[EN] In previous papers, the authors introduced and characterized a class of matrices called
{K, s+1}-potent. Also, they established a method to construct these matrices. The purpose
of this paper is to solve the associated ...
Lebtahi Ep-Kadi-Hahifi, Leila; Romero Martínez, José Oscar; Thome, Néstor(Elsevier, 2013-09)
In this paper, we deal with {K, s + 1}-potent matrices. These matrices generalize all the following classes of matrices: k-potent matrices, periodic matrices, idempotent matrices, involutory matrices, centrosymmetric ...
Lebtahi Ep-Kadi-Hahifi, Leila; Romero Martínez, José Oscar; Thome, Néstor(Elsevier, 2012-01-15)
Recently, situations where a matrix coincides with some of its powers have been studied. This kind of matrices is related to the generalized inverse matrices. On the other hand, it is possible to introduce another class ...
Romero Martínez, José Oscar(Universitat Politècnica de València, 2012-06-05)
En esta tesis doctoral se han introducido y analizado de manera exhaustiva una nueva clase de matrices denominada matrices {K,s+1}-potentes. Estas matrices contienen como casos particulares las matrices {s+1}-potentes, ...
Gigola, Silvia Viviana; Lebtahi Ep-Kadi-Hahifi, Leila; Thome, Néstor(Asociación Argentina de Matemática Aplicada, Computacional e Industrial, 2013)
El problema del valor propio inverso tiene como prop´osito la construcci´on de una matriz con una de-
terminada estructura que posea cierto espectro predefinido. Se estudia el siguiente problema: dadas X 2 Cn×m y
D 2 ...
Lebtahi Ep-Kadi-Hahifi, Leila; Romero Martínez, José Oscar; Thome, Néstor(Springer-Verlag, 2018)
[EN] This paper deals with generalized centro-invertible matrices introduced by
the authors in Lebtahi et al. (Appl. Math. Lett. 38, 106¿109, 2014). As a first result,
we state the coordinability between the classes of ...
Lebtahi Ep-Kadi-Hahifi, Leila; Romero Martínez, José Oscar; Thome, Néstor(Elsevier, 2014-12)
Centro-invertible matrices are introduced by R.S. Wikramaratna in 2008. For an involutory
matrix R, we define the generalized centro-invertible matrices with respect to R to be
those matrices A such that RAR = A^−1. ...
[EN] A complex square matrix A is called J-hamiltonian if AT is hermitian where J is a normal real matrix such that J(2) = -I-n. In this paper we solve the problem of finding J-hamiltonian normal solutions for the inverse ...
[EN] We study matrices A is an element of C-n x n such that A(s+1)R = RA* where R-k = I-n, and s, k are nonnegative integers with k >= 2; such matrices are called {R, s+1, k, *}-potent matrices. The s = 0 case corresponds ...
This paper examines matrices A is an element of C-nxn such that RA = A(s+1) R where R-k = I, the identity matrix, and where sand k are nonnegative integers with k >= 2. Spectral theory is used to characterize these matrices. ...
Catral, M.; Lebtahi Ep-Kadi-Hahifi, Leila; Stuart, Jeffrey; Thome, Néstor(Elsevier, 2014-11-15)
Let R is an element of C-nxn be a {k}-involutory matrix (that is, R-k = I-n) for some integer k >= 2, and let s be a nonnegative integer. A matrix A is an element of C-nxn is called an {R,s + 1, k}-potent matrix if A ...
Gigola, Silvia Viviana; Lebtahi Ep-Kadi-Hahifi, Leila; Thome, Néstor(Asociación Argentina de Matemática Aplicada, Computacional e Industrial, 2017)
[ES] En este trabajo se estudia el problema del valor propio inverso para matrices normales J-hamiltonianas.
En [Inverse eigenvalue problem for normal J-hamiltonian matrices, Applied Mathematics Letters, 48, 36¿40, ...
Lebtahi Ep-Kadi-Hahifi, Leila; Thome, Néstor(International Linear Algebra Society (ILAS), 2012-02)
In a previous paper, the authors introduced and characterized a new kind of matrices
called {K,s+1}-potent. In this paper, an associated group to a {K, s+1}-potent matrix is explicitly constructed and its properties are ...
Lebtahi Ep-Kadi-Hahifi, Leila; Romero Martínez, José Oscar; Thome, Néstor(Elsevier, 2013)
In this paper, {K, s + 1}-potent matrices are considered. A matrix A in C{nxn} is called {K, s + 1}-potent when KA^(s+1)K = A where K is an involutory matrix and s in {1, 2, 3, . . .}. Specifically, {K, s + 1}-potent ...
Catral, M.; Lebtahi, L.; Stuart, J.; Thome, Néstor(Elsevier, 2020-08-01)
[EN] The {R, s +1, k}- and {R, s +1, k, *}-potent matrices have been studied in several recent papers. We continue these investigations from a spectral point of view. Specifically, a spectral study of {R, s + 1, k} -potent ...
Lebtahi Ep-Kadi-Hahifi, Leila; Patricio, Pedro; Thome, Néstor(Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2014)
In this paper we introduce a new partial order on a ring, namely the diamond
partial order. This order is an extension of a partial order defined in a matrix
setting in [J.K. Baksalary and J. Hauke, A further algebraic ...
The inverse eigenvalue problem and the associated optimal approximation problem for
Hermitian reflexive matrices with respect to a normal {k+1}-potent matrix are considered. First, we study the existence of the solutions ...
Lebtahi Ep-Kadi-Hahifi, Leila; Patrício, Pedro; Thome, Néstor(Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2013)
In this article, the existence of the Drazin (group) inverse of an element a in
a ring is analysed when amk ¼ kan
, for some unit k and m, n 2 N. The same
problem is studied for the case when a* ¼ kamk1 and for the {k, ...