[EN] In this paper we obtain some theoretical results about iterative methods with memory for nonlinear equations. The class of algorithms we consider focus on incorporating memory without increasing the computational cost ...
Teruel Ferragud, Carles(Universitat Politècnica de València, 2016-01-11)
[EN] The necessity of solving nonlinear equations and systems arises naturally in the different areas of engineering and science when integral and differential equations are discretized. Nowadays, computers have become ...
Teruel Ferragud, Carles(Universitat Politècnica de València, 2018-09-10)
La necesidad de resolver ecuaciones y sistemas de ecuaciones no lineales surge de manera natural en discretizar las ecuaciones integro-diferenciales que modelan los problemas de los que se encargan las diferentes ramas de ...
[EN] In this work we focus on the problem of approximating multiple roots of nonlinear equations. Multiple roots appear in some applications such as the compression of band-limited signals and the multipactor effect in ...
The theory of complex dynamics is usually applied to compare the global convergence
properties of different iterative methods, by obtaining the attraction basins for simple
polynomial equations in the complex domain. ...
[EN] In this work, we introduce a modification into the technique, presented in A. Cordero, J.L. Hueso, E. Martinez, and J.R. Torregrosa [Increasing the convergence order of an iterative method for nonlinear systems, Appl. ...
Hernández-Verón, Miguel Angel; Martínez Molada, Eulalia; Teruel-Ferragud, Carles(Springer-Verlag, 2017)
[EN] In this paper, we analyze the semilocal convergence of k-steps Newton's method with frozen first derivative in Banach spaces. The method reaches order of convergence k + 1. By imposing only the assumption that the ...