- -

Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vila Tortosa, María Paloma es_ES
dc.contributor.author Baeza González, Luis Miguel es_ES
dc.contributor.author Martínez Casas, José es_ES
dc.contributor.author Carballeira, Javier es_ES
dc.date.accessioned 2018-07-07T04:24:14Z
dc.date.available 2018-07-07T04:24:14Z
dc.date.issued 2014 es_ES
dc.identifier.issn 0042-3114 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105465
dc.description.abstract [EN] In this work, a simulation tool is developed to analyse the growth of rail corrugation consisting of several models connected in a feedback loop in order to account for both the short-term dynamic vehicle track interaction and the long-term damage. The time-domain vehicle track interaction model comprises a flexible rotating wheel set model, a cyclic track model based on a substructuring technique and a non-Hertzian and non-steady-state three-dimensional wheel rail contact model, based on the variational theory by Kalker. Wear calculation is performed with Archard s wear model by using the contact parameters obtained with the non-Hertzian and non-steady-state three-dimensional contact model. The aim of this paper is to analyse the influence of the excitation of two coinciding resonances of the flexible rotating wheel set on the rail corrugation growth in the frequency range from 20 to 1500 Hz, when contact conditions similar to those that can arise while a wheel set is negotiating a gentle curve are simulated. Numerical results show that rail corrugation grows only on the low rail for two cases in which two different modes of the rotating wheel set coincide in frequency. In the first case, identified by using the Campbell diagram, the excitation of both the backward wheel mode and the forward third bending mode of the wheel set model (B-F modes) promotes the growth of rail corrugation with a wavelength of 110mm for a vehicle velocity of 142 km/h. In the second case, the excitation of both the backward wheel mode and the backward third bending mode (B-B modes) gives rise to rail corrugation growth at a wavelength of 156 mm when the vehicle velocity is 198 km/h. es_ES
dc.description.sponsorship The authors acknowledge the financial contribution by the Spanish Ministry of Economy and Competitiveness through the project TRA2010-15669. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Vehicle System Dynamics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Rail corrugation es_ES
dc.subject Flexible rotating wheel set es_ES
dc.subject Cyclic track es_ES
dc.subject Global corrugation growth rate es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00423114.2014.881513 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TRA2010-15669/ES/DESARROLLO DE TECNICAS DE MODELADO AVANZADAS PARA EL ESTUDIO DE LA DINAMICA ACOPLADA DE UN VEHICULO FERROVIARIO CON LA VIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Vila Tortosa, MP.; Baeza González, LM.; Martínez Casas, J.; Carballeira, J. (2014). Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch. Vehicle System Dynamics. 52:92-108. https://doi.org/10.1080/00423114.2014.881513 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00423114.2014.881513 es_ES
dc.description.upvformatpinicio 92 es_ES
dc.description.upvformatpfin 108 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.relation.pasarela S\267279 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Grassie, S. L., & Kalousek, J. (1993). Rail Corrugation: Characteristics, Causes and Treatments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 207(1), 57-68. doi:10.1243/pime_proc_1993_207_227_02 es_ES
dc.description.references Hempelmann, K., Hiss, F., Knothe, K., & Ripke, B. (1991). The formation of wear patterns on rail tread. Wear, 144(1-2), 179-195. doi:10.1016/0043-1648(91)90014-l es_ES
dc.description.references Hempelmann, K., & Knothe, K. (1996). An extended linear model for the prediction of short pitch corrugation. Wear, 191(1-2), 161-169. doi:10.1016/0043-1648(95)06747-7 es_ES
dc.description.references GRASSIE, S. L., & ELKINS, J. A. (1998). RAIL CORRUGATION ON NORTH AMERICAN TRANSIT SYSTEMS. Vehicle System Dynamics, 29(sup1), 5-17. doi:10.1080/00423119808969548 es_ES
dc.description.references Egana, J. I., Vinolas, J., & Seco, M. (2006). Investigation of the influence of rail pad stiffness on rail corrugation on a transit system. Wear, 261(2), 216-224. doi:10.1016/j.wear.2005.10.004 es_ES
dc.description.references Igeland, A. (1996). Railhead Corrugation Growth Explained by Dynamic Interaction between Track and Bogie Wheelsets. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 210(1), 11-20. doi:10.1243/pime_proc_1996_210_322_02 es_ES
dc.description.references Gómez, I., & Vadillo, E. G. (2003). A linear model to explain short pitch corrugation on rails. Wear, 255(7-12), 1127-1142. doi:10.1016/s0043-1648(03)00282-5 es_ES
dc.description.references Collette, C., Vanhonacker, P., Bastaits, R., & Levy, D. (2008). Comparison between time and frequency studies of a corrugated curve of RER Paris network. Wear, 265(9-10), 1249-1258. doi:10.1016/j.wear.2008.01.030 es_ES
dc.description.references Daniel, W. J. T., Horwood, R. J., Meehan, P. A., & Wheatley, N. (2008). Analysis of rail corrugation in cornering. Wear, 265(9-10), 1183-1192. doi:10.1016/j.wear.2008.02.030 es_ES
dc.description.references Fayos, J., Baeza, L., Denia, F. D., & Tarancón, J. E. (2007). An Eulerian coordinate-based method for analysing the structural vibrations of a solid of revolution rotating about its main axis. Journal of Sound and Vibration, 306(3-5), 618-635. doi:10.1016/j.jsv.2007.05.051 es_ES
dc.description.references Baeza, L., & Ouyang, H. (2011). A railway track dynamics model based on modal substructuring and a cyclic boundary condition. Journal of Sound and Vibration, 330(1), 75-86. doi:10.1016/j.jsv.2010.07.023 es_ES
dc.description.references Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-7889-9 es_ES
dc.description.references Xie, G., & Iwnicki, S. D. (2008). Simulation of wear on a rough rail using a time-domain wheel–track interaction model. Wear, 265(11-12), 1572-1583. doi:10.1016/j.wear.2008.03.016 es_ES
dc.description.references Igeland, A., & Ilias, H. (1997). Rail head corrugation growth predictions based on non-linear high frequency vehicle/track interaction. Wear, 213(1-2), 90-97. doi:10.1016/s0043-1648(97)00172-5 es_ES
dc.description.references Vila, P., Fayos, J., & Baeza, L. (2011). Simulation of the evolution of rail corrugation using a rotating flexible wheelset model. Vehicle System Dynamics, 49(11), 1749-1769. doi:10.1080/00423114.2011.552619 es_ES
dc.description.references Popp, K., Kruse, H., & Kaiser, I. (1999). Vehicle-Track Dynamics in the Mid-Frequency Range. Vehicle System Dynamics, 31(5-6), 423-464. doi:10.1076/vesd.31.5.423.8363 es_ES
dc.description.references Johnson, K. L. (1985). Contact Mechanics. doi:10.1017/cbo9781139171731 es_ES
dc.description.references Hiensch, M., Nielsen, J. C. O., & Verheijen, E. (2002). Rail corrugation in The Netherlands—measurements and simulations. Wear, 253(1-2), 140-149. doi:10.1016/s0043-1648(02)00093-5 es_ES
dc.description.references Jin, X., Xiao, X., Wen, Z., Guo, J., & Zhu, M. (2009). An investigation into the effect of train curving on wear and contact stresses of wheel and rail. Tribology International, 42(3), 475-490. doi:10.1016/j.triboint.2008.08.004 es_ES
dc.description.references Ilias, H., & Müller, S. (1994). A discrete-continuous track-model for wheelsets rolling over short wavelength sinusoidal rail irregularities. Vehicle System Dynamics, 23(sup1), 221-233. doi:10.1080/00423119308969517 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem