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Abstract

Many iterative methods for solving nonlinear equations have been developed recently. The main advantage
claimed by their authors is the improvement of the order of convergence. In this work, we compare their dy-
namical behavior on quadratic polynomials with the one of Newton’s scheme. This comparison is defined in
what we call Cayley Quadratic Test (CQT) which can be used as a first test to check the efficiency of such
methods. Moreover we make a brief insight in cubic polynomials.
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1. Introduction

It is usual to find nonlinear equations in the modelization of many scientific and engineering problems, and
a broadly extended tool to solve them are the iterative methods. In the last years, it has become an increasing
and fruitful area of research. More recently, complex dynamics has revealed itself as a very useful tool to deep in
the understanding of the operator that arise when an iterative scheme is applied to solve the nonlinear equation
f(z) = 0, with f : C → C. The dynamical properties of this operator give us important information about
numerical features of the method as its stability and reliability, see for example [1, 2, 3, 4, 5, 6, 7, 8, 9] and the
references therein.

The best known method, for being very simple and effective, is Newton’s method. In the literature, several
modifications have been made on Newton’s scheme and other classical ones in order to accelerate the convergence
or to reduce the number of operations and functional evaluations in each step of the iterative process.

Let us suppose that xn+1 = ψ(xn) define an Iterative Function (I.F.), where ψ(x) is the fixed point function.
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Definition 1.1. If the sequence {xn} tends to a limit α in such a way that

lim
n→∞

|xn+1 − α|
|xn − α|p

= C,

for p ≥ 1, then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error
constant. If p = 1, p = 2 or p = 3, the convergence is said to be linear, quadratic or cubic, respectively.

Let en = xn − α be the error of the nth iteration, then the relation

en+1 = C epn +O
(
ep+1
n

)
= O

(
epn

)
, (1)

is called the error equation.

Let us consider an iterative process in which xn+1 is determined by new information at xn, φ1(xn), ..., φi(xn), i ≥
1. No old information is reused. Thus,

xn+1 = ψ(xn, φ1(xn), ..., φi(xn)). (2)

Then ψ is called an I.F. without memory.
Kung and Traub conjectured in [10] that the upper bound of the order of convergence of an iterative method

without memory that uses d functional evaluation per step is 2d−1. If the scheme reaches this bound, it is called
optimal.

In order to increase the order of convergence it is necessary to use high-order derivatives in case of schemes
point-to-point, or to design multipoint methods. In both cases, the iterative expressions of the resulting methods
become more complicated, and this has direct effects in their stability.

Now, we are going to recall some dynamical concepts that we use in this work (see [11]). Given a rational
function R : C → C, associated to an I.F. acting on a generic polynomial p(z), the orbit of a point z0 ∈ C is
defined as:

{z0, R (z0) , R2 (z0) , ..., Rn (z0) , ...}.

We analyze the phase plane of the map R by classifying the starting points from the asymptotic behavior of
their orbits. A z0 ∈ C is called a fixed point if R (z0) = z0. A periodic point z0 of period p > 1 is a point
such that Rp (z0) = z0 and Rk (z0) 6= z0, for k < p. A pre-periodic point is a point z0 that is not periodic but
there exists a k > 0 such that Rk (z0) is periodic. Moreover, a fixed point z0 is called attractor if |R′(z0)| < 1,
superattractor if |R′(z0)| = 0, repulsor if |R′(z0)| > 1 and parabolic if |R′(z0)| = 1. The fixed points that do not
correspond to the roots of p(z) are called strange fixed points.

The basin of attraction of an attractor α is defined as:

A (α) = {z0 ∈ C : Rn (z0)→α, n→∞}.

The Fatou set of the rational function R, F (R) , is the set of points z ∈ C whose orbits tend to an attractor
(fixed point, periodic orbit or infinity). Its complement in C is the Julia set, J (R). That means that the basin
of attraction of any fixed point belongs to the Fatou set and the boundaries of these basins of attraction belong
to the Julia set.

This paper is organized as follows: in Section 2, we introduce the Cayley Quadratic Test (CQT) for classifying
several families of iterative schemes of different orders of convergence. Also, some dynamical aspects of these
classes of I.F. on quadratic polynomials are studied. In Section 3, a brief introduction about the dynamical
behavior of these families on cubic polynomials and the possible effect of the CQT on them is presented. We
finish the manuscript with some conclusions and the references used in it.
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2. Cayley Quadratic Test

The study of the dynamical behavior of many I.F. in the complex plane can be found in [1, 7, 8, 12,
13, 14, 15, 16]. When a fixed point I.F. associated to a method is applied on a low-degree polynomial, a
rational function is obtained. The analysis of this rational function associated to the iterative method gives us
important information about its convergence, the set of initial points,.... In order to generalize the qualitative
results obtained in the dynamical study, conjugacy classes are defined by using Möbius transformations. All
functions that belong to the same conjugacy class have the same (topologically equivalent) Julia set, the same
basins of attraction, ... that is, the same dynamical properties.

In the following, we consider the general quadratic polynomial q(z) = (z − α1)(z − α2). The Möbius
transformation and its inverse are given by

M(z) =
z − α1

z − α2
, M−1(z) =

α2z − α1

z − 1
,

where M(α1) = 0, M(α2) =∞ and M(∞) = 1. We are going to design a test in order to classify the different
existing methods depending on the analytical expression of the conjugated function to the rational operator
associated to the I.F. on q(z), that is, on the resulting Julia set when they are applied on quadratic polynomials.
Let us remark that, as the Möbius transformation is applied on the rational function obtained by applying the
iterative method on q(z), the resulting rational function is general, as it does not depend on the polynomial
used.

We define Newton I.F. for function f(z) as the complex operator

ψ2ndNR(z) = z − u(z), u(z) =
f(z)

f ′(z)
.

We start with Cayley’s result on the dynamical behavior of Newton I.F. for quadratic polynomials.

Theorem 2.1. [17, 18] Let

ψ2ndNR(z) =
z2 − α1α2

2z − (α1 + α2)
,

be a rational map obtained from Newton’s I.F. applied to the quadratic polynomial q(z) = (z−α1)(z−α2), with

α1 6= α2. Then ψ2ndNR(z) is conjugated to the map z → z2 by the Möbius transformation M(z) =
z − α1

z − α2
. Then,

the Julia set of Newton’s method J(ψ2ndNR(z)), that is, the straight line in the complex plane corresponding to
the locus of points equidistant from α1 and α2, is transformed by the Möbius map into the unit circumference
centered at the origin, S1.

Cayley highlighted the major difficulties in attempting to extend Theorem 2.1 for quadratics to cubics and
beyond. It is believed that this circumstance motivated further work of [19] and [1] along these lines (see [20]).
Theorem 2.1 also follows from the following more general result.

Theorem 2.2. [21, page 8] Suppose that q(z) is a polynomial of degree d ≥ 2. The unit circle S1 = {z ∈ C :
|z| = 1} is completely invariant by q(z) if and only if q(z) = γzd, where |γ| = 1.

From Theorem 2.1 we have M ◦ ψ2ndNR ◦ M−1(z) = z2 which means the Julia set is S1, which can be
considered as an ideal fractal. From this result it can be inferred the good behavior of Newton’s method on
quadratic polynomials: as the associate operator is conjugated to a potence of the variable (that is, it satisfies
what we call CQT) there exist no more fixed nor critical points than 0 and ∞. In this way, the dynamics of the
method is the simplest one.
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Theorem 2.3 (Cayley Quadratic Test (CQT)). Let ψ(z) be the rational map obtained from a general Iteration
Function applied to the quadratic polynomial q(z) = (z − α1)(z − α2), with α1 6= α2. Let us suppose that ψ(z)

is conjugated to the map z → zp, by the Möbius transformation M(z) =
z − α1

z − α2
. Then, p is the order of the

iterative method associated to ψ(z). Moreover, the corresponding Julia set J(ψ(z)) is the circumference S1.

Proof. The statement “the corresponding Julia set J(ψ(z)) is the circumference S1” follows from Theorems 2.1
and 2.2 and Möbius transformation. It is enough to prove that p is the order of the I.F.; if p = 1, the thesis is
evident as ψ is a fixed point function. Then, let us consider p ≥ 2.

M ◦ ψ ◦M−1(z) = zp can be written as M(ψ(z)) = M(z)p. We denote

hp(z) = M(ψ(z))−M(z)p =
ψ (z)− α1

ψ (z)− α2
− (z − α1)

p

(z − α2)
p = 0

We know that ψ(α1) = α1 since α1 is a fixed point of ψ.
Also,

M(α1) = 0, M (j)(α1) =
(−1)j+1j!

(α1 − α2)j
, j ≥ 1

Let us consider the case p = 2.
By using Computer Algebra Software with ψ(α1) = α1 and M(α1) = 0, we can obtain

h2(α1) = 0,

h′2(α1) = M ′(α1)ψ′(α1) = 0⇒ ψ′ (α1) = 0, sinceM ′(α1) =
1

α1 − α2
6= 0,

h
(2)
2 (α1) = M (2)(α1)ψ′(α1)2 +M ′(α1)ψ(2)(α1)− 2M ′(α1)2 = 0⇒ ψ(2) (α1) = 2M ′(α1) =

2!

(α1 − α2)
6= 0.

From Taylor expansion about α1, we have

ψ(z)− α1 = ψ′(α1)(z − α1) +
ψ(2)(α1)

2!
(z − α1)2 + ... =

1

α1 − α2
(z − α1)2 + ...

which shows that the order of the I.F. is 2.
Let us consider the case p = 3.
By using Computer Algebra Software with ψ(α1) = α1 and M(α1) = 0, we can obtain

h3(α1) = 0,

h′3(α1) = M ′(α1)ψ′(α1) = 0⇒ ψ′ (α1) = 0, sinceM ′(α1) =
1

α1 − α2
6= 0,

h
(2)
3 (α1) = M (2)(α1)ψ′(α1)2 +M ′(α1)ψ(2)(α1) = 0⇒ ψ(2) (α1) = 0,

h
(3)
3 (α1) = M (3)(α1)ψ′(α1)3 + 3M (2)(α1)ψ(α1)ψ(2)(α1) +M ′(α1)ψ(3)(α1)− 6M ′(α1)3 = 0,

⇒ ψ(3) (α1) = 6M ′(α1)2 =
3!

(α1 − α2)2
6= 0.

By using again Taylor expansion about α1, we have

ψ(z)− α1 = ψ′(α1)(z − α1) +
ψ(2)(α1)

2!
(z − α1)2 +

ψ(3)(α1)

3!
(z − α1)3 + ... =

1

(α1 − α2)2
(z − α1)3 + ...
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which shows that the order of the I.F. is 3.
For the general case p, by using Computer Algebra Software with ψ(α1) = α1 and M(α1) = 0, we can obtain

hp(α1) = 0,

h′p(α1) = M ′(α1)ψ′(α1) = 0⇒ ψ′ (α1) = 0, sinceM ′(α1) =
1

α1 − α2
6= 0,

h(2)p (α1) = M (2)(α1)ψ′(α1)2 +M ′(α1)ψ(2)(α1) = 0⇒ ψ(2) (α1) = 0,

h(3)p (α1) = M (3)(α1)ψ′(α1)3 + 3M (2)(α1)ψ(α1)ψ(2)(α1) +M ′(α1)ψ(3)(α1) = 0,

⇒ ψ(3) (α1) = 0.

Proceeding in a similar way, we can obtain for j = 2, 3, . . . , p− 1,

h′p(α1) = M ′(α1)ψ′(α1) = 0,

h(j)p (α1) = M (j)(α1)ψ′(α1)j +A1ψ
(2)(α1) +A2ψ

(3)(α1) + ...+Aj−2ψ
(j−1)(α1) +M ′(α1)ψ(j)(α1) = 0,

where Aj are functions of α1.
Thus, we have ψ(j)(α1) = 0, j = 1, 2, . . . , p− 1.
Now,

h(p)p (α1) = M (p)(α1)ψ′(α1)p +A1ψ
(2)(α1) +A2ψ

(3)(α1) + ...+Ap−2ψ
(p−1)(α1) +M ′(α1)ψ(p)(α1)− p!M ′(α1)p = 0

⇒ ψ(p) (α1) = p!M ′(α1)p−1 =
p!

(α1 − α2)p−1
6= 0.

Finally, from Taylor expansion about α1, we obtain

ψ(z)− α1

= ψ′(α1)(z − α1) +
ψ(2)(α1)

2!
(z − α1)2 +

ψ(3)(α1)

3!
(z − α1)3 + ...+

ψ(p−1)(α1)

(p− 1)!
(z − α1)p−1 +

ψ(p)(α1)

p!
(z − α1)p + ...

=
1

(α1 − α2)p−1
(z − α1)p + ...

which establishes the p-order of the I.F.

The Iteration Function is said to have passed the Cayley Quadratic Test if it verifies the above Theorem,
that is, if it is conjugated to zp, otherwise it fails CQT.

3. Iterative schemes satisfying CQT

In this section we are going to analyze different known methods in order to establish if they pass, or not, the
CQT. Moreover, some aspects of their dynamics will be presented by means of complex dynamical planes. For
the representation of the convergence basins of every iterative procedure we have used the software described in
[22]. We draw a mesh with eight hundred points per axis; each point of the mesh is a different initial estimation
which we introduce in the method. If the scheme reaches one of the attracting fixed points (being or not the
roots of the original polynomial) in less than eighty iterations, this point is drawn in different colors, depending
on the fixed point that the iterative process converges to. These attracting points are calculated analytically
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in any case and are marked in the figures by white stars. The color will be more intense when the number of
iterations is lower. Otherwise, if the method arrives at the maximum of iterations, the point will be drawn in
black.

The following study is made only on iterative schemes that use the derivatives of the nonlinear function f .
The reason is that, as the authors prove in [1, 13], Möbius map does not guaranty the existence of conjugacy
classes for quadratic polynomials when the scheme is derivative-free.

We will start the analysis with an increasing number of functional evaluations. We denote by nf , nf ′ and
nf ′′ the number or functional evaluations of functions f , f ′ and f ′′ per step, respectively.

3.1. Schemes with nf = nf ′ = nf ′′ = 1

The classical Chebyshev-Halley family involves the functional evaluation of second derivatives. Its associated
operator is

ψ3rdCH(z) = z −
(

1 +
1

2

Lf (z)

1− αLf (z)

)
u(z), (3)

where u(z) = f(z)
f ′(z) , Lf (z) = f(z)f ′′(z)

f ′(z)2 and α ∈ C. In [15] it is showed that M ◦ψ3rdCH ◦M−1(z) = z3 z−2(α−1)
1−2(α−1)z ,

and when α = 1, then M ◦ψ3rdCH ◦M−1(z) = z4, which corresponds to the classical super-Halley method. Also,
when α = 0.5, M ◦ψ3rdCH ◦M−1(z) = z3 and the associated scheme is Halley’s one. In Figure 1, the qualitative

(a) α = 1 and α = 0.5 (b) α = 2 (c) α = −2

Figure 1: Some dynamical planes from (3) on quadratic polynomials

behavior in the complex plane of some elements of this family of iterative methods on quadratic polynomials
is showed. It can be observed (Figure 1a) that the specific schemes verifying CQT have the same dynamical
properties as Newton’s method. Nevertheless, any other behavior can be found in the vicinity, for values of the
parameter that does not satisfy CQT: when α = 2, z = 1 becomes a strange attractor and our dynamical plane
has three different basins of attraction and if α = −2 there exist only two basins and the method is quite stable,
as we see in Figure 1c. The complete complex dynamical study of this family can be found in [15].

In [1], Amat et al. introduced the third-order parametric family

ψ3rdc(z) = z −
(

1 +
1

2
Lf (z) + cLf (z)2

)
f(z)

f ′(z)
, (4)

which is called c-family. It can be proved that M ◦ ψ3rdc ◦M−1(z) = z3 −4c+(1+z)2(2+z)
1+4z+5z2+2(1−2c)z3 and Cayley’s test

cannot be verified for any value of parameter c. A rigorous complex analysis of the c-family on quadratic
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(a) c = 1
8

(b) c = −2 (c) c = 7− 4
√

3i

Figure 2: Some dynamical planes from (4) on quadratic polynomials

polynomials has been made in [23]. Some regions of stable behavior are found, but no element of the family
behaves as Newton on quadratic polynomials, in concordance with the theory. In Figure 2 some of these are
shown; in particular, case (a) corresponds to a stable behavior with a complicated (but convex) Julia set; case
(b) shows four different basins of attraction, two of them not corresponding to the original roots; finally, in case
(c) a periodic orbit of period 3 is found.

3.2. Schemes with nf = 1 and nf ′ = 2

We consider now the two-parameter family of higher order Chebyshev-Halley-like family of (3rdCHL1) I.F.
due to [24]:

ψ3rdCHL1(z) = z − u(z)

(
1 +

1

2

f ′(z)− f ′(z − βu(z))

(β − λ)f ′(z) + λf ′(z − βu(z))

)
, β, λ ∈ C. (5)

Since

M ◦ ψ3rdCHL1 ◦M−1(z) =
z3(z + 2(1− λ))

2z(1− λ) + 1
=

{z4, for λ=1

z3, for λ= 1
2 .

for any β 6= 0, we have 3rdCHL1 family satisfying the CQT for the cases λ = 0.5 and λ = 1 which correspond to
the third order Halley-like (HL1 ) and third order Super-Halley-like (SHL1 ) families of I.F. respectively [12] (see
Figure 3a). Of course, when other values of the parameter are used, unstable behavior can be found, but also
very stable behavior, as is shown in Figure 3b (with an apparently connected Julia set) and Figure 3c, where
the Julia set is not connected, but is “almost” a circumference: in the immediate basin of attraction associated
to one root, there exist little disconnected areas of convergence to the another one.

On the other hand, we know that SHL1 family of iterative schemes is fourth-order for quadratic polynomials
(its asymptotic error constant depends on the third derivative at the root). The special case λ = 1 and β = 2

3
of the 3rdCHL1 family corresponds to the well-known fourth order optimal Jarratt I.F.

ψ4thJM (z) = z − 3f ′(y) + f ′(z)

6f ′(y)− 2f ′(z)
u(z), (6)

where y = z − 2
3u(z), which satisfies the CQT.
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(a) λ = 1 and λ = 0.5 (b) λ = 1
4

(c) λ = −2

Figure 3: Some dynamical planes from (5) on quadratic polynomials

If we analyze the Jarratt-like family, described by the I.F.

ψJL(z) = y − af ′(z) + bf ′(y)

cf ′(z) + df ′(y)
u(z), (7)

where a, b, c, d ∈ C and y = z − βu(z), β ∈ C, it is easy to show that

• M ◦ ψJL ◦M−1(z) = z3 if and only if a = dβ(3− 2β), b = −dβ, c = d(−1 + 2β) for any β 6= 0,

• M ◦ ψJL ◦M−1(z) = z4 if and only if a = d
2 (−1 + 4β − 2β2), b = d

2 (1− 2β), c = d(β − 1) for any β 6= 0.

In general, the resulting class of methods have order of convergence one. In Figure 4, some aspects of the

(a) β = a = c = d = 1 and b = −1 (b) a = −1, b = −3, c = d = 2, β = 2 (c) a = b = c = d = 1, β = −2

Figure 4: Some dynamical planes from (7) on quadratic polynomials

convergence of Jarratt-type methods is presented. The CQT is verified in case of Figures 4a and 4b (the fixed
point operator becomes z3 and z4 , respectively). However, in Figure 4c, a completely different behavior is
showed: in this case, z = 0 and z = ∞ are repulsive points and the strange fixed point z = 1 is the only
attractive point. So, no convergence to the roots can be achieved in this case.



Study of multipoint iterative methods through the Cayley Quadratic Test 9

3.3. Schemes with nf = 2 and nf ′ = 1

We consider now the two-parameter family of higher order Chebyshev-Halley-like family of (3rdCHL2 ) I.F.
described in [12]:

ψ3rdCHL2(z) = z − u(z)
{β2 + (2λ− 1)(1− β)}f(z) + (1− 2λ)f(z − βu(z))

{β2 + 2λ(1− β)}f(z)− 2λf(z − βu(z))
, β, λ ∈ C. (8)

Since

M ◦ ψ3rdCHL2 ◦M−1(z) =
z3(2(λ− 1)− z)

2(λ− 1)z − 1
=

{z4, for λ=1

z3, for λ= 1
2 .

for any β 6= 0, we have 3rdCHL2 family satisfying the CQT for the cases λ = 0.5 and λ = 1, which correspond
to the third order Halley-like (HL2 ) and third order Super-Halley-like (SHL2 ) families of I.F. respectively [12].
A stable behavior, for two values of λ close to the optimal ones (in the sense of the associated method verifies

(a) λ = 0 (b) λ = 0.25 (c) λ = 2.5

Figure 5: Some dynamical planes from (8) on quadratic polynomials

the CQT) are shown in Figures 5a and 5b. In Figure 5c, a singular circumstance is presented, where z = 1 is a
parabolic point, and it has its own basin of attraction.

We know that SHL2 family of iterative schemes is also fourth-order for quadratic polynomials. The special
case λ = 1 and β = 1 of the 3rdCHL2 family corresponds to the famous fourth order optimal Ostrowski’s
method, which satisfies the CQT. Let us consider now the well-known King’s family (see [25]), which contains
Ostrowski’s method as a particular member,

ψ4thK(z) = y − f(z) + (2 + β)f(y)

f(z) + βf(y)

f(y)

f ′(z)
, (9)

where β ∈ C and y = z − u(z) is the Newton step.

M ◦ ψ4thK ◦M−1(z) = z4
5 + 4z + z2 + β(2 + z)

1 + (4 + β)z + (5 + 2β)z2
.

It can be proved that the only case in which the CQT is verified corresponds again with Ostrowski’s I.F. The
complex dynamics of this family has been studied in [14] and some aspects are shown in Figure 6. Specifically,
the ideal fractal for Ostrowski’s scheme is shown in Figure 6a meanwhile in Figure 6b a dynamical plane with
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(a) β = 0 (b) β = −2 (c) β = −3

Figure 6: Some dynamical planes from (9) on quadratic polynomials

three basins of attraction is shown, two of them corresponding to the original roots of the quadratic polynomial
and another one from an attracting strange fixed point, z = 1. Finally, in Figure 6c, the proposed scheme has
an attracting periodic orbit of period two, whose trajectory is showed in yellow, and the dynamical plane shows
three different basins of attraction.

Kim in [26] designs a class of optimal eighth-order methods, whose two first steps yield to a fourth-order
scheme

ψ4thKim = y − 1 + βv + λv2

1 + (β − 2)v + µv2
f(y)

f ′(z)
, λ, β, µ ∈ C (10)

where y is the step of Newton and v = f(y)
f(z) . It is a three-parametric family of iterative schemes whose order

of convergence is four, with no conditions on λ, β and µ. The operator associated to the method, after Möbius
transformation, can be expressed as

M ◦ ψ4thKim ◦M−1(z) = z4
1 + 2β − λ+ µ+ 4z + 5βz + 2µz + 6z2 + 4βz2 + µz2 + 4z3 + βz3 + z4

1 + 4z + βz + 6z2 + 4βz2 + µz2 + 4z3 + 5βz3 + 2µz3 + z4 + 2βz4 − λz4 + µz4
.

(11)
Let us note that M ◦ ψ4thKim ◦M−1(z) = z4 if λ = 0 and µ = −2β. Indeed, M ◦ ψ4thKim ◦M−1(z) = z5

when λ = 0, β = −1 and µ = 1. A brief glance of the complex dynamics of this family is presented in Figure
7. Different values of the parameters λ, β and µ have been used in order to show different kind of dynamical
behavior: in Figure 7a, there are three fixed attracting points that are not repelling, the ones coming from the
roots of the polynomial and z = −1, which is parabolic and has its own basin of attraction. In the figure, this
basin is presented in black and a trajectory of an starting point in this basin is shown in yellow. In Figure 7b,
the values of the parameters imply that M ◦ ψ4thKim ◦M−1(z) = z5, and the Julia set is the ideal fractal. A
stable behavior is also shown in Figure 7c, where only two different basins of convergence appear, but they have
infinite connected components.

In [27], Artidiello et al. designed a class of fourth-order methods, whose iteration function is

ψ4thA(z) = y − (f(z) + 4βf(y))2

f(z)2 + 2(4β − 1)f(z)f(y) + 4(4β2 − 2β − 1)f(y)2
f(y)

f ′(z)
, (12)

where y is the step of Newton and β ∈ C. Once the Möbius transformation is made, the rational function
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(a) λ = 0, β = 1, µ = −2 (b) λ = 0, β = −1, µ = 1 (c) λ = 1, β = 0, µ = 0

Figure 7: Some dynamical planes from (10) on quadratic polynomials

associated to the iterative method is

M ◦ ψ4thA ◦M−1(z) = z4
−3 + 8β − 4z + 24βz + 32β2z + 2z2 + 24βz2 + 16β2z2 + 4z3 + 8βz3 + z4

1 + 4z + 8βz + 2z2 + 24βz2 + 16β2z2 − 4z3 + 24βz3 + 32β2z3 − 3z4 + 8βz4
, (13)

and it is easy to show that it fails Cayley’s test for any value of β. Although there is no value of β that gives

(a) β = 0 (b) β = 1
3

(c) β = − 1
3

Figure 8: Some dynamical planes from (12) on quadratic polynomials

the ideal fractal, quite stable behavior can be found, as is shown in Figure 8a. Also in Figure 8b only two basins
of attraction are found, although the Julia set is more complicated in this case. However, the opposite value of
the parameter gives two strange attracting points and one attracting periodic orbit of period 2, making much
lower the probability of converging to one root of the polynomial (see Figure 8c).

3.4. Schemes with nf = 2 and nf ′ = 2

A sixth-order Jarratt-like method (6thJM ) [28] is given by

ψ6thJM (z) = ψ4thJM (z)− f(ψ4thJM (z))

2f [ψ4thJM (z), z]− f ′(z) + a1(ψ4thJM (z)− z)2
, (14)
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where y = z − 2
3u(z),

a1 =
2f [ψ4thJM (z), z](−z + y) + (z − 2y + ψ4thJM (z))f ′(z) + (z − ψ4thJM (z))f ′(y)

(z − y)(z − ψ4thJM (z))(z − 3y + 2ψ4thJM (z))

and f [p, q] = f(p)−f(q)
p−q is a divided difference of order 1.

Now, it can be checked that M ◦ψ6thJM ◦M−1(z) = z8 which shows that the 6thJM I.F. is eighth-order for
quadratic polynomials and satisfies the Traub-Kung conjecture. Obviously, the associated dynamical plane is
the ideal fractal, see Figure 9a.

(a) M ◦ ψ6thJM ◦M−1(z) = z8 (b) M ◦ ψ12thJM ◦M−1(z) = z16

Figure 9: Ideal fractals from (14) and (15) on quadratic polynomials

3.5. Schemes with nf = 3 and nf ′ = 2

A twelfth order Jarratt-like I.F. (12thJM ) [28] is given by

ψ12thJM (z) = v(z)− f(v(z))

2f [z, v(z)] + f [u(z), v(z)]− 2f [z, u(z)] + (u(z)− v(z))f [u(z), z, z]
, (15)

where u(z) = ψ4thJM (z), v(z) = ψ6thJM (z) and

f [u(z), z, z] =
f [u(z), z]− f ′(z)

u(z)− z
.

Now, is easy to prove that M ◦ψ12thJM ◦M−1(z) = z16 which shows that the 12thJM I.F. is sixteenth order for
quadratic polynomials and satisfies the Kung-Traub’s conjecture. Again, the corresponding dynamical plane is
the ideal fractal as can be seen in Figure 9b.

3.6. Formulas of I.F. satisfying CQT

We can find I.F.’s which satisfy CQT if we consider

ψ(z) = M−1 ◦ zp ◦M(z) =
α2(z − α1)p − α1(z − α2)p

(z − α1)p − (z − α2)p
.

For some cases of p, we have:
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p = 2, ψ(z) =
z2 − α1α2

2z − (α1 + α2)
which corresponds to the Newton I.F.

p = 3, ψ(z) =
z3 − 3α1α2z + α2

1α2 + α1α
2
2

3z2 − 3(α1 + α2) + (α2
1 + α1α2 + α2

2)
which corresponds to the third-order scheme.

p = 4, ψ(z) =
z4 − 6α1α2z

2 + 4(α2
1α2 + α1α

2
2)z − (α3

1α2 + α2
1α

2
2 + α1α

3
2)

(2z − (α1 + α2))(2z2 − 2(α1 + α2)z + (α2
1 + α2

2))
which corresponds to fourth-order pro-

cedure.

4. A brief glance on cubic polynomials

We have analyzed in the previous section different known families of iterative methods in order to establish if
there exist any value of the parameters involved that makes the corresponding iterative scheme to verify Cayley
Quadratic Test. This aim has been accomplished and also some other behavior have been shown for any other
values of the parameters.

Now, the question arisen is the following: when a member of a class of iterative schemes satisfies CQT, is it
also stable for cubic polynomials, that is, is the Julia set quite simple? and, are there any basins of attraction
of strange fixed points? We will try to conjecture an answer to this question.

In Figure 10, the behavior of the family (5) is presented on the cubic polynomial z3− 1. In this case, to use
a Möbius transformation would force us to add a new parameter; so, the dynamics will not represent the whole
behavior on cubic polynomials, but an idea can be obtained on the influence of the CQT on cubic polynomials.
Figure 10 corresponds to the values of the parameters that verify CQT. However, the behavior showed by them
is not the same; in the case of Figures 10a and 10b, a very stable behavior is shown, very similar to the one of
Newton’s scheme for the same polynomial; in case of Figures 10c, a new basin of attraction appear, as z = 0
becomes an strange attracting point. Different values of the parameters can derive in stable behavior, as can
be seen in Figure 10b.

(a) λ = 1, β = 1 (b) λ = 1, β = 2
3

(c) λ = 1
2

, β = 2
3

Figure 10: Some dynamical planes from (5) on x3 − 1

Let us notice that in case of Jarratt-type family, (7) (and also in family (8) for λ = 1
2 ) the behavior is not the

same, as for the values that made the CQT be satisfied, strange attractors are found in case of cubic polynomials,
as can be seen in Figure 11a. Nevertheless, λ = 1 in family (8) satisfies CQT on quadratic polynomials and
gives a very stable behavior in cubic ones, see Figures 11b and 11c for different values of β.

In the case of King’s family, (9), it can be observed that β = 0, that is the value of the parameter which
satisfies CQT, gives also a very stable behavior in cubic polynomials, very similar to the one showed in Figure
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(a) β = 2
3

,b = − 3a
5

, c = 3a
10

, d = 9a
10

(b) λ = 1, β = 1 (c) λ = 1, β = 2
3

Figure 11: Some dynamical planes from (7) and (8) on x3 − 1

10a. For values that gave unstable behavior on quadratic polynomials, as β = −3 (periodic orbit) or β = −2
(strange attractor at z = 1), also unstable behavior is found on cubic ones: in the first case, the complexity
of the Julia set is increased with the appearance of flower-like structures whose centers are preimages of the
infinity (Figure 12a); in the second one, three strange attractors appear, reducing considerably the probability
of converging to the roots of the polynomial (Figure 12b). Unstable behavior is showed in general in the case of
Kim’s family, (10), where even the values of the parameters that made the family to satisfy CQT give strange
attractors or other undesirable behaviors on cubic polynomials, see Figure 12c.

(a) Family (9), β = −3 (b) Family (9), β = −2 (c) Family (10), λ = 0, β = −1 and
ν = 1

Figure 12: Some dynamical planes from (9) and (10) on x3 − 1

Finally, in Figure 13, the behavior of families (12), (14) and (15) is presented on x3 − 1. In the first case,
the black region correspond to the basin of the infinity, that is a region of non-convergence for this value of the
parameter; a very stable behavior is found in the other two cases, very similar to the one of Newton. Let us
remember that these cases are associated to sixth- and twelfth-order of convergence methods verifying CQT,
respectively.

From the previous results, we conjecture that new conditions must be satisfied on the I.F. in order to assure
stable behavior on cubic polynomials. This can be the aim of future research.
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(a) Family (12), β = 0 (b) (14) (c) (15)

Figure 13: Some dynamical planes from (12), (14) and (15) on x3 − 1

5. Conclusions

From the described results, we can conclude that the CQT is a good indicator about the stability of an
iterative method, with independence of its optimality and its order of convergence. Indeed, we have obtained
evidences of the need to require some new conditions to ensure the same stability on cubic polynomials. This
would imply the definition, in future works, of a Cayley Cubic Test.

Acknowledgments: The authors thank to the anonymous referees for their suggestions to improve the read-
ability of the paper.
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[3] Á.A. Magreñán, J. M. Gutiérrez, Real dynamics for damped Newtons method applied to cubic polynomials,
Journal of Computational and Applied Mathematics (2014) doi:10.1016/j.cam.2013.11.019.
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[8] Á. A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Applied Math-
ematics and Computation 233 (2014) 29–38.

[9] B. Neta, C. Chun, M. Scott, Basins of attraction for optimal eighth order methods to find simple roots of
nonlinear equations, Applied Mathematics and Computation 227 (2014) 567–592.

[10] H. T. Kung, J. F. Traub, Optimal order of one-point and multi-pointiteration, Journal Assoc. Comput.
Math. 21 (1974) 643–651.

[11] P. Blanchard, Complex Analytic Dynamics on the Riemann Sphere, Bulletin of the AMS 11(1) (1984)
85–141.

[12] D. K. R. Babajee, Analysis Of Higher Order Variants Of Newton’s Method And Their Applications To
Differential And Integral Equations And In Ocean Acidification, PhD thesis, University of Mauritius, 2010.

[13] F. Chicharro, A. Cordero, J.M. Gutiérrez, J.R. Torregrosa, Complex dynamics of derivative-free methods
for nonlinear equations, Applied Mathematics and Computation 219 (2013) 7023–7035.
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