- -

Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Suárez, Ana es_ES
dc.contributor.author Pérez, Juan J es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2018-06-08T04:31:25Z
dc.date.available 2018-06-08T04:31:25Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1475-925X es_ES
dc.identifier.uri http://hdl.handle.net/10251/103631
dc.description.abstract [EN] Background: Although accurate modeling of the thermal performance of irrigated-tip electrodes in radiofrequency cardiac ablation requires the solution of a triple coupled problem involving simultaneous electrical conduction, heat transfer, and fluid dynamics, in certain cases it is difficult to combine the software with the expertise necessary to solve these coupled problems, so that reduced models have to be considered. We here focus on a reduced model which avoids the fluid dynamics problem by setting a constant temperature at the electrode tip. Our aim was to compare the reduced and full models in terms of predicting lesion dimensions and the temperatures reached in tissue and blood. Results: The results showed that the reduced model overestimates the lesion surface width by up to 5 mm (i.e. 70%) for any electrode insertion depth and blood flow rate. Likewise, it drastically overestimates the maximum blood temperature by more than 15 degrees C in all cases. However, the reduced model is able to predict lesion depth reasonably well (within 0.1 mm of the full model), and also the maximum tissue temperature (difference always less than 3 degrees C). These results were valid throughout the entire ablation time (60 s) and regardless of blood flow rate and electrode insertion depth (ranging from 0.5 to 1.5 mm). Conclusions: The findings suggest that the reduced model is not able to predict either the lesion surface width or the maximum temperature reached in the blood, and so would not be suitable for the study of issues related to blood temperature, such as the incidence of thrombus formation during ablation. However, it could be used to study issues related to maximum tissue temperature, such as the steam pop phenomenon. es_ES
dc.description.sponsorship This work was supported by the Spanish Government under the "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad" Grant "TEC2014-52383-C3 (TEC2014-52383-C3-1-R)". A. Gonzalez-Suarez has a Postdoctoral Grant "Juan de la Cierva-formacion" (FJCI-2015-27202) supported by the Spanish Ministerio de Economia, Industria y Competitividad. We also would like to appreciate the interesting comments by Dr. Oscar Camara about the limitations of the computational modeling. en_EN
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BioMedical Engineering OnLine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Blood flow es_ES
dc.subject Cardiac ablation es_ES
dc.subject Computer model es_ES
dc.subject Irrigated electrode es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject Thermal modeling es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12938-018-0475-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52383-C3-1-R/ES/TECNOLOGIAS BASADAS EN ENERGIA DE RADIOFRECUENCIA Y MICROONDAS PARA CIRUGIA DE MINIMA INVASION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation González Suárez, A.; Pérez, JJ.; Berjano, E. (2018). Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes?. BioMedical Engineering OnLine. 17(43):1-14. doi:10.1186/s12938-018-0475-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12938-018-0475-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 43 es_ES
dc.identifier.pmid 29678186 en_EN
dc.identifier.pmcid PMC5910590 en_EN
dc.relation.pasarela S\360432 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Matsudaira K, Nakagawa H, Wittkampf FH, Yamanashi WS, Imai S, Pitha JV, et al. High incidence of thrombus formation without impedance rise during radiofrequency ablation using electrode temperature control. Pacing Clin Electrophysiol. 2003;26(5):1227–37. es_ES
dc.description.references Yokoyama K, Nakagawa H, Wittkampf FH, Pitha JV, Lazzara R, Jackman WM. Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop. Circulation. 2006;113(1):11–9. es_ES
dc.description.references González-Suárez A, Berjano E. Comparative analysis of different methods of modeling the thermal effect of circulating blood flow during RF cardiac ablation. IEEE Trans Biomed Eng. 2016;63(2):250–9. es_ES
dc.description.references González-Suárez A, Berjano E, Guerra JM, Gerardo-Giorda L. Computational modeling of open-irrigated electrodes for radiofrequency cardiac ablation including blood motion-saline flow interaction. PLoS ONE. 2016;11(3):e0150356. es_ES
dc.description.references Pérez JJ, D’Avila A, Aryana A, Berjano E. Electrical and thermal effects of esophageal temperature probes on radiofrequency catheter ablation of atrial fibrillation: results from a computational modeling study. J Cardiovasc Electrophysiol. 2015;26(5):556–64. es_ES
dc.description.references Pérez JJ, D’Avila A, Aryana A, Trujillo M, Berjano E. Can fat deposition after myocardial infarction alter the performance of RF catheter ablation of scar-related ventricular tachycardia?: results from a computer modeling study. J Cardiovasc Electrophysiol. 2016;27(8):947–52. es_ES
dc.description.references Pérez JJ, González-Suárez A, Berjano E. Numerical analysis of thermal impact of intramyocardial capillary blood flow during radiofrequency cardiac ablation. Int J Hyperth. 2018;34(3):243–49. es_ES
dc.description.references Demazumder D, Mirotznik MS, Schwartzman D. Biophysics of radiofrequency ablation using an irrigated electrode. J Interv Card Electrophysiol. 2001;5(4):377–89. es_ES
dc.description.references González-Suárez A, Berjano E, Guerra JM, Gerardo-Giorda L. Computational model for prediction of the occurrence of steam pops during irrigated radiofrequency catheter ablation. Comput Cardiol. 2016;43:1117–20. es_ES
dc.description.references Cao H, Speidel MA, Tsai JZ, Van Lysel MS, Vorperian VR, Webster JG. FEM analysis of predicting electrode-myocardium contact from RF cardiac catheter ablation system impedance. IEEE Trans Biomed Eng. 2002;49(6):520–6. es_ES
dc.description.references Schutt D, Berjano EJ, Haemmerich D. Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation : a computational modeling study. Int J Hyperth. 2009;25(2):99–107. es_ES
dc.description.references Jain MK, Wolf PD. A three-dimensional finite element model of radiofrequency ablation with blood flow and its experimental validation. Ann Biomed Eng. 2000;28(9):1075–84. es_ES
dc.description.references Demolin JM, Eick OJ, Münch K, Koullick E, Nakagawa H, Wittkampf FH. Soft thrombus formation in radiofrequency catheter ablation. Pacing Clin Electrophysiol. 2002;25(8):1219–22. es_ES
dc.description.references Weiss C, Antz M, Eick O, Eshagzaiy K, Meinertz T, Willems S. Radiofrequency catheter ablation using cooled electrodes: impact of irrigation flow rate and catheter contact pressure on lesion dimensions. Pacing Clin Electrophysiol. 2002;25(4 Pt 1):463–9. es_ES
dc.description.references Wood MA, Shaffer KM, Ellenbogen AL, Ownby ED. Microbubbles during radiofrequency catheter ablation: composition and formation. Heart Rhythm. 2005;2(4):397–403. es_ES
dc.description.references Thompson N, Lustgarten D, Mason B, Mueller E, Calame J, Bell S, Spector P. The relationship between surface temperature, tissue temperature, microbubble formation, and steam pops. Pacing Clin Electrophysiol. 2009;32(7):833–41. es_ES
dc.description.references d’Avila A, Houghtaling C, Gutierrez P, Vragovic O, Ruskin JN, Josephson ME, Reddy VY. Catheter ablation of ventricular epicardial tissue: a comparison of standard and cooled-tip radiofrequency energy. Circulation. 2004;109:2363–9. es_ES
dc.description.references Dukkipati SR, d’Avila A, Soejima K, Bala R, Inada K, Singh S, et al. Long-term outcomes of combined epicardial and endocardial ablation of monomorphic ventricular tachycardia related to hypertrophic cardiomyopathy. Circ Arrhythm Electrophysiol. 2011;4:185–94. es_ES
dc.description.references Watanabe I, Nuo M, Okumura Y, Ohkubo K, Ashino S, Kofune M, et al. Temperature-controlled cooled-tip radiofrequency ablation in left ventricular myocardium. Int Heart J. 2010;51:193–8. es_ES
dc.description.references Yokoyama K, Nakagawa H, Wittkampf FH, Pitha JV, Lazzara R, Jackman WM. Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop. Circulation. 2006;113:11–9. es_ES
