- -

Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Cervera Montesinos, Javier es_ES
dc.contributor.author Gómez Lozano, Vicente es_ES
dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.contributor.author Mafé, Salvador es_ES
dc.date.accessioned 2018-12-30T21:03:27Z
dc.date.available 2018-12-30T21:03:27Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1613-6810 es_ES
dc.identifier.uri http://hdl.handle.net/10251/114623
dc.description This is the peer reviewed version of the following article: Ramirez Hoyos, P.; Cervera Montesinos, J.; Gómez Lozano, V.; Ali, M.; Nasir, S.; Ensinger, W.; Mafé, S. (2018). Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors. Small. 14(18). doi:10.1002/smll.201702252, which has been published in final form at http://doi.org/10.1002/smll.201702252. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
dc.description.abstract [EN] The design and experimental implementation of hybrid circuits is considered allowing charge transfer and energy conversion between nanofluidic diodes in aqueous ionic solutions and conventional electronic elements such as capacitors. The fundamental concepts involved are reviewed for the case of fluctuating zero-average external potentials acting on single pore and multipore membranes. This problem is relevant to electrochemical energy conversion and storage, the stimulus-response characteristics of nanosensors and actuators, and the estimation of the accumulative effects caused by external signals on biological ion channels. Half-wave and full-wave voltage doublers and quadruplers can scale up the transduction between ionic and electronic signals. The network designs discussed here should be useful to convert the weak signals characteristic of the micro and nanoscale into robust electronic responses by interconnecting iontronics and electronic elements. es_ES
dc.description.sponsorship P.R., J.C., V.G., and S.M. acknowledge the financial support from the Ministry of Economy and Competitiveness of Spain, (Materials Program, project No. MAT2015-65011-P), and FEDER. M.A., S.N., and W.E. acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany, under the LOEWE project iNAPO. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Small es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Energy conversion es_ES
dc.subject Hybrid circuits es_ES
dc.subject Iontronics es_ES
dc.subject Nanofluidic diodes es_ES
dc.subject Single and multipore membranes es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/smll.201702252 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-65011-P/ES/NANOFLUIDICA DE POROS BIOMIMETICOS: NUEVAS APLICACIONES EN CONVERSION DE ENERGIA Y SENSORES%2FACTUADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-05-03 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ramirez Hoyos, P.; Cervera Montesinos, J.; Gómez Lozano, V.; Ali, M.; Nasir, S.; Ensinger, W.; Mafé, S. (2018). Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors. Small. 14(18). https://doi.org/10.1002/smll.201702252 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/smll.201702252 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 18 es_ES
dc.identifier.pmid 28960903
dc.relation.pasarela S\365600 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Misra, N., Martinez, J. A., Huang, S.-C. J., Wang, Y., Stroeve, P., Grigoropoulos, C. P., & Noy, A. (2009). Bioelectronic silicon nanowire devices using functional membrane proteins. Proceedings of the National Academy of Sciences, 106(33), 13780-13784. doi:10.1073/pnas.0904850106 es_ES
dc.description.references Lemay, S. G. (2009). Nanopore-Based Biosensors: The Interface between Ionics and Electronics. ACS Nano, 3(4), 775-779. doi:10.1021/nn900336j es_ES
dc.description.references Tybrandt, K., Larsson, K. C., Richter-Dahlfors, A., & Berggren, M. (2010). Ion bipolar junction transistors. Proceedings of the National Academy of Sciences, 107(22), 9929-9932. doi:10.1073/pnas.0913911107 es_ES
dc.description.references Duan, X., Fu, T.-M., Liu, J., & Lieber, C. M. (2013). Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today, 8(4), 351-373. doi:10.1016/j.nantod.2013.05.001 es_ES
dc.description.references Ramirez, P., Cervera, J., Ali, M., Ensinger, W., & Mafe, S. (2014). Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem, 1(4), 698-705. doi:10.1002/celc.201300255 es_ES
dc.description.references Guan, W., Li, S. X., & Reed, M. A. (2014). Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications. Nanotechnology, 25(12), 122001. doi:10.1088/0957-4484/25/12/122001 es_ES
dc.description.references Tagliazucchi, M., & Szleifer, I. (2015). Transport mechanisms in nanopores and nanochannels: can we mimic nature? Materials Today, 18(3), 131-142. doi:10.1016/j.mattod.2014.10.020 es_ES
dc.description.references Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026 es_ES
dc.description.references Gomez, V., Ramirez, P., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore. Applied Physics Letters, 106(7), 073701. doi:10.1063/1.4909532 es_ES
dc.description.references Gomez, V., Ramirez, P., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore. Scientific Reports, 5(1). doi:10.1038/srep09501 es_ES
dc.description.references Queralt-Martín, M., García-Giménez, E., Aguilella, V. M., Ramirez, P., Mafe, S., & Alcaraz, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters, 103(4), 043707. doi:10.1063/1.4816748 es_ES
dc.description.references Verdia-Baguena, C., Gomez, V., Cervera, J., Ramirez, P., & Mafe, S. (2017). Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel. Physical Chemistry Chemical Physics, 19(1), 292-296. doi:10.1039/c6cp06035h es_ES
dc.description.references Gomez, V., Cervera, J., Nasir, S., Ali, M., Ensinger, W., Mafe, S., & Ramirez, P. (2016). Electrical network of nanofluidic diodes in electrolyte solutions: Connectivity and coupling to electronic elements. Electrochemistry Communications, 62, 29-33. doi:10.1016/j.elecom.2015.10.022 es_ES
dc.description.references Ramirez, P., Gomez, V., Verdia-Baguena, C., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2016). Designing voltage multipliers with nanofluidic diodes immersed in aqueous salt solutions. Physical Chemistry Chemical Physics, 18(5), 3995-3999. doi:10.1039/c5cp07203d es_ES
dc.description.references Ramirez, P., Gomez, V., Cervera, J., Nasir, S., Ali, M., Ensinger, W., … Mafe, S. (2016). Voltage-controlled current loops with nanofluidic diodes electrically coupled to solid state capacitors. RSC Advances, 6(60), 54742-54746. doi:10.1039/c6ra08277g es_ES
dc.description.references Ramirez, P., Garcia-Morales, V., Gomez, V., Ali, M., Nasir, S., Ensinger, W., & Mafe, S. (2017). Hybrid Circuits with Nanofluidic Diodes and Load Capacitors. Physical Review Applied, 7(6). doi:10.1103/physrevapplied.7.064035 es_ES
dc.description.references Ramirez, P., Gomez, V., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Energy conversion from external fluctuating signals based on asymmetric nanopores. Nano Energy, 16, 375-382. doi:10.1016/j.nanoen.2015.07.013 es_ES
dc.description.references Hou, Y., Vidu, R., & Stroeve, P. (2011). Solar Energy Storage Methods. Industrial & Engineering Chemistry Research, 50(15), 8954-8964. doi:10.1021/ie2003413 es_ES
dc.description.references Ali, M., Ahmed, I., Ramirez, P., Nasir, S., Mafe, S., Niemeyer, C. M., & Ensinger, W. (2017). A redox-sensitive nanofluidic diode based on nicotinamide-modified asymmetric nanopores. Sensors and Actuators B: Chemical, 240, 895-902. doi:10.1016/j.snb.2016.09.061 es_ES
dc.description.references Zhang, Y., & Schatz, G. C. (2017). Conical Nanopores for Efficient Ion Pumping and Desalination. The Journal of Physical Chemistry Letters, 8(13), 2842-2848. doi:10.1021/acs.jpclett.7b01137 es_ES
dc.description.references Apel, P. (2001). Track etching technique in membrane technology. Radiation Measurements, 34(1-6), 559-566. doi:10.1016/s1350-4487(01)00228-1 es_ES
dc.description.references Siwy, Z., Trofin, L., Kohli, P., Baker, L. A., Trautmann, C., & Martin, C. R. (2005). Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 127(14), 5000-5001. doi:10.1021/ja043910f es_ES
dc.description.references Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845 es_ES
dc.description.references Cervera, J., Ramirez, P., Gomez, V., Nasir, S., Ali, M., Ensinger, W., … Mafe, S. (2016). Multipore membranes with nanofluidic diodes allowing multifunctional rectification and logical responses. Applied Physics Letters, 108(25), 253701. doi:10.1063/1.4954764 es_ES
dc.description.references Nasir, S., Ramirez, P., Ali, M., Ahmed, I., Fruk, L., Mafe, S., & Ensinger, W. (2013). Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with «caged» lysine chains. The Journal of Chemical Physics, 138(3), 034709. doi:10.1063/1.4775811 es_ES
dc.description.references Pérez-Mitta, G., Albesa, A. G., Trautmann, C., Toimil-Molares, M. E., & Azzaroni, O. (2017). Bioinspired integrated nanosystems based on solid-state nanopores: «iontronic» transduction of biological, chemical and physical stimuli. Chemical Science, 8(2), 890-913. doi:10.1039/c6sc04255d es_ES
dc.description.references Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312 es_ES
dc.description.references Roseman, J. M., Lin, J., Ramakrishnan, S., Rosenstein, J. K., & Shepard, K. L. (2015). Hybrid integrated biological–solid-state system powered with adenosine triphosphate. Nature Communications, 6(1). doi:10.1038/ncomms10070 es_ES
dc.description.references Kocer, A., Tauk, L., & Déjardin, P. (2012). Nanopore sensors: From hybrid to abiotic systems. Biosensors and Bioelectronics, 38(1), 1-10. doi:10.1016/j.bios.2012.05.013 es_ES
dc.description.references Maglia, G., Heron, A. J., Hwang, W. L., Holden, M. A., Mikhailova, E., Li, Q., … Bayley, H. (2009). Droplet networks with incorporated protein diodes show collective properties. Nature Nanotechnology, 4(7), 437-440. doi:10.1038/nnano.2009.121 es_ES
dc.description.references Han, J.-H., Kim, K. B., Kim, H. C., & Chung, T. D. (2009). Ionic Circuits Based on Polyelectrolyte Diodes on a Microchip. Angewandte Chemie International Edition, 48(21), 3830-3833. doi:10.1002/anie.200900045 es_ES
dc.description.references Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119 es_ES
dc.description.references Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b es_ES
dc.description.references Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 es_ES
dc.description.references Ramírez, P., Rapp, H.-J., Mafé, S., & Bauer, B. (1994). Bipolar membranes under forward and reverse bias conditions. Theory vs. experiment. Journal of Electroanalytical Chemistry, 375(1-2), 101-108. doi:10.1016/0022-0728(94)03379-x es_ES
dc.description.references Hou, X., Guo, W., & Jiang, L. (2011). Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 40(5), 2385. doi:10.1039/c0cs00053a es_ES
dc.description.references Guo, W., Tian, Y., & Jiang, L. (2013). Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Accounts of Chemical Research, 46(12), 2834-2846. doi:10.1021/ar400024p es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem