Leon, Jonas F.; Li, Yuda; Martin, Xabier A.; Calvet, Laura; Panadero, Javier; Juan, Angel A.(MDPI AG, 2023-09)
[EN] The use of simulation and reinforcement learning can be viewed as a flexible approach to aid managerial decision-making, particularly in the face of growing complexity in manufacturing and logistic systems. Efficient ...
Uguina, Antonio R.; Gomez, Juan F; Panadero, Javier; Martínez-Gavara, Anna; Juan, Angel A.(MDPI AG, 2024-06)
[EN] The team orienteering problem (TOP) is a well-studied optimization challenge in the field of Operations Research, where multiple vehicles aim to maximize the total collected rewards within a given time limit by visiting ...
Gómez, Juan F.; Uguina, Antonio R.; Panadero, Javier; Juan, Angel A.(MDPI AG, 2023-12)
[EN] The capacitated dispersion problem, which is a variant of the maximum diversity problem, aims to determine a set of elements within a network. These elements could symbolize, for instance, facilities in a supply chain ...
Butt, Jemil; Wieser, Andreas(Editorial Universitat Politècnica de València, 2023-01-27)
[EN] A well-known challenge for deformation monitoring is the spatial discretization, i.e. the choice of monitoring points at which measurements are to be taken. Well-chosen monitoring points employ prior knowledge to yield ...
Pescador Barreto, Germán Andrés(Universitat Politècnica de València, 2023-10-21)
[ES] Este trabajo se enfoca en el entrenamiento de un agente robótico de navegación diferencial, utilizando técnicas de aprendizaje por refuerzo. El objetivo principal es capacitar al agente para realizar tareas de navegación ...
Seni Molina, Mario Jose(Universitat Politècnica de València, 2022-11-03)
[ES] En este trabajo fin de máster se desarrolla un agente inteligente basado en el aprendizaje por refuerzo profundo (Deep Reinforcement Learning) para modelar el proceso de abastecimiento colaborativo entre cadenas de ...
Obrador Reina, Miquel(Universitat Politècnica de València, 2023-09-22)
[ES] En el campo del aprendizaje por refuerzo se busca entrenar agentes inteligentes para que aprendan a tomar decisiones óptimas en situaciones complejas a través de la interacción con un ambiente. En este trabajo realizado ...
Martínez Sanchis, Genís(Universitat Politècnica de València, 2021-02-24)
[ES] En este trabajo de fin de grado se realizará un estudio basado en el análisis de la aplicación de algoritmos de aprendizaje por refuerzo para entornos mono-agente sobre entornos multi-agente basados en la plataforma ...
Pastor Alcaraz, José Manuel(Universitat Politècnica de València, 2017-02-07)
[EN] The aim of this master thesis is to study the state of art of reinforment learning, particularly those based on policy search methods and to apply such techniques to a 3DOFs inverted pendulum mechanism. The controller ...
REGO MAÑEZ, ALBERT; Gonzalez Ramirez, Pedro Luis; Jimenez, Jose M.; Lloret, Jaime(Springer-Verlag, 2022-06)
[EN] Internet of Things (IoT) has introduced new applications and environments. Smart Home provides new ways of communication and service consumption. In addition, Artificial Intelligence (AI) and deep learning have improved ...
Insa Cabrera, Javier; Dowe, David L.; España Cubillo, Sergio; Henánez-Lloreda, M. Victoria; Hernández Orallo, José(Springer Verlag (Germany), 2011)
Comparing humans and machines is one important source of
information about both machine and human strengths and limitations.
Most of these comparisons and competitions are performed in rather
specific tasks such as ...
Palacios-Morocho, Maritza Elizabeth; López-Muñoz, Pablo; Costán, Manuel A.; Monserrat del Río, Jose Francisco(Institute of Electrical and Electronics Engineers, 2023)
[EN] In autonomous navigation and route planning, the data obtained by the different sensors play a significant role. On the one hand, more data will lead to faster learning of the behavioral policy. On the other hand, ...
Ferrándiz Alarcón, Jesús(Universitat Politècnica de València, 2021-10-19)
[ES] Con el presente trabajo se pretende llevar a cabo el desarrollo de controladores usando una arquitectura modular basada en software libre de código abierto. Para ello en la controladora se ejecutará el sistema operativo ...
Tello Oquendo, Luis Patricio(Universitat Politècnica de València, 2018-09-10)
En la actualidad, la Internet de las Cosas (Internet of Things, IoT) es una tecnología esencial para la próxima generación de sistemas inalámbricos. La conectividad es la base de IoT, y el tipo de acceso requerido dependerá ...
[EN] In this paper, we describe a new trend analysis and forecasting method (Deflexor), which is
intended to help inform decisions in almost any field of human social activity, including, for example,
business, art and ...
Albert Bonet, Hugo(Universitat Politècnica de València, 2024-06-26)
[ES] Hyperloop es el denominado transporte del futuro , un nuevo medio de transporte que emplea la combinación de levitación y vacío para evitar el rozamiento en su trayecto, lo que lo convierte en un medio más rápido, ...
Serrano, Julio C.; Mula, Josefa; Poler, R.(Springer, 2021-06-30)
[EN] Recently, many novel paradigms, concepts and technologies, which lay the foundation for the new revolution in manufacturing environments, have emerged and make it faster to address critical decisions today in supply ...
Ramos-Rojas, Jaime; Lora-Millan, Julio S.; Castano, Juan A.; Carballeira, Juan; Fernández, Pedro R.; Borromeo, Susana(Universitat Politècnica de València, 2024-09-27)
[EN] Walking is an extraordinarily complex task that requires the involvement of the entire nervous system, being affected by several neurological abnormalities. All current gait rehabilitation exoskeletons, despite ...
Calabuig, J. M.; Falciani, H.; Sánchez Pérez, Enrique Alfonso(Elsevier, 2020-07-20)
[EN] We consider a quasi-metric topological structure for the construction of a new reinforcement learning model in the framework of financial markets. It is based on a Lipschitz type extension of reward functions defined ...
García Villegas, Alejandro(Universitat Politècnica de València, 2024-10-03)
[EN] Artificial intelligence has witnessed remarkable progress in recent years, with machine learning being a crucial milestone in transforming the field. Reinforcement
learning, a model that trains an algorithm through ...