dc.description.references Bin Choy Y, Cao H, Tungjitkusolmun S, Tsai JZ, Haemmerich D, Vorperian VR, Webster JG. Mechanical compliance of the endocardium. J Biomech. 2002;35(12):1671–6. es_ES
dc.description.references Abraham JP, Sparrow EM. A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. Int J Heat Mass Transf. 2007;50(13–14):2537–44. es_ES
dc.description.references Labonté S. Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Trans Biomed Eng. 1994;41(2):108–15. es_ES
dc.description.references Doss JD. Calculation of electric fields in conductive media. Med Phys. 1982;9(4):566–73. es_ES
dc.description.references Haemmerich D, Chachati L, Wright AS, Mahvi DM, Lee FT, Webster JG. Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Trans Biomed Eng. 2003;50(4):493–9. es_ES
dc.description.references Berjano EJ. Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. Biomed Eng Online. 2006;5:24. es_ES
dc.description.references Berjano E, d’Avila A. Lumped element electrical model based on three resistors for electrical impedance in radiofrequency cardiac ablation: estimations from analytical calculations and clinical data. Open Biomed Eng J. 2013;12(7):62–70. es_ES
dc.description.references Haemmerich D, Webster JG. Automatic control of finite element models for temperature-controlled radiofrequency ablation. Biomed Eng Online. 2005;14(4):42. es_ES
dc.description.references Jain MK, Wolf PD. Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Trans Biomed Eng. 1999;46(12):1405–12. es_ES
dc.description.references Winterfield JR, Jensen J, Gilbert T, Marchlinski F, Natale A, Packer D, Reddy V, Mahapatra S, Wilber DJ. Lesion size and safety comparison between the novel flex tip on the flexAbility ablation catheter and the solid tips on the thermocool and thermocool sf ablation catheters. J Cardiovasc Electrophysiol. 2016;27(1):102–9. es_ES
dc.description.references Moreno J, Quintanilla JG, Molina-Morúa R, García-Torrent MJ, Angulo-Hernández MJ, Curiel-Llamazares C, Ramiro-Bargueño J, González P, Caamaño AJ, Pérez-Castellano N, Rojo-Álvarez JL, Macaya C, Pérez-Villacastín J. Morphological and thermodynamic comparison of the lesions created by 4 open-irrigated catheters in 2 experimental models. J Cardiovasc Electrophysiol. 2014;25(12):1391–9. es_ES
dc.description.references Guerra JM, Jorge E, Raga S, Gálvez-Montón C, Alonso-Martín C, Rodríguez-Font E, Cinca J, Viñolas X. Effects of open-irrigated radiofrequency ablation catheter design on lesion formation and complications: in vitro comparison of 6 different devices. J Cardiovasc Electrophysiol. 2013;24(10):1157–62. es_ES
dc.description.references Squara F, Maeda S, Aldhoon B, Marginiere J, Santangeli P, Chik WW, Michele J, Zado E, Marchlinski FE. In vitro evaluation of ice-cold saline irrigation during catheter radiofrequency ablation. J Cardiovasc Electrophysiol. 2014;25(10):1125–32. es_ES
dc.description.references Wong KKL, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D. Medical imaging and processing methods for cardiac flow reconstruction. J Mech Med Biol. 2009;9(01):1–20. es_ES
dc.description.references Wong KKL, Thavornpattanapong P, Cheung SCP, Tu JY. Biomechanical investigation of pulsatile flow in a three-dimensional atherosclerotic carotid bifurcation model. J Mech Med Biol. 2013;13(01):1350001. es_ES
dc.description.references Liu G, Wu J, Huang W, Wu W, Zhang H, Wong KKL, Ghista DN. Numerical simulation of flow in curved coronary arteries with progressive amounts of stenosis using fluid-structure interaction modelling. J Med Imaging Health Inform. 2014;4(4):605–11. es_ES
dc.description.references Wong KKL, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D. Cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart. Ann Biomed Eng. 2009;37(8):1495–515. es_ES
dc.description.references Wong KKL, Tu J, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D. Cardiac flow component analysis. Med Eng Phys. 2010;32(2):174–88. es_ES
dc.description.references Wong KK, Wang D, Ko JK, Mazumdar J, Le TT, Ghista D. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures. Biomed Eng Online. 2017;16(1):35. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem