[EN] Handwritten Text Recognition is a important requirement in order to make visible the contents of the myriads of historical documents residing in public and private archives and libraries world wide. Automatic Handwritten ...
Garibo Orts, Óscar(Universitat Politècnica de València, 2023-04-18)
[ES] Durante las últimas décadas el uso del aprendizaje automático (machine learning) y de la inteligencia artificial ha mostrado un crecimiento exponencial en muchas áreas de la ciencia. El hecho de que los ordenadores ...
Benavides, Llinet; Manso, Miguel(Editorial Universitat Politècnica de València, 2021-10-01)
[EN] Solar forecasting is of great interest due to the growing use of renewable energies as an alternative to the global problems
posed by current energy sources. In the last decade important advances have been achieved, ...
Doetsch, Patrick; Hamdani, Mahdi; Ney, Hermann; Giménez Pastor, Adrián; Andrés Ferrer, Jesús; Juan Císcar, Alfonso(Institute of Electrical and Electronics Engineers (IEEE), 2012-09-18)
—In this paper a vertical repositioning method
based on the center of gravity is investigated for handwriting
recognition systems and evaluated on databases containing
Arabic and French handwriting. Experiments show ...
Ortiz Pérez, Ángel(Universitat Politècnica de València, 2023-06-21)
[ES] En este trabajo se explorará el uso de distintos modelos de deep learning para predecir la demanda futura de un producto, lo que puede resultar de gran utilidad para la dirección operativa de una empresa. La elaboración ...
Márquez-Vera, M. A.; López-Ortega, O.; Ramos-Velasco, L. E.; Ortega-Mendoza, R. M.; Fernández-Neri, B. J.; Zúñiga-Peña, N. S.(Universitat Politècnica de València, 2021-04-06)
[EN] Fault diagnosis is important for industrial processes because it permits to determine the necessity of emergency stops in a process and/or to propose a maintenance plan. Two strategies for fault diagnosis are compared ...
Fornés Gabaldón, Héctor(Universitat Politècnica de València, 2022-10-27)
[ES] El objetivo de este trabajo es desarrollar un sistema de detección de anomalías para la industria, dentro del marco de mi puesto como trabajador en la empresa NUNSYS SA.
Se cubrirán todas las fases del proyecto, ...
Garibo i Orts, Óscar; Baeza-Bosca, Alba; Garcia March, Miguel Angel; Conejero, J. Alberto(IOP Publishing, 2021-12-17)
[EN] Anomalous diffusion occurs at very different scales in nature, from atomic systems to motions in cell organelles, biological tissues or ecology, and also in artificial materials, such as cement. Being able to accurately ...
Cuéllar Abril, Juan Julián(Universitat Politècnica de València, 2020-09-18)
[EN] FOREX is a market in which large amounts of resources are invested in order to predict changes in currency pairs as accurately as possible. In this market, machine learning is also having a great impact and numerous ...
Conejero, J. Alberto; Garibo-i-Orts, Óscar; Lizama, Carlos(Springer-Verlag, 2023)
[EN] We infer the parameters of fractional discrete Wu Baleanu time series by using machine learning architectures based on recurrent neural networks. Our results shed light on howclearly one can determine that a given ...
Despite the promising results achieved in last years by statistical machine translation, and more precisely, by the neural
machine translation systems, this technology is still not error-free. The outputs of a machine ...
Gurrola-Ramos, Javier; Alarcon, Teresa; Dalmau, Oscar; Manjón Herrera, José Vicente(Institute of Electrical and Electronics Engineers, 2024)
[EN] Magnetic resonance images are usually corrupted by noise during the acquisition process, which can affect the results of subsequent medical image analysis and diagnosis. This paper presents a denoising recurrent ...
Aineto, Diego; Iranzo-Sánchez, Javier; Lemus Zúñiga, Lenin Guillermo; Onaindia De La Rivaherrera, Eva; Urchueguía Schölzel, Javier Fermín(MDPI AG, 2019-06-01)
[EN] The mainstream of EU policies is heading towards the conversion of the nowadays electricity consumer into the future electricity prosumer (producer and consumer) in markets in which the production of electricity will ...
Montalvá Minguet, Kevin(Universitat Politècnica de València, 2017-02-13)
[EN] Machine Translation systems have been used since their inception by professional
translators to speed up and ease their work. Those systems receive professionally edited
translations through their use, which could ...
Begga, Ahmed; Garibo-i-Orts, Óscar; de María-García, Sergi; Escolano, Francisco; Lozano, Miguel A.; Oliver, Nuria; Conejero, J. Alberto(Frontiers Media S.A., 2023-12-15)
[EN] IntroductionDuring the recent COVID-19 pandemics, many models were developed to predict the number of new infections. After almost a year, models had also the challenge to include information about the waning effect ...
[EN] We show how machine learning methods can unveil the fractional and delayed nature of discrete dynamical systems. In particular, we study the case of the fractional delayed logistic map. We show that given a trajectory, ...
Del Agua Teba, Miguel Angel; Giménez Pastor, Adrián; Sanchis Navarro, José Alberto; Civera Saiz, Jorge; Juan, Alfons(Institute of Electrical and Electronics Engineers, 2018)
[EN] In the last years, Deep Bidirectional Recurrent Neural Networks (DBRNN) and DBRNN with Long Short-Term Memory cells (DBLSTM) have outperformed the most accurate classifiers for confidence estimation in automatic speech ...
Peris Abril, Álvaro(Universitat Politècnica de València, 2014-09-23)
This work is framed into the Statistical Machine Translation field,
more specifically into the language modeling challenge. In this area,
have classically predominated the n-gram approach, but, in the latest
years, ...
In this paper, we compare different algorithms for the recognition of transportation modes based on features extracted from the accelerometer data. The performance and effectiveness of the transportation mode classifiers ...