Rubio Soria, Raquel(Universitat Politècnica de València, 2023-07-21)
[ES] En los últimos años, se ha podido observar un análisis digital microscópico más evidente de la oncología a través de la patología digital, la cual cada vez desempeña un papel más importante en la práctica clínica. De ...
[EN] The field of digital histopathology has seen incredible growth in recent years. Digital pathology is becoming a relevant tool in healthcare, industrial and research sectors to reduce the saturation of pathology ...
Amor del Amor, María Rocío del(Universitat Politècnica de València, 2023-11-27)
[ES] En los últimos años, el aprendizaje profundo (DL) se ha convertido en una de
las principales áreas de la inteligencia artificial (IA), impulsado principalmente
por el avance en la capacidad de procesamiento. Los ...
del Amor, Rocío; Silva-Rodríguez, Julio; Naranjo Ornedo, Valeriana(Elsevier, 2023-07)
[EN] Deep learning-based models applied to digital pathology require large, curated datasets with high-quality (HQ) annotations to perform correctly. In many cases, recruiting expert pathologists to annotate large databases ...
Tabatabaei, Zahra; Colomer, Adrián; Oliver Moll, Javier; Naranjo Ornedo, Valeriana(Institute of Electrical and Electronics Engineers, 2023-12-18)
[EN] According to the Global Cancer Observatory, 2020, breast cancer is the most prevalent
cancer type in both genders (11.7%), while prostate cancer is the second most common cancer type in
men (14.1%). In digital pathology, ...
[EN] The paper proposes a federated content-based medical image retrieval (FedCBMIR) tool
that utilizes federated learning (FL) to address the challenges of acquiring a diverse medical data
set for training CBMIR models. ...