Ferragut, Antoni; Galindo Pastor, Carlos; Monserrat Delpalillo, Francisco José(Elsevier, 2015-10-01)
We give an algorithm for deciding whether a planar polynomial differential system
has a first integral which factorizes as a product of defining polynomials of curves
with only one place at infinity. In the affirmative ...
Sanabria-Codesal, Esther; Alegre Gil, Maria Carmen; Bravo Villar, María Pilar; Esteban Romero, Ramón; Fuster Capilla, R.; Gasso Matoses, María Teresa; Martínez-Pastor, Ana; Monserrat Delpalillo, Francisco José; Pedraza Aguilera, María Carmen(Instituto de Ciencias de la Educación de la Universidad de Alicante, 2011-11-08)
[ES] Durante el curso 2010-11 se ha implantado la titulación de Grado en Ingeniería Informática en la Escuela
Técnica Superior de Ingeniería Informática (ETSINF) de la Universidad Politécnica de Valencia (UPV).
Álgebra es ...
González Ibáñez, Fernán(Universitat Politècnica de València, 2022-09-20)
[ES] En este trabajo se estudiará la definición y algunas propiedades de los campos vectoriales de Killing en una variedad semi-riemanniana. Así como su relación con el grupo de isometría, ciertas magnitudes conservadas ...
Galindo, Carlos; Monserrat Delpalillo, Francisco José; Moreno-Ávila, Carlos Jesús(Springer-Verlag, 2021-08)
[EN] Non-positive at infinity valuations are a class of real plane valuations which have a nice geometrical behavior. They are divided in three types. We study the dual graphs of non-positive at infinity valuations and ...
Sanabria-Codesal, Esther; Monserrat Delpalillo, Francisco José(Instituto de Ciencias de la Educación de la Universidad de Alicante, 2011-11-08)
[ES] Álgebra forma parte del bloque de asignaturas básicas de primero de
la titulación de Grado en Ingeniería Informática, implantada durante el
curso 2010-2011, por la Escuela Técnica Superior de Ingeniería
Informática ...
Galindo Pastor, Carlos; Monserrat Delpalillo, Francisco José(Springer Verlag (Germany), 2014-01)
We construct evaluation codes given by weight functions defined over polynomial rings in m a parts per thousand yen 2 indeterminates. These weight functions are determined by sets of m-1 weight functions over polynomial ...
Monserrat Delpalillo, Francisco José(World Scientific Publishing, 2011-10)
Let
X
be a smooth projective surface such that linear and numerical equivalence of
divisors on
X
coincide and let
σ
⊆|
D
|
be a linear pencil on
X
with integral general
fibers. A fiber of
σ
will be called ...
Monserrat Delpalillo, Francisco José; Galindo Pastor, Carlos(American Mathematical Society, 2012)
[EN] In this paper, the authors are interested in some applications of valuation theory to algebraic geometry and, particularly, to singularity theory. The aim of this paper is to provide a concise survey of some aspects ...
Galindo Pastor, Carlos; Monserrat Delpalillo, Francisco José; Olivares, Jorge(Walter de Gruyter GmbH, 2021-10-10)
[EN] We study foliations F on Hirzebruch surfaces Sd and prove that, similarly to those on the projective plane, any F can be represented by a bi-homogeneous polynomial affine 1-form. In case F has isolated singularities, ...
Monserrat Delpalillo, Francisco José(London Mathematical Society, 2011-01-24)
We use a family of algebraic foliations given by Lins Neto to show some results concerning the
structure of the Mori cone of blow-ups of P2 at very general points.
[EN] We consider the value (mu) over cap(nu) = lim(m -> infinity) m(-1) a(mL), where a(mL) is the last value of the vanishing sequence of H-0(mL) along a divisorial or irrational valuation nu centered at O-P2,(p), L ...
Galindo, Carlos; Monserrat Delpalillo, Francisco José; Monserrat-Fernández, Julio José; Nickel, Matthias(European Mathematical Society Publishing House, 2020)
[EN] We prove that the Newton-Okounkov body associated to the flag E-circle := {X = X-r superset of E-r superset of {q}}, defined by the surface X and the exceptional divisor E-r given by any divisorial valuation of the ...
Galindo, Carlos; Monserrat Delpalillo, Francisco José; Moreno-Ávila, Carlos-Jesús(Springer-Verlag, 2020-05)
[EN] We consider rational surfaces Z defined by divisorial valuations ¿ of Hirzebruch surfaces. We introduce concepts of non-positivity and negativity at infinity for these valuations and prove that these concepts admit ...
Felipe Román, María Josefa; Monserrat Delpalillo, Francisco José; Sotomayor, Víctor(Facultad de Ciencias. Departamento de Matemáticas Fundamentales. UNED, 2019)
[ES] Los rápidos avances científico-tecnológicos determinan un constante y raudo cambio tanto en la vida cotidiana como en la percepción del mundo que nos rodea, lo cual implica una necesidad de adaptación del conocimiento ...
We will present many strong partial results towards a classification of exceptional
planar/PN monomial functions on finite fields. The techniques we use are the Weil bound,
Bézout’s theorem, and Bertini’s theorem.
Ferragut, Antoni; GALINDO PASTOR, CARLOS; Monserrat Delpalillo, Francisco José(Elsevier, 2019-10-15)
[EN] We study the class of planar polynomial vector fields admitting Darboux first integrals of the type Pi(r)(i=1) f(i)(alpha i), where the alpha(i)'s are positive real numbers and the f(i)'s are polynomials defining ...
Galindo, Carlos; Monserrat Delpalillo, Francisco José; Moreno-Ávila, Carlos-Jesús; Pérez-Callejo, Elvira(Oxford University Press, 2023-08)
[EN] We provide a lower bound on the degree of curves of the projective plane P2 passing through the centers of a divisorial valuation ¿ of P2 with prescribed multiplicities, and an upper bound for the Seshadri-type constant ...
Hernando, F.; McGuire, G.; Monserrat Delpalillo, Francisco José; Moyano-Fernández, J. J.(Springer-Verlag, 2020-02-17)
[EN] We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes. These results ...
Galindo Pastor, Carlos; Monserrat Delpalillo, Francisco José(Elsevier, 2016-02-26)
We consider surfaces X defined by plane divisorial valuations v of the quotient field of the local ring R at a closed point p of the projective plane P-2 over an arbitrary algebraically closed field k and centered at R. ...