- -

Influence of synthesis conditions on properties of green-reduced graphene oxide

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of synthesis conditions on properties of green-reduced graphene oxide

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pruna, A. es_ES
dc.contributor.author Pullini, D. es_ES
dc.contributor.author Busquets, D. es_ES
dc.date.accessioned 2018-06-03T04:22:51Z
dc.date.available 2018-06-03T04:22:51Z
dc.date.issued 2013 es_ES
dc.identifier.issn 1388-0764 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103254
dc.description.abstract [EN] Green reduction of graphene oxide (GO) was performed using ascorbic acid (AA) in the presence of poly(sodium 4-styrenesulfonate), which resulted in reduced graphene oxide (PSS-rGO) with excellent solubility and stability in water. Large rGO sheets of 4 mu m(2) area and 1.1-nm thickness were obtained. The measurements showed that noncovalent functionalization with PSS molecules prevented rGO from aggregation. The parameters of graphite oxidation process and AA: GO w/w ratio were evaluated, and the obtained results showed that the properties of the reduced material (PSS-rGO) can be tailored by proper selection and adjustment of these parameters. es_ES
dc.description.sponsorship The authors thank the European Commission for their financial support through the project no. NMP3-SL-2010-246073. en_EN
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation COMISION DE LAS COMUNIDADES EUROPEA/246073 es_ES
dc.relation.ispartof Journal of Nanoparticle Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Graphene oxide es_ES
dc.subject Reduction es_ES
dc.subject Functionalization es_ES
dc.subject Poly(sodium 4-styrenesulfonate) es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Influence of synthesis conditions on properties of green-reduced graphene oxide es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11051-013-1605-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/246073/EU/GRaphenE for NAnoscaleD Applications/ en_EN
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Pruna, A.; Pullini, D.; Busquets, D. (2013). Influence of synthesis conditions on properties of green-reduced graphene oxide. Journal of Nanoparticle Research. 15(5):1-11. https://doi.org/10.1007/s11051-013-1605-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11051-013-1605-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\263114 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Acik M, Lee G, Mattevi C et al (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:1981–19761 es_ES
dc.description.references Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860 es_ES
dc.description.references Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288 es_ES
dc.description.references Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A (2012) The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem 22:13773–13781 es_ES
dc.description.references Bae S, Kim H, Lee Y et al (2010) Roll to- roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578 es_ES
dc.description.references Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669 es_ES
dc.description.references Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769 es_ES
dc.description.references Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701 es_ES
dc.description.references Buchsteiner A, Lerf A, Pieper J (2006) Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B 110:22328 es_ES
dc.description.references Choi BG, Park H, Park TJ et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4:2910–2918 es_ES
dc.description.references Cote LJ, Silva RC, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032 es_ES
dc.description.references Dai B, Fu L, Liao L et al (2011) High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res 4:434–439 es_ES
dc.description.references Davies MB, Austin J, Partridge DA (1991) Vitamin C: its chemistry and biochemistry. Royal Society of Chemistry, Cambridge es_ES
dc.description.references Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 23:610–613 es_ES
dc.description.references Fan FRF, Park S, Zhu Y, Ruoff RS, Bard AJ (2009) Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J Am Chem Soc 131:937–939 es_ES
dc.description.references Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S et al (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432 es_ES
dc.description.references Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187405 es_ES
dc.description.references Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115:17009–17019 es_ES
dc.description.references Hancock RD, Viola R (2005) Biosynthesis and catabolism of l-ascorbic acid in plants. Crit Rev Plant Sci 24:167–188 es_ES
dc.description.references Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568 es_ES
dc.description.references Hontoria-Lucas C, Lopez-Peinado AJ, Loepz-Gonzalez JDD et al (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592 es_ES
dc.description.references Jeong HK, Lee YP, Lahaye RJWE et al (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130:1362–1366 es_ES
dc.description.references Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710 es_ES
dc.description.references Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105 es_ES
dc.description.references Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375 es_ES
dc.description.references Kumar P, Subrahmanyam KS, Rao CNR (2011a) Graphene produced by radiation-induced reduction of graphene oxide. Intl J Nanosci 10:559–566 es_ES
dc.description.references Kumar P, Panchakarla LS, Rao CNR (2011b) Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale 3:2127–2129 es_ES
dc.description.references Kumar P, Das B, Chitara B et al (2012) Novel radiation induced properties of graphene and related materials. Macromol Chem Phys 213:1146–1163 es_ES
dc.description.references Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388 es_ES
dc.description.references Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171 es_ES
dc.description.references Li J, Liu CY (2010) Ag/Graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 8:1244–1248 es_ES
dc.description.references Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105 es_ES
dc.description.references Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314 es_ES
dc.description.references Maitra U, Matte HSRR, Kumar P, Rao CNR (2012) Strategies for the synthesis of graphene, graphene nanoribbons, nanoscrolls and related materials. Chimia 66:941–948 es_ES
dc.description.references Mei XG, Ouyang JY (2011) Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397 es_ES
dc.description.references Mkhoyan K, Contryman A, Silcox J, Stewart D, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063 es_ES
dc.description.references Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308 es_ES
dc.description.references Park S, Lee KS, Bozoklu G et al (2008) Graphene oxide papers modified by divalent ions enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578 es_ES
dc.description.references Park S, An J, Jung I et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597 es_ES
dc.description.references Park HJ, Meyer J, Roth S, Skákalová V (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094 es_ES
dc.description.references Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023 es_ES
dc.description.references Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv Mater 21:3159–3164 es_ES
dc.description.references Stankovich S, Piner RD, Chen X, Wu N, Nguyen SBT, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158 es_ES
dc.description.references Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113:4257–4259 es_ES
dc.description.references Szabó T, Tombacz E, Illes E, Dékány I (2006) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 44:537–545 es_ES
dc.description.references Wu JS, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747 es_ES
dc.description.references Wu H, Zhao WF, Hu HW, Chen GH (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21:8626–8632 es_ES
dc.description.references Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857 es_ES
dc.description.references Yin Z, Wu S, Zhou X et al (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6:307–312 es_ES
dc.description.references Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen YS (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47:3365–3380 es_ES
dc.description.references Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via l-ascorbic acid. Chem Comm 46:1112–1114 es_ES
dc.description.references Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the ‘green’ reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem