- -

Comparison between point and long-gage FBG-based strain sensors during a railway bridge load test

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison between point and long-gage FBG-based strain sensors during a railway bridge load test

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torres Górriz, Benjamín es_ES
dc.contributor.author Rinaudo, Paula es_ES
dc.contributor.author Calderón García, Pedro Antonio es_ES
dc.date.accessioned 2018-05-19T04:22:13Z
dc.date.available 2018-05-19T04:22:13Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1475-1305 es_ES
dc.identifier.uri http://hdl.handle.net/10251/102254
dc.description.abstract [EN] Strain is a key parameter in laboratory and bridge load testing. The selection of a strain sensor depends on several factors, including the aim of the test and the specimen material. The application of the right sensor is vital to obtain accurate readings, especially in the case of heterogeneous materials such as concrete. This paper focuses on long‐gage and point fiber Bragg grating‐based strain sensors and their possible applications on concrete elements. First, strain sensors are described, after which long‐gage and point fiber Bragg grating strain sensors are compared in a concrete specimen test, a concrete column test and static and dynamic load tests on a concrete railway bridge. Results show that although it is advisable to use long‐gage sensors when monitoring heterogeneous materials, there are some particular cases were both sensors type can provide accurate strain measurements. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof STRAIN es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bridge load test es_ES
dc.subject Fiber Bragg Grating es_ES
dc.subject Fiber optic sensor es_ES
dc.subject Long-gage sensor es_ES
dc.subject Strain es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Comparison between point and long-gage FBG-based strain sensors during a railway bridge load test es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/str.12230 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-08-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Torres Górriz, B.; Rinaudo, P.; Calderón García, PA. (2017). Comparison between point and long-gage FBG-based strain sensors during a railway bridge load test. STRAIN. 4:1-14. doi:10.1111/str.12230 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/str.12230 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.relation.pasarela S\337145 es_ES
dc.description.references Calderón, P. A., & Glisic, B. (2012). Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement. Measurement Science and Technology, 23(6), 065604. doi:10.1088/0957-0233/23/6/065604 es_ES
dc.description.references Glišić, B., & Inaudi, D. (2007). Fibre Optic Methods for Structural Health Monitoring. doi:10.1002/9780470517819 es_ES
dc.description.references Kissinger, T., Charrett, T. O. H., & Tatam, R. P. (2013). Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications. Measurement Science and Technology, 24(9), 094011. doi:10.1088/0957-0233/24/9/094011 es_ES
dc.description.references Leite, L., Bonet, J. L., Pallarés, L., Miguel, P. F., & Fernández-Prada, M. A. (2013). Experimental research on high strength concrete slender columns subjected to compression and uniaxial bending with unequal eccentricities at the ends. Engineering Structures, 48, 220-232. doi:10.1016/j.engstruct.2012.07.039 es_ES
dc.description.references Leite, L., Bonet, J. L., Pallarés, L., Miguel, P. F., & Fernandez-Prada, M. A. (2012). Behavior of RC slender columns under unequal eccentricities and skew angle loads at the ends. Engineering Structures, 40, 254-266. doi:10.1016/j.engstruct.2012.02.017 es_ES
dc.description.references Garzón-Roca, J., Ruiz-Pinilla, J., Adam, J. M., & Calderón, P. A. (2011). An experimental study on steel-caged RC columns subjected to axial force and bending moment. Engineering Structures, 33(2), 580-590. doi:10.1016/j.engstruct.2010.11.016 es_ES
dc.description.references Realfonzo, R., Napoli, A., & Pinilla, J. G. R. (2014). Cyclic behavior of RC beam-column joints strengthened with FRP systems. Construction and Building Materials, 54, 282-297. doi:10.1016/j.conbuildmat.2013.12.043 es_ES
dc.description.references Torres, B., Payá-Zaforteza, I., Calderón, P. A., & Adam, J. M. (2011). Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring. Engineering Structures, 33(2), 539-548. doi:10.1016/j.engstruct.2010.11.012 es_ES
dc.description.references www.fos-s.be es_ES
dc.description.references www.smartec.ch es_ES
dc.description.references www.alava-ing.es es_ES
dc.description.references http://www.micronoptics.com es_ES
dc.description.references B. Glišić Inaudi D J.M. Lau 7th International Conference on Multi-Purpose High-Rise Towers and Tall Buildings (IFHS) 2005 es_ES
dc.description.references Rinaudo, P., Torres, B., Paya-Zaforteza, I., Calderón, P. A., & Sales, S. (2015). Evaluation of new regenerated fiber Bragg grating high-temperature sensors in an ISO 834 fire test. Fire Safety Journal, 71, 332-339. doi:10.1016/j.firesaf.2014.11.024 es_ES
dc.description.references Moyo, P., Brownjohn, J. M. W., Suresh, R., & Tjin, S. C. (2005). Development of fiber Bragg grating sensors for monitoring civil infrastructure. Engineering Structures, 27(12), 1828-1834. doi:10.1016/j.engstruct.2005.04.023 es_ES
dc.description.references B. Torres Górriz Definición de las pautas y condiciones de monitorización, encapsulado y fijación de sensores de fibra óptica para la medida de deformación y temperatura en estructuras. Ed. UPV 2012 es_ES
dc.description.references Kinet, D., Mégret, P., Goossen, K., Qiu, L., Heider, D., & Caucheteur, C. (2014). Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions. Sensors, 14(4), 7394-7419. doi:10.3390/s140407394 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem