plotted over the cumulated injected mass per nozzle hole, then the injection pressure has no 

influence on the spray penetration, which can be recognized in the right diagram in Figure 3. 

 

 
Figure 3. Plot of Spray penetration at 1000 bar and 1400 bar rail pressure against time (Left) and against cumulated injection 

mass per nozzle hole (Right) 

 
Figure 4. Spray penetration at 28.5 and 42.75 kg/m³ against the cumulated injected mass (Left), and against each other (Right) 

The second phenomenon includes the influence of the gas density on the spray tip penetration. To investigate this 

influence spray penetration at gas density 𝜌2 (As an example 28.5 kg/m³ in Figure 4) has been plotted over another 

penetration at different gas density 𝜌1 (42.75 kg/m³ in the same figure) at the same cumulated injected mass (notice 

the red and the blue arrow). The relationship between these two penetrations seems to be linear, as can be seen 

from the previous figure (Right). The linear curve slope changes with the gas densities and depends only on the 

density ratio, see Figure 5.  

At the end the spray penetration can be calculated as a function of the cumulated injected mass, the hydraulic flow 

rate and gas density, equation 1. The hydraulic flow rate as well as the cumulated mass are taken for one hole not 

the whole nozzle. This means, that the used cumulated injected mass should be equal to the cumulated injected 

mass of the whole nozzle divided by number of the nozzle holes. The model coefficients from equation 1 were 

determined to be 𝑎 = 265.7, 𝑏 = 0.445 and 𝑐 = −0.387 with fuel temperature of 40°C. It can be shown that the 

coefficients are the same for all analyzed nozzles and injectors. More details about the deviation of equation 1 and 

its validation can be found in [1]. 

𝑆𝜌𝑔
= 𝑎 ∙ (

𝑚𝑓

√𝑄ℎ𝑦𝑑

)𝑏 ∙ 𝜌𝑔
𝑐  (1) 
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Under the assumption that the injection rate is constant and using for example the model from Naber and Siebers 

[19], which is based on momentum conservation, a similar equation can be derived, equation 2, which validates this 

model.  

𝑆𝜌𝑔
∝ (

𝑚𝑓

√𝑄ℎ𝑦𝑑

)𝑏1 ∙ (𝜌𝑓 ∙ 𝜌𝑔)𝑐1 (2) 

The coefficients 𝑏1 and  𝑐1 are 0.5 and -0.25 respectively, and as can be noticed they are similar to empirical values 

in equation 1. Although that the fluid density 𝜌𝑓 shows up explicitly in equation 2, it is expected a better agreement 

between the measured and using equation 1 calculated penetrations. The reason for this lies in considering the 

transient behaviour of the injection rate during the opening and closing phase and thus the hydraulic of the injector. 

Furthermore, equation 1 considers implicitly not only the fuel density but also its surface tension by the coefficient 𝑎. 

This dependency will be explained later, see equation 3. Moreover the coefficient 𝑎 has the same value for all 

nozzles and remains the same for different injector types and designs [1], which is not the case in equation 2. 

Equation 1 was developed and validated for diesel fuel at fuel temperature of 40°C. To use this model with other 

fuels and/or at different fluid temperature the model coefficients should be modified. 

 

 

Figure 5. Correlation of spray penetrations at different gas densities at times of equal cumulated mass 

 
Figure 6. Cone angle and spray penetrations of the two fuels at varying gas densities and 1600 bar injection pressure 

Experimental and numerical results 

Figure 6 presents the development of the measured spray tip penetration and cone angle of diesel fuel and HFO at 

1600 bar and two gas densities 22 and 33 kg/m³. The standard deviation of the measurement is lower than 2 mm 

and 1.5° for spray penetration and cone angle respectively. Due to the high surface tension i.e. low We-number of 

HFO its primary break up results in bigger droplets and ligaments with more inertia than by diesel fuel. This leads 

to a longer spray penetration. However, the diesel obtains a higher cone angle. To explain this the nozzle flow has 

been simulated using the commercial CFD-code AVL-FIRE.  
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To calculate the needle lift curve, which is needed for the nozzle flow simulation, a 1D-hydraulic-model of the injector 

was developed using the program AVL BOOST HYDSIM and subsequently calibrated with utilizing the 

measurements on the injection rate analyzer. Figure 7 presents a comparison of a calculated and measured 

injection rate and also a comparison between calculated and measured injected mass at different injector actuation 

time. As can be seen, the data agrees very well. The deviation of the cumulated injection mass is less than 5% 

which lies in the range of the measurement accuracy.  

The CFD-simulation of the nozzle flow shows that turbulent kinetic energy at the nozzle outlet in diesel case is much 

larger than in HFO-case, Figure 8. The high viscosity of the heavy fuel oil suppresses the formation of cavitation. 

In diesel case the fuel vapour reaches the hole outlet, Figure 8. Collapsing of the cavitation bubbles in diesel case 

enhances the turbulence and the radial components of the velocity which increase the initial angle of the spray. 

Furthermore the low value of turbulent kinetic energy and the high viscosity of the heavy fuel lead to a compact 

spray core with a lower air entrainment in the spray and thus to a low cone angle value. 

 

   

Figure 7. Comparison of the measured and calculated injection rate (Left) and the injected mass at different actuation time 

 

Figure 8. Turbulent kinetic energy and vapour volume fraction at nozzle outlet for diesel case (Left) and for HFO (Right) 

Modification of the 1D-modell to predict the HFO-spray tip penetration 

Figure 9 presents the measured spray tip penetration of the HFO by 1600 and 1800 bar injection pressure and      

33 kg/m³ gas density and of diesel at the same density. The results are plotted in the mass domain. As can be seen 

from this figure, the HFO curves are nearly identical, which confirms that the first phenomenon of the 1D-Model is 

also valid for HFO. From the same figure is to be noticed that the HFO-curves differ from the diesel one. This means 

that the parameter (𝑎) and (𝑏) in equation 1 should be modified for HFO case. The new values for (𝑎) and (𝑏) are 

275 and 0.37 respectively. 

To calculate the influence of the gas density on the spray penetration in HFO-case a spray penetration at gas 

density 𝜌1 has been plotted over another one at different gas density 𝜌2 but at the same cumulated injected mass 
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(similar to Figure 4). The correlation between the sprays is linear and has the same slope like in diesel case, which 

means that the influence of the gas density on the spray tip penetration is the same for both fuels and do not depend 

on the fuel properties, Figure 10.  

Figure 11 contains a representative selection of spray penetrations at different operating points, calculated from the 

measured injection rates using modified parameters for HFO and measured directly within the high-pressure 

injection chamber. As the comparison shows, the calculated and measured data agree very well. 

 

 

Figure 9. Spray tip penetration against the cumulated injected mass for diesel and HFO 

 

Figure 10. Correlation of spray penetrations at different gas densities at times of equal cumulated mass for diesel and HFO 

 

Figure 11. A comparison between the calculated and measured HFO-spray penetration for different injection pressure at 33 

kg/m³ gas density (Left) and for two gas densities at 1600 bar injection pressure (Right) 
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Prediction of spray tip penetration at fuel with different fuel temperature 

Temperature dependency of diesel properties is known and investigated by several researchers e.g. [10] and [11]. 

As the temperature increases both the fluid density and viscosity decrease. This leads to an enhanced break up 

because of the high value of Weber number [12]. In [12] the authors studied numerically the influence of the fuel 

temperature on the spray length. To calculate the tip penetration under different fuel temperatures the authors in 

[12] assumed that the parameters (𝑏) and (𝑐) are temperature independent and suggested a simple correlation to 

predict the parameter (𝑎𝑇) at fuel temperature T as a function of (𝑎) and Weber number at a reference 

temperature 𝑇0  =  313𝐾, equation 3.  

