- -

Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La0.8Sr0.2)(0.95)MnO3+delta and Doped Cerias Ce(1 x)Ln(x)O(2 delta) (Ln=Gd, La, Er, Pr, Tb and x=0.1 0.2)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La0.8Sr0.2)(0.95)MnO3+delta and Doped Cerias Ce(1 x)Ln(x)O(2 delta) (Ln=Gd, La, Er, Pr, Tb and x=0.1 0.2)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarrete Algaba, Laura es_ES
dc.contributor.author Balaguer Ramírez, María es_ES
dc.contributor.author Vert Belenguer, Vicente Bernardo es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2018-09-25T07:08:48Z
dc.date.available 2018-09-25T07:08:48Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1615-6846 es_ES
dc.identifier.uri http://hdl.handle.net/10251/108054
dc.description.abstract [EN] Composites made of different doped cerias and (La0.8Sr0.2)(0.95)MnO3+ were studied as potential solid oxide fuel cell cathodes. Tb, Pr, Gd and Er have been introduced as ceria dopants to enhance the electrocatalytic properties of (La0.8Sr0.2)(0.95)MnO3+ composites fabricated within. Different electrochemical behaviors were observed for the studied composites depending on lanthanide cation nature, i.e., whether they can exhibit different oxidation states or not. Specifically, (La0.8Sr0.2)(0.95)MnO3+/ceria composites with a mixed valence dopants (Tb and Pr) in the CeO2 structure are the best performing and present a limiting step at low frequencies; whereas those with ceria-doping elements withfixed oxidation state (Gd and Er) exhibit the limiting processes at higher frequencies. This fact is related to the higher magnitude of the TPB enlargement in the composite cathode achieved thanks to the promotion of mixed ionic-electronic conductivity in the Pr/Tb-doped ceria phase.The best cathode performance was obtained with (La0.8Sr0.2)(0.95)MnO3+_Ce0.8Pr0.2O2- cathodes with the lowest values for the polarization resistance in the 900-700 degrees C temperature range. es_ES
dc.description.sponsorship Funding from Spanish Government (MINECO ENE2014-57651 grant) is kindly acknowledged.
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Fuel Cells es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cathode es_ES
dc.subject Composite es_ES
dc.subject Doped Cerias es_ES
dc.subject LSM es_ES
dc.subject Praseodymium es_ES
dc.subject SOFC es_ES
dc.title Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La0.8Sr0.2)(0.95)MnO3+delta and Doped Cerias Ce(1 x)Ln(x)O(2 delta) (Ln=Gd, La, Er, Pr, Tb and x=0.1 0.2) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/fuce.201600133 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Navarrete Algaba, L.; Balaguer Ramírez, M.; Vert Belenguer, VB.; Serra Alfaro, JM. (2017). Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La0.8Sr0.2)(0.95)MnO3+delta and Doped Cerias Ce(1 x)Ln(x)O(2 delta) (Ln=Gd, La, Er, Pr, Tb and x=0.1 0.2). Fuel Cells. 17(1):100-107. https://doi.org/10.1002/fuce.201600133 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/fuce.201600133 es_ES
dc.description.upvformatpinicio 100 es_ES
dc.description.upvformatpfin 107 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\329178 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Minh, N. Q. (1993). Ceramic Fuel Cells. Journal of the American Ceramic Society, 76(3), 563-588. doi:10.1111/j.1151-2916.1993.tb03645.x es_ES
dc.description.references Mizusaki, J. (2000). Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1â xSrxMnO3. Solid State Ionics, 132(3-4), 167-180. doi:10.1016/s0167-2738(00)00662-7 es_ES
dc.description.references Jiang, S. P. (2003). Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 124(2), 390-402. doi:10.1016/s0378-7753(03)00814-0 es_ES
dc.description.references YOKOKAWA, H. (1990). Thermodynamic analysis on interface between perovskite electrode and YSZ electrolyte. Solid State Ionics, 40-41, 398-401. doi:10.1016/0167-2738(90)90366-y es_ES
dc.description.references Berenov, A., Wood, H., & Atkinson, A. (2007). Evaluation of La0.8Sr0.2Cu1-xMnxOd Double Perovskite for Use in SOFCs. ECS Transactions. doi:10.1149/1.2729216 es_ES
dc.description.references Yun, K. S., Yoo, C.-Y., Yoon, S.-G., Yu, J. H., & Joo, J. H. (2015). Chemically and thermo-mechanically stable LSM–YSZ segmented oxygen permeable ceramic membrane. Journal of Membrane Science, 486, 222-228. doi:10.1016/j.memsci.2015.03.049 es_ES
dc.description.references Jiang, S. P. (2008). Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. Journal of Materials Science, 43(21), 6799-6833. doi:10.1007/s10853-008-2966-6 es_ES
dc.description.references Balaguer, M., Vert, V. B., Navarrete, L., & Serra, J. M. (2013). SOFC composite cathodes based on LSM and co-doped cerias (Ce0.8Gd0.1X0.1O2–δ, X = Gd, Cr, Mg, Bi, Ce). Journal of Power Sources, 223, 214-220. doi:10.1016/j.jpowsour.2012.09.060 es_ES
dc.description.references Jiang, S. P., & Yan, Y. (Eds.). (2013). Materials for High-Temperature Fuel Cells. doi:10.1002/9783527644261 es_ES
dc.description.references Perry Murray, E. (2001). (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ionics, 143(3-4), 265-273. doi:10.1016/s0167-2738(01)00871-2 es_ES
dc.description.references Jiang, S. P., Leng, Y. J., Chan, S. H., & Khor, K. A. (2003). Development of (La,Sr)MnO[sub 3]-Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 6(4), A67. doi:10.1149/1.1558351 es_ES
dc.description.references Jiang, S. P., & Wang, W. (2005). Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells. Solid State Ionics, 176(15-16), 1351-1357. doi:10.1016/j.ssi.2005.03.011 es_ES
dc.description.references Navarrete, L., Solís, C., & Serra, J. M. (2015). Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization. Journal of Materials Chemistry A, 3(32), 16440-16444. doi:10.1039/c5ta05187h es_ES
dc.description.references Murray, E. P., Tsai, T., & Barnett, S. A. (1998). Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study. Solid State Ionics, 110(3-4), 235-243. doi:10.1016/s0167-2738(98)00142-8 es_ES
dc.description.references Jørgensen, M. (2001). Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics, 139(1-2), 1-11. doi:10.1016/s0167-2738(00)00818-3 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d es_ES
dc.description.references Inaba, H. (1996). Ceria-based solid electrolytes. Solid State Ionics, 83(1-2), 1-16. doi:10.1016/0167-2738(95)00229-4 es_ES
dc.description.references Mogensen, M. (2000). Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 129(1-4), 63-94. doi:10.1016/s0167-2738(99)00318-5 es_ES
dc.description.references M. Balaguer 2013 es_ES
dc.description.references Goodenough, J. B. (2003). Oxide-Ion Electrolytes. Annual Review of Materials Research, 33(1), 91-128. doi:10.1146/annurev.matsci.33.022802.091651 es_ES
dc.description.references Kuharuangrong, S. (2007). Ionic conductivity of Sm, Gd, Dy and Er-doped ceria. Journal of Power Sources, 171(2), 506-510. doi:10.1016/j.jpowsour.2007.05.104 es_ES
dc.description.references Tuller, H. L., Bishop, S. R., Chen, D., Kuru, Y., Kim, J.-J., & Stefanik, T. S. (2012). Praseodymium doped ceria: Model mixed ionic electronic conductor with coupled electrical, optical, mechanical and chemical properties. Solid State Ionics, 225, 194-197. doi:10.1016/j.ssi.2012.02.029 es_ES
dc.description.references Balaguer, M., Yoo, C.-Y., Bouwmeester, H. J. M., & Serra, J. M. (2013). Bulk transport and oxygen surface exchange of the mixed ionic–electronic conductor Ce1−xTbxO2−δ (x = 0.1, 0.2, 0.5). Journal of Materials Chemistry A, 1(35), 10234. doi:10.1039/c3ta11610g es_ES
dc.description.references Vert, V. B., Solís, C., & Serra, J. M. (2010). Electrochemical Properties of PSFC-BCYb Composites as Cathodes for Proton Conducting Solid Oxide Fuel Cells. Fuel Cells, 11(1), 81-90. doi:10.1002/fuce.201000090 es_ES
dc.description.references Steele, B. (2000). Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics, 129(1-4), 95-110. doi:10.1016/s0167-2738(99)00319-7 es_ES
dc.description.references Jørgensen, M. J., & Mogensen, M. (2001). Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes. Journal of The Electrochemical Society, 148(5), A433. doi:10.1149/1.1360203 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w es_ES
dc.description.references Tikhonovich, V. (1998). Surface modification of La(Sr)MnO3 electrodes. Solid State Ionics, 106(3-4), 197-206. doi:10.1016/s0167-2738(97)00505-5 es_ES
dc.description.references C.-Y. Yoo 2012 es_ES
dc.description.references Kim, J. (2001). Characterization of LSMâ YSZ composite electrode by ac impedance spectroscopy. Solid State Ionics, 143(3-4), 379-389. doi:10.1016/s0167-2738(01)00877-3 es_ES
dc.description.references Wang, S. (1998). Promoting effect of YSZ on the electrochemical performance of YSZ+LSM composite electrodes. Solid State Ionics, 113-115(1-2), 291-303. doi:10.1016/s0167-2738(98)00379-8 es_ES
dc.description.references Sunde, S. (1996). Monte Carlo Simulations of Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 143(6), 1930. doi:10.1149/1.1836927 es_ES
dc.description.references Sunde, S. (1997). Calculations of impedance of composite anodes for solid oxide fuel cells. Electrochimica Acta, 42(17), 2637-2648. doi:10.1016/s0013-4686(96)00455-0 es_ES
dc.description.references Serra, J. M., Vert, V. B., Büchler, O., Meulenberg, W. A., & Buchkremer, H. P. (2008). IT-SOFC supported on Mixed Oxygen Ionic-Electronic Conducting Composites. Chemistry of Materials, 20(12), 3867-3875. doi:10.1021/cm702508f es_ES
dc.description.references Serra, J. M., & Vert, V. B. (2009). Optimization of Oxygen Activation Fuel-Cell Electrocatalysts by Combinatorial Designs. ChemSusChem, 2(10), 957-961. doi:10.1002/cssc.200900149 es_ES
dc.description.references Leng, Y. (2004). Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. International Journal of Hydrogen Energy, 29(10), 1025-1033. doi:10.1016/j.ijhydene.2004.01.009 es_ES
dc.description.references Tsai, T. (1997). Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics, 93(3-4), 207-217. doi:10.1016/s0167-2738(96)00524-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem