- -

Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems

Mostrar el registro completo del ítem

Jimenez, N.; Romero García, V.; Pagneux, V.; Groby, J. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports. 7(1). doi:10.1038/s41598-017-13706-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/102312

Ficheros en el ítem

Metadatos del ítem

Título: Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems
Autor: Jimenez, Noe Romero García, Vicente Pagneux, Vincent Groby, J.P.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Perfect, broadband and asymmetric sound absorption is theoretically, numerically and experimentally reported by using subwavelength thickness panels in a transmission problem. The panels are composed of a periodic ...[+]
Palabras clave: Acoustics , Metamaterials
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-017-13706-4
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-017-13706-4
Código del Proyecto:
info:eu-repo/grantAgreement/ANR//ANR-13-BS09-0003/FR/Design of metamaterials for the absorption of audible sound/Metaudible/
Agradecimientos:
The authors acknowledge fnancial support from the Metaudible Project No. ANR-13-BS09-0003, cofunded by ANR and FRAE.
Tipo: Artículo

References

Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature materials 11, 917–924 (2012).

Ding, Y., Liu, Z., Qiu, C. & Shi, J. Metamaterial with simultaneously negative bulk modulus and mass density. Physical review letters 99, 093904 (2007).

Christensen, J., Kadic, M., Kraft, O. & Wegener, M. Vibrant times for mechanical metamaterials. Mrs Communications 5, 453–462 (2015). [+]
Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature materials 11, 917–924 (2012).

Ding, Y., Liu, Z., Qiu, C. & Shi, J. Metamaterial with simultaneously negative bulk modulus and mass density. Physical review letters 99, 093904 (2007).

Christensen, J., Kadic, M., Kraft, O. & Wegener, M. Vibrant times for mechanical metamaterials. Mrs Communications 5, 453–462 (2015).

Yang, Z., Mei, J., Yang, M., Chan, N. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nature Reviews Materials 1, 16001 (2016).

Landy, N. I., Sajuyigbe, S., Mock, J., Smith, D. & Padilla, W. Perfect metamaterial absorber. Physical review letters 100, 207402 (2008).

Watts, C. M., Liu, X. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Advanced materials 24 (2012).

Cui, Y. et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser & Photonics Reviews 8, 495–520 (2014).

Lee, Y. P., Rhee, J. Y., Yoo, Y. J. & Kim, K. W. Metamaterials for perfect absorption. Springer series in materials science (ISSN 0933-033X 236 (2016).

Cui, Y. et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano letters 12, 1443–1447 (2012).

Ding, F., Cui, Y., Ge, X., Jin, Y. & He, S. Ultra-broadband microwave metamaterial absorber. Applied physics letters 100, 103506 (2012).

Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012).

Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014).

Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016).

Jiang, X. et al. Ultra-broadband absorption by acoustic metamaterials. Applied Physics Letters 105, 243505 (2014).

Leclaire, P., Umnova, O., Dupont, T. & Panneton, R. Acoustical properties of air-saturated porous material with periodically distributed dead-end poresa). J. Acoust. Soc. Am. 137, 1772–1782 (2015).

Groby, J.-P., Huang, W., Lardeau, A. & Aurégan, Y. The use of slow waves to design simple sound absorbing materials. J. Appl. Phys. 117, 124903 (2015).

Groby, J.-P., Pommier, R. & Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J. Acoust. Soc. Am. 139, 1660–1671 (2016).

Li, Y. & Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502 (2016).

Romero-García, V., Theocharis, G., Richoux, O. & Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America 139, 3395–3403 (2016).

Jiménez, N., Huang, W., Romero-García, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters 109, 121902 (2016).

Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 95, 014205 (2017).

Achilleos, V., Theocharis, G., Richoux, O. & Pagneux, V. Non-hermitian acoustic metamaterials: Role of exceptional points in sound absorption. Physical Review B 95, 144303 (2017).

Santillán, A. & Bozhevolnyi, S. I. Acoustic transparency and slow sound using detuned acoustic resonators. Phys. Rev. B 84, 064304 (2011).

Chong, Y., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Physical review letters 105, 053901 (2010).

Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

Groby, J.-P., Duclos, A., Dazel, O., Boeckx, L. & Lauriks, W. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating. J. Acoust. Soc. Am. 129, 3035–3046 (2011).

Lagarrigue, C., Groby, J., Tournat, V., Dazel, O. & Umnova, O. Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions. J. Acoust. Soc. Am. 134, 4670–4680 (2013).

Boutin, C. Acoustics of porous media with inner resonators. J. Acoust. Soc. Am. 134, 4717–4729 (2013).

Groby, J.-P. et al. Enhancing the absorption properties of acoustic porous plates by periodically embedding helmholtz resonators. J. Acoust. Soc. Am. 137, 273–280 (2015).

Wu, T., Cox, T. & Lam, Y. From a profiled diffuser to an optimized absorber. The Journal of the Acoustical Society of America 108, 643–650 (2000).

Yang, M., Chen, S., Fu, C. & Sheng, P. Optimal sound-absorbing structures. Materials Horizons (2017).

Yang, J., Lee, J. S. & Kim, Y. Y. Multiple slow waves in metaporous layers for broadband sound absorption. Journal of Physics D: Applied Physics 50, 015301 (2016).

Merkel, A., Theocharis, G., Richoux, O., Romero-García, V. & Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl. Phys. Lett. 107, 244102 (2015).

Piper, J. R., Liu, V. & Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110 (2014).

Yang, M. et al. Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107, 104104 (2015).

Jiménez, N. et al. Broadband quasi perfect absorption using chirped multi-layer porous materials. AIP Advances 6, 121605 (2016).

Tsakmakidis, K. L., Boardman, A. D. & Hess, O. Trapped rainbow storage of light in metamaterials. Nature 450, 397–401 (2007).

Zhu, J. et al. Acoustic rainbow trapping. Scientific reports 3 (2013).

Romero-Garcia, V., Picó, R., Cebrecos, A., Sanchez-Morcillo, V. & Staliunas, K. Enhancement of sound in chirped sonic crystals. Applied Physics Letters 102, 091906 (2013).

Ni, X. et al. Acoustic rainbow trapping by coiling up space. Scientific reports 4 (2014).

Colombi, A., Colquitt, D., Roux, P., Guenneau, S. & Craster, R. V. A seismic metamaterial: The resonant metawedge. Scientific reports 6 (2016).

Powell, M. J. A fast algorithm for nonlinearly constrained optimization calculations. In Numerical analysis, 144–157 (Springer, 1978).

Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558 (1991).

Theocharis, G., Richoux, O., García, V. R., Merkel, A. & Tournat, V. Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New J. Phys. 16, 093017 (2014).

Kergomard, J. & Garcia, A. Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae. J. Sound Vib. 114, 465–479 (1987).

Dubos, V. et al. Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acustica united with Acustica 85, 153–169 (1999).

Mechel, F. P. Formulas of acoustics, 2nd ed. (Springer Science & Business Media, 2008).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem