Juan Císcar, Alfonso; Civera Saiz, Jorge; Sanchis Navarro, José Alberto(Universitat Politècnica de València, 2018-07-03)
The training objectives of this learning object are: 1) To apply discriminant functions; 2) To compute the decision boundary between two classes; 3) To identify the type of decision boundary; 4) To compute the decision ...
Juan Císcar, Alfonso; Civera Saiz, Jorge; Sanchis Navarro, José Alberto(Universitat Politècnica de València, 2018-06-25)
Four general definitions of Machine Learning (ML), from well-know machine
learners, are first provided as an approximation to define its main
objective. Siimilarly, then three general definitions of Pattern Recognition
(PR), ...
Juan Císcar, Alfonso; Civera Saiz, Jorge; Sanchis Navarro, José Alberto(Universitat Politècnica de València, 2018-06-25)
Linear classifiers, that is, classifiers based on linear discriminant
functions, are formally introduced first. Then, a well-known learning
technique, the so-called Perceptron algorithm, is described for general
multiclass ...
Juan Císcar, Alfonso; Civera Saiz, Jorge; Sanchis Navarro, José Alberto(Universitat Politècnica de València, 2018-07-06)
The training objectives of this learning object are: 1) To represent knowledge with continuous variables; 2) To infer knowledge from continuous variables and the Bayes
theorem; and 3) To apply the Bayes rule in general ...
Juan Císcar, Alfonso; Civera Saiz, Jorge; Sanchis Navarro, José Alberto(Universitat Politècnica de València, 2018-07-03)
The training objectives of this learning object are: 1) To represent knowledge in probabilistic terms; 2) To infer probabilistic knowledge by means of the sum amb product rules from probability calculus; 3) To apply the ...