One of the important issues related with all types of data analysis, either statistical data analysis, machine learning,
data mining, data science or whatever form of data-driven modeling, is data quality. The more complex ...
[EN] Smart urban transportation management can be considered as a multifaceted big data challenge. It strongly relies on the information collected into multiple, widespread, and heterogeneous data sources as well as on the ...
Pascual Fernández, Ignacio José(Universitat Politècnica de València, 2019-10-22)
[ES] Con la mejora de las tecnologías, el desarrollo de sistemas de información biomédicos y la secuenciación del genoma humano, la medicina de precisión se abre paso como la medicina de un futuro próximo. Sin embargo, ...
Fernández Narro, David(Universitat Politècnica de València, 2023-09-13)
[ES] La variabilidad temporal en distribuciones de datos biomédicos es uno de los principales problemas
hacia una inteligencia artificial basada en aprendizaje automático generalizable. La investigación y toma
de decisiones ...
Ferri Borredá, Pablo(Universitat Politècnica de València, 2017-07-20)
The degree of homogeneity among data distributions is a critical issue when reusing data integrated from different sources, since the introduction of undesired variabilities may lead to misleading results. Therefore, ...
Garcia De Leon Chocano, Ricardo; Sáez Silvestre, Carlos; Muñoz Soler, Verónica; García de León González, Ricardo; García Gómez, Juan Miguel(Elsevier, 2015-12-01)
This is the first paper of a series of two regarding the construction of data quality (DQ) assured repositories for the reuse of information on infant feeding from birth until two years old. This first paper justifies the ...
López-Larrainzar Salazar, Arantzazu(Universitat Politècnica de València, 2023-06-19)
[EN] The technological revolution in which this society is immersed is generating an everincreasing amount of data, with enormous potential value, which can only be useful if it
is converted and transformed into information ...
Bulnes Caicoya, Samuel José(Universitat Politècnica de València, 2024-10-08)
[ES] Según la OMS, la población mundial cada vez está más envejecida, sufriendo de más enfermedades crónicas, lo que aumenta considerablemente el gasto por paciente, y hace tambalear la sostenibilidad de los sistemas de ...
Alcalá Pérez, Luis(Universitat Politècnica de València, 2020-10-06)
[ES] Las asignaturas Sistemas de Información y Telemedicina y Data Quality and Interoperability del Grado y Máster en Ingeniería Biomédica de la Universitat Politècnica de València, España, abordan los resultados de ...
Sáez Silvestre, Carlos; Gutiérrez-Sacristán, Alba; Kohane, Isaac; Garcia-Gomez, Juan M; Avillach, Paul(Oxford University Press, 2020-07-30)
[EN] Background: Temporal variability in health-care processes or protocols is intrinsic to medicine. Such variability can potentially introduce dataset shifts, a data quality issue when reusing electronic health records ...
Iniesta Blasco, Gonzalo(Universitat Politècnica de València, 2024-10-23)
[ES] El dato se ha convertido en uno de los principales activos para las empresas.
Este hecho ha llevado a que las empresas cada vez produzcan y almacenen más datos, pero también intenten explotarlos, dando lugar a un ...
[EN] This paper presents a new innovative framework to support smart manufacturing quality assurance. More specifically, the i4Q framework provides an IoT-based Reliable Industrial Data Services (RIDS), a complete suite ...
[EN] Google Trends (GT) has become a popular data source among researchers in a wide variety of fields. In economics, its main use has been to forecast other economic variables such as tourism demand, unemployment or sales. ...
Sáez, Carlos; Garcia-Gomez, Juan M(Elsevier, 2018)
[EN] Aim: The increasing availability of Big Biomedical Data is leading to large research data samples collected over long periods of time. We propose the analysis of the kinematics of data probability distributions over ...
[EN] Background: Unexpected variability across healthcare datasets may indicate data quality issues and thereby affect the credibility of these data for reutilization. No gold-standard reference dataset or methods for ...
Several methods to detect faults have been developed in various fields, mainly in chemical and process engineering. However, minimal practical guidelines exist for their selection and application. This work presents an ...
Sáez Silvestre, Carlos; Romero, Nekane; Conejero, J. Alberto; Garcia-Gomez, Juan M(Oxford University Press, 2021-02)
[EN] Objective: The lack of representative coronavirus disease 2019 (COVID-19) data is a bottleneck for reliable and generalizable machine learning. Data sharing is insufficient without data quality, in which source ...
Kostova, Vanya(Editorial Universitat Politècnica de València, 2023-09-22)
[EN] Data quality is a critical aspect of data product management and a major challenge in the field of data engineering. It refers to the availability, accuracy, completeness, and consistency of data, which are essential ...
Sáez Silvestre, Carlos; Pereira Rodrigues, Pedro; Gama, João; Robles Viejo, Montserrat; García Gómez, Juan Miguel(Springer Verlag (Germany), 2014-09-02)
Knowledge discovery on biomedical data can be based on on-line, data-stream analyses, or using retrospective, timestamped, off-line datasets. In both cases, changes in the processes that generate data or in their quality ...
Sáez Silvestre, Carlos(Editorial Universitat Politècnica de València, 2016-04-05)
[EN] Nowadays, biomedical research and decision making depend to a great extent on the data stored in information systems. As a consequence, a lack of data quality (DQ) may lead to suboptimal decisions, or hinder the derived ...