[EN] In this paper we revise the proofs of the results obtained in "Convergence radius of Osada's method under Holder continuous condition"[4], because the remainder of the Taylor's expansion used for the obtainment of the ...
[EN] We present a local convergence study of a fifth order iterative method to approximate a locally unique root of nonlinear equations. The analysis is discussed under the assumption that first order Frechet derivative ...
[EN] Solving equations of the form H(x)=0 is one of the most faced problem in mathematics and in other science fields such as chemistry or physics. This kind of equations cannot be solved without the use of iterative ...
[EN] In this paper we propose an alternative for the study of local convergence radius and the uniqueness radius for some third-order methods for multiple roots whose multiplicity is known. The main goal is to provide an ...
[EN] The convergence analysis both local under weaker Argyros-type conditions and semilocal under. omega-condition is established using first order Frechet derivative for an iteration of fifth order in Banach spaces. This ...
In this work we introduce a new form of setting the general assumptions for the local convergence studies of iterative methods in Banach spaces that allows us to improve the convergence domains. Specifically a local ...
Hernández-Verón, Miguel Angel; Martínez Molada, Eulalia(Elsevier, 2018)
[EN] Solving equations of the form H(x) = 0 is usually done by applying iterative methods. The main interest of this paper is to improve the domain of starting points for Steffensen's method. In general, the accessibility ...
[EN] In this paper we give a local convergence result for a uniparametric family of iterative methods for nonlinear equations in Banach spaces. We assume boundedness conditions involving only the first Fr,chet derivative, ...
Singh, Sukhjit; Gupta, D. K.; Badoni, Rakesh P.; Martínez Molada, Eulalia; Hueso Pagoaga, José Luís(Springer-Verlag, 2017)
[EN] The local convergence analysis of a parameter based iteration with Hölder continuous first derivative is studied for finding solutions of nonlinear equations in Banach spaces. It generalizes the local convergence ...
García Villalba, Eva(Universitat Politècnica de València, 2024-06-03)
[ES] Dentro del campo del Análisis Numérico, la resolución de ecuaciones y sistemas de ecuaciones no lineales es uno de los aspectos más relevantes y estudiados. Esto se debe a que gran cantidad de problemas de Matemática ...
Cevallos Alarcón, Fabricio Alfredo(Universitat Politècnica de València, 2023-05-22)
[ES] La resolución de ecuaciones y sistemas no lineales es un tema de gran interés teórico-práctico, pues muchos modelos matemáticos de la ciencia o de la industria se expresan mediante sistemas no lineales o ecuaciones ...
Cordero Barbero, Alicia; Ezquerro, J. A.; Hernández Verón, M. A.; Torregrosa Sánchez, Juan Ramón(Elsevier, 2015-01-15)
[EN] A new predictor–corrector iterative procedure, that combines Newton’s method as
predictor scheme and a fifth-order iterative method as a corrector, is designed for solving
nonlinear equations in Banach spaces. We ...
Amat, Sergio; Argyros, Ioannis K.; Busquier Saez, Sonia; Hernández-Verón, Miguel Angel; Martínez Molada, Eulalia(Elsevier, 2018-12-01)
[EN] This paper is devoted to a family of Newton-like methods with frozen derivatives used to approximate a locally unique solution of an equation. The methods have high order of convergence but only using first order ...
The semilocal and local convergence in Banach spaces is described for a fifth order iteration for the solutions of nonlinear equations when the Frechet derivative satisfies the Holder condition. The Holder condition ...