- -

The effect of nozzle geometry over the evaporative spray formation for three different fuels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The effect of nozzle geometry over the evaporative spray formation for three different fuels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payri, Raúl es_ES
dc.contributor.author Viera-Sotillo, Juan Pablo es_ES
dc.contributor.author Gopalakrishnan , Venkatesh es_ES
dc.contributor.author Szymkowicz, Patrick es_ES
dc.date.accessioned 2018-06-14T04:33:53Z
dc.date.available 2018-06-14T04:33:53Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0016-2361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/104019
dc.description.abstract [EN] The influence of internal nozzle flow characteristics over the evaporative spray development is studied experimentally for two different nozzle geome-tries and three different fuels. This is a continuation of previous work by the authors where non-evaporative isothermal spray development was stud-ied experimentally for the same nozzle geometries and fuels. Current study reports macroscopic spray characteristics by imaging the liquid and vapor phases of the spray simultaneously using independent cameras and optical techniques. The liquid phase is captured by a fast-pulsed diffused back illumination setup, while the vapor phase is captured by a single-pass Schlieren setup with diaphragm. The nozzle geometries consist of a conical nozzle and a cylindrical nozzle with 8.6 % larger outlet diameter when compared to the conical nozzle. Among the three fuels, two are pure components n-heptane and n-dodecane while the third consists of a three-component surrogate to better represent the physical and chemical properties of diesel fuel. For a fixed ambient density, the liquid penetration is controlled by ambient temperature while the vapor penetration is controlled by injection pressure. The cylindrical nozzle, in spite of higher mass flow rate and momentum flux,shows slower vapor spray tip penetration when compared to the conical noz-zle. Also, the cylindrical nozzle consistently produced shorter liquid lengths. The vapor spray spreading angle is found to be inversely proportional to the spray tip penetration, largely influenced by the nozzle geometry and the am-bient density. n-Heptane spray shows the shortest liquid lengths, followed by n-dodecane and finally the Surrogate. No significant difference in vapor penetration rates was found between fuels, confirming that the vapor spray is controlled by momentum, which is independent of fuel. This was not the case for the non-evaporative isothermal sprays previously studied by the au-thors. Liquid lengths show the expected responses to parametric variations of ambient temperature and density. Two empirical predictive models are presented and utilized to analyze the influence of fuel properties on the liq-uid length. The primary factor controlling the liquid length between fuels is found to be their volatility. Finally, the cylindrical nozzle exhibits larger line-of-sight contour fluctuations in both the liquid and vapor phases, which in turn contributes to the shorter liquid lengths and slower vapor penetration. es_ES
dc.description.sponsorship This work was sponsored by Ministerio de Economía y Competitividad of the Spanish Government in the frame of the Project “Estudio de la interaccin chorro-pared en condiciones realistas de motor”, Reference TRA2015-67679-c2-1-R. Additionally, the employed nozzles and Diesel surrogate were provided and defined by GM R&D. The authors would like to thank José Enrique Del Rey and María del Carmen Tomás for their collaboration in the setup of the experiments and laboratory work, and Guillermo Miró for his help measuring fuel properties.
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fuel es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Macroscopic spray development es_ES
dc.subject Evaporative spray formation es_ES
dc.subject Surrogate fuels es_ES
dc.subject Liquid length es_ES
dc.subject Vapor penetration es_ES
dc.subject Spray dispersion es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title The effect of nozzle geometry over the evaporative spray formation for three different fuels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fuel.2016.10.064 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2015-67679-C2-1-R/ES/ESTUDIO DE LA INTERACCION CHORRO-PARED EN CONDICIONES REALISTAS DE MOTOR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-01-15 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Payri, R.; Viera-Sotillo, JP.; Gopalakrishnan, V.; Szymkowicz, P. (2017). The effect of nozzle geometry over the evaporative spray formation for three different fuels. Fuel. 188:645-660. https://doi.org/10.1016/j.fuel.2016.10.064 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.fuel.2016.10.064 es_ES
dc.description.upvformatpinicio 645 es_ES
dc.description.upvformatpfin 660 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 188 es_ES
dc.relation.pasarela S\319508 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem