Cordero Barbero, Alicia; Villalba, Eva G.; Torregrosa Sánchez, Juan Ramón; Triguero-Navarro, Paula(MDPI AG, 2021-01-03)
[EN] A new parametric class of iterative schemes for solving nonlinear systems is designed.
The third- or fourth-order convergence, depending on the values of the parameter being proven.
The analysis of the dynamical ...
[EN] The aim of this paper is the study of the robustness of classical methods defined for finding multiple roots with single multiplicity m when they are used for approximating different roots of a function having different ...
Villalba, Eva G.; Hueso, José L.; Martínez Molada, Eulalia(Taylor & Francis, 2023-09-02)
[EN] It is well known that the Steffensen-type methods approximate the derivative appearing in Newton's scheme by means of the first-order divided difference operator. The generalized multistep Steffensen iterative method ...
Cordero Barbero, Alicia; Villalba, Eva G.; Torregrosa Sánchez, Juan Ramón; Triguero-Navarro, Paula(Elsevier GmbH, 2023-06)
[EN] In this paper, we construct a derivative-free multi-step iterative scheme based on Steffensen's method. To avoid excessively increasing the number of functional evaluations and, at the same time, to increase the order ...
García Villalba, Eva(Universitat Politècnica de València, 2024-06-03)
[ES] Dentro del campo del Análisis Numérico, la resolución de ecuaciones y sistemas de ecuaciones no lineales es uno de los aspectos más relevantes y estudiados. Esto se debe a que gran cantidad de problemas de Matemática ...
Hernández-Verón, M. A.; Magreñán, A. A.; Martínez Molada, Eulalia; Villalba, Eva G.(Springer-Verlag, 2023-12)
[EN] In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space C([alpha,beta]) as alternatives against the well-known Newton's method ...
Villalba, Eva G.; Hernandez, Miguel; Hueso, José L.; Martínez Molada, Eulalia(John Wiley & Sons, 2023-06-04)
[EN]
Starting from the decomposition method for operators, we consider Newton-like iterative processes for approximating solutions of nonlinear operators in Banach spaces. These iterative processes maintain the quadratic ...