𝑎𝑇 = 𝑎𝑇0
∙ √

𝑊𝑒𝑇0

𝑊𝑒𝑇

= 𝑎𝑇0
∙ √

𝜌𝑇0

𝜎𝑇0

∙
𝜎𝑇

𝜌𝑇

 (2) 

To validate this equation for diesel fuel experimental data from Engine Combustion Network (ECN) are used. The 

measured data are located on [13]. On the home page a numerous experimental data with different parameter like 

fuel type, nozzle hole diameter, gas density and temperature are available. Figure 12 presents a comparison 

between the data from ECN at fluid temperature of 450 K and using equation 1 and 3 calculated spray length. Using 

equation 3 the calculated value of  (𝑎𝑇) is 225. The left diagram in Figure 12 shows the good agreement between 

ECN and calculated curves for different nozzles. This high ability to calculate the penetration for different nozzles 

is explained by considering the injection rate and thus the injector dynamic within the opening phase. Further 

comparisons, carried out at 1400 bar injection pressure, 0.33 mm outlet diameter of the injection hole and different 

gas densities confirm the high accuracy of the model, see the right diagram in Figure 12. 
 

 
Figure 12. Measured and calculated spray penetration for different nozzles (Left) and various gas densities (Right) 

Conclusions 

In the course of the development of an engine, combustion engineers have great interest in a simple mean to predict 

the spray penetration within the cylinder. A flow rate analyser has been used to understand the hydraulic behaviour 

of the injector under different fuels. The influence of fuel on the mixture formation under none evaporating conditions 

has been studied using a high-pressure/high-temperature chamber of the Institute of Piston Machines and Internal 

Combustion Engines at Rostock University. The measurements emphasize that the fuel properties influence the 

spray break up and furthermore the spray length and cone angle.  

To calculate the spray length with HFO an existing model has been modified and used. This model is originally 

developed for diesel sprays from large injectors and is based on two phenomena which include in particular the 

behaviour of the spray in mass domain and the correlation between two sprays at different gas densities. At the 

beginning these two phenomena have been verified for the HFO. The results show that the influence of the gas 

density on the spray length is independent from the fuel type. On the other hand the two other parameters which 

describe the influence of the fuel properties on the break-up had to be modified. Using the new values of these 

parameters sprays at various rail pressures and gas densities could be calculated for HFO. The results agree very 

well with the measurements. Because of the strong influence of the fluid temperature on the fuel properties and 

therefore on the spray penetration a correlation to calculate the first parameter in the model (𝑎) is investigated. The 

results has been validated utilizing experimental data from ECN. The comparison shows the high prediction 

accuracy of the model for a wide range of conditions.  
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Furthermore the influence of the fuel type on the spray cone angle is experimentally investigated. To explain the 

results a 1D-model of the measured injector was coupled with a 3D-CFD-simulation of the nozzle internal hole. 

Because of the low values of the turbulent kinetic energy and Weber number HFO-spray-core will be much more 

compact than by diesel, which leads to poor air entrainment in the spray and to a smaller spray cone angle.  
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Nomenclature 

𝑎, 𝑏 𝑎𝑛𝑑 𝑐 model coefficients 𝑇 fuel temperature [K] 

𝑎𝑇 model coefficient (𝑎) at fuel temperature T 𝑇𝑔 gas temperature [K] 

𝐷𝑜𝑢𝑡  hole outlet diameter 𝜌𝑓  fuel density [kg/m³] 

𝑆 spray tip penetration [mm] 𝜌𝑔  gas density [kg/m³] 

𝑆𝜌𝑔
 spray tip penetration at gas density𝜌𝑔 

[mm] 

𝑚𝑓  cumulated injected mass from one nozzle 

hole [mg] 

𝑄ℎ𝑦𝑑  hydraulic flow rate from one nozzle hole 

[cm³/30s @ 100bar] 

𝑝𝐼𝑛𝑗 injection pressure [bar] 

𝐶𝑂2 Carbon dioxide 𝑊𝑒 Weber number [-] 

𝑁𝑂𝑥  Nitrogen oxide 𝜎 surface tension [N/m] 

𝑁𝐸𝐶𝐴𝑠 NOx Emission Control Areas 𝐷𝐾 diesel fuel 

𝐸𝐶𝑁 Engine Combustion Network 𝐻𝐹𝑂 heavy fuel oil 

𝑆𝑂𝐼 Start of Injection 
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