- -

High virulence does not necessarily impede viral adaptation to a new host: a case study using a plant RNA virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High virulence does not necessarily impede viral adaptation to a new host: a case study using a plant RNA virus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Willemsen, Anouk es_ES
dc.contributor.author Zwart, Mark Peter es_ES
dc.contributor.author Elena Fito, Santiago Fco. es_ES
dc.date.accessioned 2018-06-08T04:23:46Z
dc.date.available 2018-06-08T04:23:46Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1471-2148 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103610
dc.description.abstract [EN] Background: Theory suggests that high virulence could hinder between-host transmission of microparasites, and that virulence therefore will evolve to lower levels. Alternatively, highly virulent microparasites could also curtail host development, thereby limiting both the host resources available to them and their own within-host effective population size. In this case, high virulence might restrain the mutation supply rate and increase the strength with which genetic drift acts on microparasite populations. Thereby, this alternative explanation limits the microparasites' potential to adapt to the host and ultimately the ability to evolve lower virulence. As a first exploration of this hypothesis, we evolved Tobacco etch virus carrying an eGFP fluorescent marker in two semi-permissive host species, Nicotiana benthamiana and Datura stramonium, for which it has a large difference in virulence. We compared the results to those previously obtained in the natural host, Nicotiana tabacum, where we have shown that carriage of eGFP has a high fitness cost and its loss serves as a real-time indicator of adaptation. Results: After over half a year of evolution, we sequenced the genomes of the evolved lineages and measured their fitness. During the evolution experiment, marker loss leading to viable virus variants was only observed in one lineage of the host for which the virus has low virulence, D. stramonium. This result was consistent with the observation that there was a fitness cost of eGFP in this host, while surprisingly no fitness cost was observed in the host for which the virus has high virulence, N. benthamiana. Furthermore, in both hosts we observed increases in viral fitness in few lineages, and host-specific convergent evolution at the genomic level was only found in N. benthamiana. Conclusions: The results of this study do not lend support to the hypothesis that high virulence impedes microparasites' evolution. Rather, they exemplify that jumps between host species can be game changers for evolutionary dynamics. When considering the evolution of genome architecture, host species jumps might play a very important role, by allowing evolutionary intermediates to be competitive. es_ES
dc.description.sponsorship This work was supported by the John Templeton Foundation [grant number 22371 to S.F.E]; the European Commission 7th Framework Program EvoEvo Project [grant number ICT-610427 to S.F.E.]; and the Spanish Ministerio de Economia y Competitividad (MINECO) [grant numbers BFU2012-30805 and BFU2015-65037-P to S.F.E]. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Evolutionary Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Adaptation es_ES
dc.subject Experimental evolution
dc.subject Genome architecture
dc.subject Evolution
dc.subject Host-pathogen interactions
dc.subject Virus evolution
dc.title High virulence does not necessarily impede viral adaptation to a new host: a case study using a plant RNA virus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12862-017-0881-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/610427/EU/Evolution of Evolution/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Willemsen, A.; Zwart, MP.; Elena Fito, SF. (2017). High virulence does not necessarily impede viral adaptation to a new host: a case study using a plant RNA virus. BMC Evolutionary Biology. 17(25):1-18. https://doi.org/10.1186/s12862-017-0881-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12862-017-0881-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 25 es_ES
dc.identifier.pmid 28103791 es_ES
dc.identifier.pmcid PMC5248479 es_ES
dc.relation.pasarela S\339106 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Ewald PW. Host-parasite relations, vectors, and the evolution of disease severity. Annu Rev Ecol Syst. 1983;14:465–85. es_ES
dc.description.references Alizon S, Hurford A, Mideo N, Van Baalen M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol. 2009;22:245–59. es_ES
dc.description.references Fraser C, Hollingsworth TD, Chapman R, de Wolf F, Hanage WP. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc Natl Acad Sci U S A. 2007;104:17441–6. es_ES
dc.description.references De Roode JC, Yates AJ, Altizer S. Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc Natl Acad Sci U S A. 2008;105:7489–94. es_ES
dc.description.references Mackinnon MJ, Gandon S, Read AF. Virulence evolution in response to vaccination: the case of malaria. Vaccine. 2008;26 Suppl 3:C42–52. es_ES
dc.description.references Ebert D, Weisser WW. Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites. Proc R Soc B. 1997;264:985–91. es_ES
dc.description.references Pagán I, Montes N, Milgroom MG, García-Arenal F. Vertical transmission selects for reduced virulence in a plant virus and for increased resistance in the host. PLoS Pathog. 2014;10:e1004293. es_ES
dc.description.references May RM, Nowak MA. Coinfection and the evolution of parasite virulence. Proc R Soc B. 1995;261:209–15. es_ES
dc.description.references De Roode JC, Pansini R, Cheesman SJ, Helinski MEH, Huijben S, Wargo AR, Bell AS, Chan BHK, Walliker D, Read AF. Virulence and competitive ability in genetically diverse malaria infections. Proc Natl Acad Sci U S A. 2005;102:7624–8. es_ES
dc.description.references Brown SP, Cornforth DM, Mideo N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol. 2012;20:336–42. es_ES
dc.description.references Boots M, Sasaki A. The evolutionary dynamics of local infection and global reproduction in host-parasite interactions. Ecol Lett. 2000;3:181–5. es_ES
dc.description.references Bull JJ, Lauring AS. Theory and empiricism in virulence evolution. PLoS Pathog. 2014;10:e1004387. es_ES
dc.description.references Bull JJ, Ebert D. Invasion thresholds and the evolution of nonequilibrium virulence. Evol Appl. 2008;1:172–82. es_ES
dc.description.references Lenski RE, May RM. The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J Theor Biol. 1994;169:253–65. es_ES
dc.description.references Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska JT, Gonzalez J-P, Swanepoel R. Fruit bats as reservoirs of Ebola virus. Nature. 2005;438:575–6. es_ES
dc.description.references Longdon B, Hadfield JD, Day JP, Smith SCL, McGonigle JE, Cogni R, Cao C, Jiggins FM. The causes and consequences of changes in virulence following pathogen host shifts. PLoS Pathog. 2015;11:e1004728. es_ES
dc.description.references Lalić J, Cuevas JM, Elena SF. Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genet. 2011;7:e1002378. es_ES
dc.description.references Bedhomme S, Lafforgue G, Elena SF. Multihost experimental evolution of a plant RNA virus reveals local adaptation and host-specific mutations. Mol Biol Evol. 2012;29:1481–92. es_ES
dc.description.references Velasquez N, Hossain MJ, Murphy JF. Differential disease symptoms and full-length genome sequence analysis for three strains of Tobacco etch virus. Virus Genes. 2015;50:442–9. es_ES
dc.description.references Revers F, García JA. Molecular biology of potyviruses. Adv Virus Res. 2015;92:101–99. es_ES
dc.description.references Zwart MP, Willemsen A, Daròs JA, Elena SF. Experimental evolution of pseudogenization and gene loss in a plant RNA virus. Mol Biol Evol. 2014;31:121–34. es_ES
dc.description.references Carrington JC, Haldeman R, Dolja VV, Restrepo-Hartwig MA. Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo. J Virol. 1993;67:6995–7000. es_ES
dc.description.references Zwart MP, Daròs JA, Elena SF. One is enough: in vivo effective population size is dose-dependent for a plant RNA virus. PLoS Pathog. 2011;7:e1002122. es_ES
dc.description.references Carrasco P, Daròs JA, Agudelo-Romero P, Elena SF. A real-time RT-PCR assay for quantifying the fitness of Tobacco etch virus in competition experiments. J Virol Methods. 2007;139:181–8. es_ES
dc.description.references FASTX-Toolkit. Hannon Lab. http://hannonlab.cshl.edu/fastx_toolkit/index.html . Accessed 4 Oct 2016. es_ES
dc.description.references Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4. es_ES
dc.description.references Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. es_ES
dc.description.references Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9. es_ES
dc.description.references Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–76. es_ES
dc.description.references R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. https://www.r-project.org/ . Accessed 4 Oct 2016. es_ES
dc.description.references Dolja VV, Herndon KL, Pirone TP, Carrington JC. Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene. J Virol. 1993;67:5968–75. es_ES
dc.description.references Majer E, Daròs JA, Zwart M. Stability and fitness impact of the visually discernible Rosea1 marker in the tobacco etch virus genome. Viruses. 2013;5:2153–68. es_ES
dc.description.references Plisson C, Drucker M, Blanc S, German-Retana S, Le Gall O, Thomas D, Bron P. Structural characterization of HC-Pro, a plant virus multifunctional protein. J Biol Chem. 2003;278:23753–61. es_ES
dc.description.references Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, Whitham SA, Gaba V, Gal-On A. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol. 2007;81:13135–48. es_ES
dc.description.references Sardanyés J, Elena SF. Error threshold in RNA quasispecies models with complementation. J Theor Biol. 2010;265:278–86. es_ES
dc.description.references Willemsen A, Zwart MP, Tromas N, Majer E, Daròs JA, Elena SF. Multiple barriers to the evolution of alternative gene orders in a positive-strand RNA virus. Genetics. 2016;202:1503–21. es_ES
dc.description.references Tromas N, Zwart MP, Lafforgue G, Elena SF. Within-host spatiotemporal dynamics of plant virus infection at the cellular level. PLoS Genet. 2014;10:e1004186. es_ES
dc.description.references Willemsen A, Zwart MP, Higueras P, Sardanyés J, Elena SF. Predicting the stability of homologous gene duplications in a plant RNA virus. Genome Biol Evol. 2016;8:3065–82. es_ES
dc.description.references De Vos MGJ, Dawid A, Sunderlikova V, Tans SJ. Breaking evolutionary constraint with a tradeoff ratchet. Proc Natl Acad Sci U S A. 2015;112:14906–11. es_ES
dc.description.references Hernández-Crespo P, Sait SM, Hails RS, Cory JS. Behavior of a recombinant baculovirus in lepidopteran hosts with different susceptibilities. Appl Environ Microbiol. 2001;67:1140–6. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem